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Abstract—Many modern imaging sensors must obtain multiple
looks or “views” of a target at different orientations to automati-
cally classify it with high confidence. Therefore, when tasked with
classifying many targets, a mobile sensor may need to travel a long
distance to change its position and orientation relative to every tar-
get, resulting in costly and time-consuming operations. This article
presents a novel and general approach, referred to as informative
multiview planning (IMVP) that simultaneously determines the
most informative sequence of views and the shortest path between
them. The approach is demonstrated on an underwater multitarget
classification problem in which a sidescan sonar installed on an
unmanned underwater vehicle must classify all targets in mini-
mum time. Simulation and experimental results show that IMVP
can achieve the same, or better, classification performance in half
the time of existing multiview path planning methods. Also, by
determining the most informative views and the shortest path be-
tween them, IMVP significantly improves classification efficiency,
classification confidence level, as well as performance robustness.

Index Terms—Autonomous sensors, classification, confidence
level (CL), information gain, information-driven path planning,
minimum-time search, sonar, traveling-salesman problem (TSP),
underwater imaging, unmanned vehicles, viewpoint planning.

I. INTRODUCTION

MANY modern imaging sensors, such as underwater sonar
or cameras, require multiple looks or “views” of the

target before they are able to classify it with a high level of
confidence. By changing the sensor position and orientation rel-
ative to each target, different information about target features,
such as shape and size, may be obtained and fused to better infer
the target class. Mobile platforms, such as unmanned vehicles,
are often utilized to allow the sensor to travel around an object
and record multiple images from different viewpoints. When
a sensor must classify multiple targets distributed over a large
region obtaining multiple views may require traveling over a
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long distance to visit multiple positions and orientations relative
to each target, resulting in costly and time-consuming operations
that may potentially exceed the battery life of the vehicle.

Multiple aspect coverage (MAC) and adaptive MAC algo-
rithms have been developed to solve multiview path planning
problems by first generating a star-like path around every target
and, then, computing the shortest route between them [1], [2].
MAC-type algorithms rely on the user choosing the number
of views required for every target, and, subsequently, pick-
ing a subset of vehicle-heading angles by sampling uniformly
the 180◦ range of all possible angles. Another solution ap-
proach proposed in [3] connects multiple viewing angles decided
a priori by means of Dubins curves that are reachable based
on the vehicle kinematic constraints. The sensor’s next viewing
angle is chosen based on experimental results and, then, the
path is planned such that every target is visited again with the
same viewing angle. All of these existing algorithms seek to
reduce the task-completion time by finding the shortest path
between multiple views decided a priori. Because they do not
take into account individual target characteristics, they may
obtain too-many or too-few images resulting in paths that are
too time consuming or have low classification accuracy (CA),
respectively. Moreover, because they rely on user intervention,
they may be difficult to automate or adapt to heterogeneous
classification and environmental conditions.

Along a different line of research, next-best-view approaches
have been developed to determine what is the next most
informative view for a target, based on information gain [4],
[5], or partially observable Markov decision processes [6].
Information-driven path-planning approaches, reviewed com-
prehensively in [7], take into account both the sensing objec-
tive and the vehicle kinodynamic constraints to simultaneously
optimize the sensor performance and the energy consumption.
Finding the most efficient sensor path is especially critical in
underwater applications because, due to limited communica-
tions and rapidly changing sea conditions, the vehicles must
travel back to the host ship to update their information state
and complete each operation as quickly as possible. Although
existing information-driven path-planning methods have been
shown highly effective at optimizing the performance of mobile
sensors [7]–[12], these existing methods are not directly applica-
ble to multiview planning because they assume the information
gain is independent of target-relative position and orientation.
Many imaging sensors, such as cameras, active sonar, and radar,
interpret a return signal (e.g., acoustic or optical wave) that
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bounces off an object of interest and, thus, the quality of their
measurements heavily depends on their aspect angle. Further-
more, the image quality and the ability to recognize the object
also depend on the object’s shadow and self-occlusions, which
vary with both sensor position and orientation.

This article develops a novel and general approach for infor-
mative multiview planning (IMVP) that simultaneously deter-
mines the best sensor views for each individual target, based on
prior information, and plans the optimal path between them. The
IMVP approach developed in this article takes into account the
sensor’s field-of-view (FOV) and Bayesian measurement model,
as well as the target’s position and orientation, to construct novel
C-target regions and information gain functions applicable to
imaging sensors. It is shown that, for a continuous and bounded
sensor FOV, the optimal path can be found by solving a gener-
alized traveling-salesman problem (TSP) [13], [14]. Due to its
high complexity, many approximate and ad-hoc solutions have
been proposed for generalized TSPs (GTSPs) [15]–[18]. One of
the most common simplifications is to assume that the regions of
interest are pairwise disjoint [19]–[21]. However, in informative
multiview path planning, intersecting regions are often the most
valuable because they allow the sensor to obtain images from
multiple targets in a single pass.

The IMVP approach builds on several novel contributions that
allow us to first formulate and, then, solve the GTSP based on
all available sensor and target information. Novel contributions
in computational geometry (Section IV) allow for the efficient
construction of helicoidal C-targets and transcription of the path
planning problem into a new generalized TSP with intersecting
neighborhoods. A new approximate solution algorithm is de-
veloped (Section V) to exploit the neighborhood intersections,
thus prioritizing multitarget imaging while reducing computa-
tional complexity (Section VII-C). This novel IMVP approach
is demonstrated on a mobile sidescan imaging sonar application
in which the sensor must classify multiple underwater objects
previously detected by an initial survey.

Imaging sonar is a powerful tool that is utilized in a
variety of underwater tasks ranging from commercial applica-
tions, such as ship hull inspection, to environmental research,
such as bathymetric mapping, biomass estimation, and demi-
ning [22]–[26]. As a result, many sonar processing algorithms,
including convolutional neural networks (CNNs), have been de-
veloped and demonstrated for automatic target detection (ATR)
and classification, by learning correlations between characteris-
tic highlight-shadow patterns and physical object features such
as shape, size, and orientation [27]–[31]. Because sonar images
are highly dependent on environmental conditions and sensor-
target aspect angle [32], high-quality classification requires fus-
ing multiple images obtained by different viewpoints [33]–[35].
Hence, the effectiveness of the IMVP approach is demonstrated
both experimentally and numerically by using a high-fidelity
physics-based mobile sidescan sonar closed-loop simulation
developed by coauthor Isaacs. The mobile sidescan sonar is
simulated by generating images obtained from the sonar FOV,
integrated with a dynamic model of a REMUS 100 vehicle, and
by ω − k beamforming of the time-domain signals [28], [29],

[36], [37]. The results in Section VII show that the IMVP ap-
proach significantly outperforms existing methods by achieving
the desired classification performance in some cases in half the
travel time. In addition to improving classification efficiency
and confidence gain by up to 88% and 91%, respectively, IMVP
also provides much higher performance robustness than existing
algorithms for different classification databases, target layouts,
and environmental conditions. By determining the number of
views and aspect angles based on their information value and,
simultaneously, considering the problem geometry, the sensor
paths obtained by IMVP are not only shorter but also produce
sonar images that contain on average many more contacts and
provide higher quality ATR. Finally, autonomous vehicle ar-
chitecture (AVA) simulations and sea tests were conducted by
coauthor Weaver on the NSWC unmanned underwater vehicle
(UUV) swimming in the Saint Andrew Bay area near Panama
City, FL, USA (see Sections VII-A–VII-D). The sea tests showed
that the real REMUS 100 not only was able to execute the IMVP
optimal path, but also outperformed the AVA simulation results
under all performance metrics.

II. PROBLEM FORMULATION

This article considers the problem of planning a path for an
underwater imaging sensor deployed onboard a UUV for the
purpose of classifying multiple underwater objects in minimum
time. This problem is relevant to many underwater sensing
applications involving mobile directional sonar and many sta-
tionary targets distributed in a large region of interest (ROI).
Because acoustic measurements are greatly influenced by the
relative sensor position and orientation, most underwater targets
require many views before they can be accurately classified,
resulting in time-consuming and costly operations. Before a
directional sonar, such as a forward-looking or sidescan sonar,
is implemented, the ROI is typically surveyed using long-range
sensors that provide a rudimentary estimate of target position
and orientation. Subsequently, a directional sensor installed on
a UUV is implemented to obtain multiple images or “looks” of
every object, until a desired confidence level (CL) is achieved
by the target classification algorithm [1], [38]. As a result, the
time and power required to properly classify multiple targets
are highly dependent on the UUV path. Furthermore, modern
sensors may be equipped with real-time ATR capabilities. In this
case, the UUV path may be updated online based on the local
environmental conditions, such that the total number of images
and their viewpoints are planned optimally for every object.

This article presents a new underwater sensor planning ap-
proach to compute minimum-time paths for classifying multiple
underwater targets within a desired CL. The methods presented
are potentially also applicable to online adaptive path planning
and to other directional sensors, such as cameras or synthetic
aperture radar. The approach is presented for an underwater
sonar installed on a UUV that must travel in a 3-D ROI,W ⊂ R3.
For illustration purposes, in this article it is assumed that n
underwater targets are distributed on a flat seabed, such that
the effects of sloped and uneven bathymetry, e.g., layover, may
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Fig. 1. ROI and key geometrical constructs.

Fig. 2. Definition of target orientation and aspect angle for a UUV-based sonar.

be neglected. Let an inertial frame FW with origin OW be
embedded inW such that the xIyI -plane contains the seabed of
interest denoted by a plane P ⊂ R3 (see Fig. 1).

Every target in P is characterized by unknown geometries
T1, . . ., Tn, where Ti ⊂ W is a compact set for i = 1, . . ., n, and
its inertial position, estimated during presurveying, is denoted
by xTi

= [xTi
yTi

]T . LettingFTi denote a local reference frame
embedded in Ti, the target orientation, θTi

, can be defined as the
angle betweenxTi -axis andxI -axis (see Fig. 2). Due to the nature
of acoustic measurements, the image constructed by the sensor
is highly dependent on the so-called aspect angle, defined as the
off-normal angle between the target and the sensor orientations,
measured relative to the sonar centerline and denoted by ϕ (see
Fig. 2). Therefore, the target state is given by qTi

= [xTTi
θTi

]T ,
for i = 1, . . ., n, and must be estimated to optimize the quality
of the sonar imagery.

Consider the benchmark problem in which the UUV-based
sonar is used to classify all n targets and, possibly, estimate
the f target features, such as target geometry, size, and texture.
Every target feature can be represented by a categorical random
variableXij ∈ Xj, whereXj is the discrete and finite range of the
jth feature (j = 1, . . ., f ). Then, the feature set of the ith target
is denoted by Xi = {Xi1, . . ., Xif}. The target classification is
denoted by another categorical variable, Yi ∈ Y , with discrete
and finite rangeY = {y1, . . ., yc}. Both target features and clas-
sification variables are viewed as discrete random variables. But

Fig. 3. Sidescan sonar image construction and sensor FOV.

while the features may be estimated from the target sonar image,
the classification variable is hidden and must be inferred from the
target features (Section III). Therefore, the ATR algorithm must
carry out feature estimation and target classification for every
new sonar image obtained by the UUV. By optimizing the sonar
viewing angle and by taking into account the geometry of the
FOV, the approach presented in this article not only minimizes
classification time but also minimizes the number of images
required, thus minimizing computing and power requirements.

For illustration purposes, the approach developed in this arti-
cle is presented for a sidescan sonar. However, the approach can
be easily extended to other underwater imaging sensors such as
sector-scan sonar and synthetic-aperture sonar [39]. Consider
the case in which a pair of sidescan sonar sensors is installed
on each port and starboard side of the UUV. The sensor FOV
is defined as the region in which target measurements can be
obtained [7], [40]. Each sensor transmits a narrow fan-shape
acoustic pulse, whose geometry is denoted by S′ ⊂ W . As
the UUV moves forward, S′ sweeps the seabed and a sonar
image matrix is constructed by stacking the interpreted data
from successive scan lines on the seabed (see Fig. 3). Because
all the targets live in P , the sonar FOV can be reduced to the
two-dimensional region S = S′ ∩ P , as shown in Fig. 3. By
considering the FOV position and geometry relative to the UUV
and the targets, the sensor path and viewpoints can be opti-
mized based on prior target information and ATR measurement
process.

As shown in [7], [10], [11], [40]–[44], the sonar ATR and
measurement process can be modeled by a probabilistic sensor
model in the form of a joint probability mass function (PMF)
learned from data (Section III). Without loss of generality,
let the set Zi(k) denote the sensor measurements obtained
from target i at time instant tk. The sensor mode and relevant
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Fig. 4. (a) Example of raw sonar image matrix, where each red box indicates a detected object. (b) Examples of sonar image segmentations and corresponding
features extracted via CNN-SVM (adapted from [42], with permission).

environmental conditions at tk are denoted by Λi(k). In this
article, Λi(k) consists of the sonar viewing angle and relative
target position, both of which can be estimated by an onboard
localization algorithm. Then, with the evidence at tk denoted
by Ei(k) = {Zi(k),Λi(k)}, the learned PMF model can be
factorized as follows:

p(Zi, Xi, Yi,Λi) = p(Zi|Λi, Xi)p(Xi|Yi)p(Yi)p(Λi) (1)

where the PMF notation fY (y) = P ({Y = y}) is abbreviated
as p(Y ) (for more details, see Section III).

From the evidence Ei(k), the target classification can be
obtained by one of several approaches, including the maximum
a posteriori (MAP) rule, the maximum likelihood estimate, and
the Neyman–Pearson rule [7]. To allow for Bayesian updates,
the approach presented in this article adopts MAP classification,
and the posterior PMF is used to quantify the classification
confidence. In particular, given the set of all evidence obtained
up to time step tk, denoted byMi(k) = {Ei(1), . . ., Ei(k)}, the
CL of the ith-target’s classification at time tk is given by

c(Yi;Mi(k)) � max
y∈Y

[P ({Yi = y}|Mi(k))]. (2)

Then, the desired classification performance can be specified
via a CL threshold, εCL ∈ (0, 1), chosen by the user based on the
application and the acceptable rates of false alarms. Letting T
denote the total UUV travel time, corresponding to the discrete
time stepK, the goal of the path planning algorithm is to achieve
a satisfactory CL for all targets in the ROI, or

c(Yi;Mi(K)) ≥ εCL ∀i. (3)

A higher CL threshold results in lower classification uncertainty
and in a larger travel time required to obtain more images of the
targets.

In addition to meeting sensing requirements, the path planning
approach must also take into account UUV constraints. For
example, to minimize the geometric distortions of sonar images,
the UUV must be held at a constant speed, altitude, and heading
angle with zero roll and pitch angles during every time interval

while sonar data is being recorded [45], [46]. For simplicity,
the sonar is assumed to operate at a constant frequency so that
the UUV altitude is maintained at a constant value, h, chosen
based on the sensor mode. Then, the UUV configuration can be
represented by q = [x ψ]T , where x = [x y]T , x and y denote
the position of the UUV inxI and yI , respectively, andψ denotes
UUV’s heading angle. Then, the target aspect angle is given by
ϕ = ψ − θTi

(Fig. 2), and the space of all possible UUV configu-
rations is denoted by C. The UUV path is defined by a continuous
mapping, denoted by τ : [0, 1] → C with τ(0) = q(0) and
τ(1) = qf , where q(0) is the given initial configuration and qf
is a final configuration to be determined. Thus, the UUV-based
sonar planning problem can be summarized as follows.

Problem 1 (Sensor Path Planning): Given estimates of n tar-
gets’ positions and orientations qTi

for i = 1, . . ., n, the sensor
model (1), the sensor FOVS , and the sensor initial configuration
q(0), find a path τ that minimizes the travel time T such that the
CL constraints (3) are met for all n targets.

III. BACKGROUND ON EXPECTED CONFIDENCE LEVEL (ECL)

The information-driven sensor planning approach presented
in this article seeks to solve Problem 1 by taking into account
the physical properties of the sonar, as well as the ATR process
and algorithm. By this approach, the required classification
performance can be met while the time and cost associated with
operating the UUV-based sonar are minimized. As shown in [7],
[10], [11], [40]–[44], the sonar ATR and measurement process
can be modeled by a probabilistic sensor model in the form of
a joint PMF learned from labeled data. The method adopted
from [41], [42] is reviewed here briefly for completeness, but
other Bayesian classification methods, such as [4], [5], can be
easily incorporated as well.

In underwater sonar imaging, the sensor obtains raw sonar-
image matrices that may contain from zero to multiple targets
[Fig. 4(a)]. Thus, each raw sonar-image matrix is first processed
to recognize all possible targets and, then, segmented to obtain
smaller image matrices that each contain only one target, e.g.,
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Fig. 5. Probabilistic measurement model for a sonar-imaging sensor. Dashed
line represents the feature extraction in the ATR algorithms.

using a matched filter. Let tk represent the time at which a
target i is detected in the sonar image and, thus, inside the
sensor FOV. From its sonar image segmentation [Fig. 4(b)],
a measurement set Zi may be obtained as follows. First, raw
target features are extracted from each sonar image segmenta-
tion, denoted by I , using a pretrained convolution neural net-
work, AlexNet [47]. Subsequently, the set of estimated features,
X̂i1, . . ., X̂if , and inferred classification, Ŷi, are obtained using
the support vector machine (SVM) proposed in [42], such that
Zi = {X̂i1, . . ., X̂if , Ŷi} [Fig. 4(b)].

Estimating the CL in consecutive sensor measurement pro-
cesses requires a probabilistic Bayesian model that captures
the influence of sensor mode, environmental conditions, and
target features on the hidden target class and observable sensor
measurements. The probabilistic sensor model can be defined
by a joint PMF, and from the chain rule of probability

p(Zi, Xi, Yi,Λi)

= p(Zi|Λi, Xi, Yi)p(Xi|Λi, Yi)p(Yi|Λi)p(Λi). (4)

Because Λi is independent of Xi and Yi, and
p(Zi|Λi, Xi, Yi) = p(Zi|Λi, Xi), the probabilistic sensor model
is represented by (1). The conditional PMF, p(Zi | Λi, Xi),
is also referred to as a sensor-measurement model. The prior
PMFs, p(Xi, Yi), p(Yi), and p(Λi), can be computed either
from the first principle, experiments, or simulation data; if this
information is not available, the PMF can be assumed to be
uniformly distributed. In this article, the joint PMF is learned
from sonar-image data and represented by a Bayesian network
model using a directed graph (Fig. 5) and a set of conditional
probability tables (CPTs) that can be learned from the labeled
data or constructed from the first principle. Target classification
is performed based on the MAP rule using the posterior PMF,
which can be computed recursively as follows:

p(Yi|Mi(k)) =
p(Ei(k)|Yi)p(Yi|Mi(k − 1))∑
Yi
p(Ei(k)|Yi)p(Yi|Mi(k − 1))

. (5)

The posterior probability of the chosen classification value pro-
vides the classification CL as a measure from zero to one of how
probable the value is to be correct (where higher probability
denotes higher confidence, with one representing certainty).

Because the CL can only be obtained after the image has been
processed by the ATR algorithm, this article utilizes the ECL,

defined as the one-step conditional expectation of the CL with
respect to the next (future) measurement that would be obtained
at a possible sensor configuration. Assuming for simplicity that
the environment is homogeneous and the sensor mode is fixed,
Λi represents all possible UUV viewpoints. Then, based on the
evidence set available at tk, i.e., Mi(k) = {Ei(1), . . ., Ei(k)}
where Ei(k) = {Zi(k),Λi(k)}, the ECL can be obtained as
follows:

ĉ(Λi(k + 1);Mi(k))

= EZi(k+1)

[
max
y∈Y

P (Yi = y |Mi(k), Ei(k + 1))

]
. (6)

Note that Λi is a decision variable, while Zi(k) is assumed
unknown.

The ECL defined in (6) can be computed using the joint condi-
tional probability, which corresponds to the sensor measurement
model. By taking the expectation with respect to Zi, (6) can be
written by

ĉ(Λi(k + 1);Mi(k))

=
∑

Zi(k+1)

c(Yi;Mi(k), Ei(k+1))p(Zi(k+1)|Mi(k),Λi(k+1)).

(7)

The conditional PMF, p(Zi(k + 1)|mi(k),Λi(k + 1)), is cal-
culated by marginalizing the joint probability from the sensor-
measurement model over the unknown target class Yi

p(Zi(k + 1)|Mi(k),Λi(k + 1))

=
∑
Yi

p(Zi(k + 1)|Yi,Λi(k + 1))p(Yi|Mi(k)) (8)

where p(Zi(k + 1)|Yi,Λi(k + 1)) and p(Yi|Mi(k)) can be ob-
tained from CPTs. Because multiple measurements are neces-
sary for successful target classifications, a series of viewpoint
regions must be planned ahead for each target. Denoting the
number of planned viewpoint regions of the ith target by ni, the
ECL of multiple viewpoint regions can be defined by

ĉ({Λi(k + 1), . . .,Λi(k + ni)};Mi(k))

= EZi(k+1),...,Zi(k+ni)

× [c(Yi;mi(k), Ei(k + 1), . . ., Ei(k + ni))] . (9)

The expectation with respect to a series of ni measurements
can be computed by recursively updating the ECL for each of ni
measurement at each time step as the CL is updated recursively
(5). The expectation with respect to the measurement at each
time step can be computed from (7).

IV. INFORMATIVE MULTIVIEW PLANNING

The nature of acoustic wave propagation processes is such that
the sonar position and orientation relative to the target of interest
(TOI) greatly influence the quality of the measurements and,
thus, in turn the information value of sonar imagery produced by
the signal processing algorithm. Other sensors, such as synthetic
aperture radar as well as imaging sensors in the IR and visible
spectrum, are similarly influenced by the relative position and
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aspect angle. As a result, directional sensors are often required
to obtain images of the same target from different viewpoints,
to improve the confidence of the classification and feature es-
timation algorithms. Furthermore, in the presence of multiple
targets, prior information about their approximate location can,
in principle, be used to maximize the number of targets in each
image as well as to minimize the distance traveled by the UUV.

The approach developed in this article takes into account the
UUV configuration, the sensor FOV geometry, and estimates of
target positions and orientations by mapping the unions of the
targets and sensor-FOV geometries onto the UUV configuration
space thus obtaining a so-called C-target (Section IV-A). Then,
the most valuable viewpoints are determined by considering
their ECL based on the probabilistic measurement model de-
scribed in Section III (taken from [41]). The approach not only
ensures that along the chosen path the targets lie inside the
bounded FOV but also determines an efficient path that observes
multiple targets for a single pass and reduces travel time by
solving a TSP that minimizes distance between the viewpoints
required to meet the CL threshold (Section IV-B).

A. C-Target Definition and Construction

The region known as C-target represents a subset of the UUV
configuration space C that enables target measurements, i.e.,
S ∩ Ti 
= ∅ [40], [44]. When the target geometry Ti is unknown,
the target can be reduced to a point and its state estimate can be
used to construct a C-target according to the following definition.

Definition 1 (C-Target): The ith target with its state
qTi

= [xTTi
θTi

]T maps in the configuration space, C, to the
C-target region defined by

CT i � {q ∈ C | [xTTi
0]T ∈ S(q)}. (10)

From the sidescan sonar FOV geometry, the C-target can
be derived in closed form as follows. Let rmin ∈ R≥0 and
rmax ∈ R>0 denote the minimum and maximum distances at
which a measurement can be obtained, for a known sensor range
D = (rmin, rmax). Because the sonar is installed on a mobile
UUV, the FOV geometry is a function of the UUV configuration,
q = [x y θ]T , and for a sidescan sonar can be approximated by
two line segments perpendicular to the vehicle heading:

S(q) =

⎧⎪⎨
⎪⎩p ∈ W | p =

⎡
⎢⎣xy
0

⎤
⎥⎦±

⎡
⎢⎣r cos(ψ + π

2 )

r sin(ψ + π
2 )

0

⎤
⎥⎦ , r ∈ D

⎫⎪⎬
⎪⎭ .

(11)

Now apply Definition 1 to obtain the C-target corresponding
to target i, i.e.,

CT i =

⎧⎪⎨
⎪⎩q ∈ C|q = qTi

±

⎡
⎢⎣r cos(ϕ+ θTi

+ π
2 )

r sin(ϕ+ θTi
+ π

2 )

ϕ

⎤
⎥⎦ , r ∈ D, ϕ ∈ S1

⎫⎪⎬
⎪⎭ (12)

Fig. 6. C-target geometry of a target at qi = [0 0 0]T observed by a sidescan
sonar with ranges rmin = 15 and rmax = 150.

where S1 is a 1-D manifold or circle

S1 = {(x, y) | x2 + y2 = 1}. (13)

For an easier visualization and implementation of planning
algorithms, [0, 2π) can replace S1 using a quotient space,
[0, 2π]/ ∼ , in which the identification declares that 0 and 2π are
equivalent, denoted by 0 ∼ 2π. This quotient space homeomor-
phic to S1 “glues” 0 and 2π of [0, 2π], i.e., the value of ϕ ∈ S
runs from 0 up to 2π and then “wrap around” to 0 [48]. An
example geometry of CT i is shown in Fig. 6, where parameters
r and ϕ represent the sonar distance from the target and the
aspect angle, respectively.

Because the aspect angle ψ ∈ S1 wraps around every 2π,
the geometry of CT i in C ⊂ R2 × S1 can be considered as a
generalized helicoid in R3, defined in [49] as follows.

Definition 2 (Generalized Helicoid): Let Π be a plane in R3,
l be a line inΠ, and C be a point set inΠ. Suppose C is rotated in
R3 about l and simultaneously displaced parallel to l so that the
speed of displacement is proportional to the speed of rotation,
also called screw motion. Then, the resulting point setM(C , c)
is called the generalized helicoid generated by C , also called the
profile curve ofM. The line l is called the axis ofM. The ratio
of the speed of displacement to the speed of rotation is called
slant ofM and is denoted by c.

Now, adopting Definition 2, the geometry of the ith C-target,
CT i, corresponds to a generalized helicoidM(Ci, 1), which is
generated by the point set

Ci =
{
q ∈ C | q = qTi

± [0 r 0]T , r ∈ D
}

(14)

on the plane

Πi = {[x y ψ]T ∈ C | cos(x− xTi
)

+ sin(y − yTi
) = 0, ψ ∈ S} (15)

by applying the screw motion to the line (axis)

li =
{
[x y ψ]T ∈ C | x = xTi

, y = yTi
, ψ ∈ S

}
(16)

with slant c = 1.
To transcribe the sensor planning problem (Problem 1) into

a TSP, the relative UUV configuration is first discretized and,
then, treated as the sensor operating condition (Λi) in the sensor
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Fig. 7. (a) Top view and (b) isometric view of a partitioned C-target and corresponding viewpoint-regions geometries.

measurement model (Section III). This is accomplished by par-
titioning each C-target, CT i (i = 1, . . . , n), into M regions by
uniformly discretizing the heading angle interval, [0, 2π), and
the sensor range,D, as exemplified in Fig. 7. This approximation
is useful because it reduces the computational complexity of the
planning problem while maintaining sensing efficiency since
similar values of r and ϕ yield similar measurements. Other
helicoid partitioning methods can also be applied, as explained
in [50]. A partition of CT i is a pairwise disjoint family

Vi = {Ri,j | j ∈ {1, . . .,M}} (17)

such that ⋃
j∈{1,...M}

Ri,j = CT i. (18)

Each element in Vi is referred to a viewpoint region in this
article. A viewpoint region, Ri,j ⊂ CT i, is a set of points that
comprises two disjoint and congruent annular sectors in CT i
(Fig. 7). Since CT i is periodic in ψ = π, one annular sector can
be defined by translating another by a distance ψ = π.

B. Formulation of Generalized TSP

A traditional approach to classifying multiple targets is to
obtain measurements until the CL exceeds the desired threshold
εCL for each target, as shown in (3). Similarly, a threshold for
the ECL, ε̂CL, can be chosen by the user and, then, used to
downselect multiple viewpoint regions from the set Vi, until the
ECL exceeds ε̂CL. Assuming the targets are independent, i.e.,
the features and classification of one target are independent of
those of the other targets in the ROI, this downselected set of
viewpoint regions or neighborhoods,Ri ⊂ Vi, can be obtained
for every target independently and in any order. Then, a UUV
path that visits every region Ri (i = 1, . . . , n), guarantees that
a sufficient number of images is obtained from every target in
the sense that

ĉ(Ri;M(k)) > ε̂CL ∀i. (19)

In addition, the solution to Problem 1 can be found by computing
the shortest path between the n viewpoint regions.

The geometry of each neighborhood consists of the two
congruent annular sectors defined in Section IV-A. Multiple

neighborhoods intersect at UUV configurations that enable mea-
surements from multiple targets. Under these properties and
assumptions, the shortest UUV path visiting all of the target
neighborhoods can be found by solving the following general-
ized TSP.

Problem 2 [Generalized Traveling Salesman Problem with
Neighborhoods (GTSPN)]: Define Rι by a viewpoint region
that the GTSPN path must visit, i.e.,Rι ∈

⋃n
i=1Ri. Given a set

of m neighborhoods

R =

{
Rι : Rι ∈

n⋃
i=1

Ri, ι = 1, . . .,m

}
(20)

find the minimum-time path that visits each neighborhood start-
ing at the initial UUV configuration q(0) ∈ C.

The solution of Problem 2 provides an optimal sensor path
able to classify all n targets in the ROI within a required
expected classification CL, in minimum time (assuming UUV
travels at a constant speed). This GTSP problem seeks to find
the shortest path that visits every neighborhood in a possibly
disjoint set at least once. Because an exact GTSPN solution is
not available, the following section presents an algorithm for
finding an approximate solution to Problem 2.

V. APPROXIMATE SOLUTION OF GTSPN PROBLEM WITH

INTERSECTING NEIGHBORHOODS

Generalized forms of TSPs arise in many robot path planning
and sensor coverage problems requiring the minimization of
time and energy consumption (e.g., [13], [14] and references
therein). Unlike traditional TSP formulations, in which an agent
must visit every node in a graph or every point in a Euclidian
space, in GTSPs (Fig. 8) the agent must visit any point in each
(continuous) neighborhood or in each discrete set of points at
least once [51], [52]. In a GTSP, also known as group TSP [21]
or one-of-a-set TSP [53], one seeks to find the shortest tour that
visits all of the predefined subsets of points at least once. In a
TSP with neighborhoods (TSPN), one seeks the shortest tour
that intersects every continuous region at least once.

As formulated in Problem 2, the UUV-based sonar path plan-
ning problem corresponds to a GTSPN, because one seeks to find
the shortest tour that visits every neighborhood at least once,
but each neighborhood consists of multiple (non-Euclidean)
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Fig. 8. Graphical representations for the GTSP, TSPN, and GTSPN.

regions [54]. In particular, the neighborhoods in Problem 2 are
each comprised of two disjoint continuous regions in the UUV
configuration space:

Problem 3 (GTSPN in Configuration Space): Find the
shortest tour that visits every neighborhood in the set
R = {R1, . . ., Rm}, comprised of nι disjoint continuous re-
gions, i.e.,

Rι = {Sι,ξ : Sι,ξ ⊂ C, ξ = 1, . . ., nι} , ι = 1, . . .,m. (21)

Furthermore, the UUV configuration space is a smooth manifold
that is locally like R3 but globally different. [55]. Nevertheless,
the topology of C is the subset topology derived from the
Euclidean metric [56, p. 85].

Then, the minimum-time path can be approximated by the
shortest path given the assumption of constant UUV speed,
and a distance metric can be defined by weighing the trans-
lating and rotating motions in the quotient space. GTSPN was
first introduced in a Euclidean space in [54] and solved using
a hybrid random-key genetic algorithm (HRKGA). The high
computational complexity of HRKGA was later reduced using
a decoupled algorithm transcribing the GTSPN into a GTSP by
first finding the centroid of each region for every neighborhood
set and, then, locally adjusting the waypoint locations toward
the neighborhood boundaries to improve the solution [57]. A
growing self-organizing array algorithm originally proposed
in [58] was also applied to GTSPN in [57]. These existing algo-
rithms are not ideally suited to solving Problem 3 because, when
selecting waypoints, they do not take into account intersecting
neighborhoods, which contain the most valuable configurations
because they enable observations from multiple targets. Also,
since the UUV path does not necessarily require returning to
the initial configuration (tour), it is possible to first sample
waypoints and, then, to compute their optimal ordering.

This article presents a new GTSPN solution approach, re-
ferred to as IMVP, that is tailored to multiview path planning
and, thus, provides a more efficient solution to Problem 3
than existing GTSPN methods. Unlike previous methods, af-
ter constructing the m neighborhoods from the C-targets (as
shown in Section IV-A), the IMVP samples the neighborhood
intersections using an approximate TSPN algorithm referred to
as TSPN-Intersecting [59]. The TSPN-Intersecting algorithm
uses the hitting point set, defined as a set of waypoints from
each neighborhood, obtained such that a path connecting the

Fig. 9. Minimal disjoint coverage setQ = {Q1,Q2,Q3} of the set of neigh-
borhoodsR = {R1, . . ., R5}.

hitting points intersects every neighborhood. Then, the IMVP
approach seeks to sample a minimal number of hitting points
by preferentially sampling the neighborhood intersections of
highest degree, as follows. A collection of subsets, referred to
as minimal disjoint coverage set, is defined such that the points
sampled from each subset maximize the number of hitting points
sampled from the intersection of neighborhoods (Fig. 9).

Definition 3 (Minimal Disjoint Coverage Set): A set com-
prised of a minimum number of regions

Q = {Q1, . . ., Qm′ }, m′ ≤ m (22)

is a minimal disjoint coverage set of R = {R1, . . ., Rm}
if the regions in Q are pairwise disjoint, and there exists
ζ ∈ {1, . . .,m′} such that Qζ ⊂ Rι for ι = 1, . . .,m.

Then, the number of the disjoint regions satisfies m′ ≤ m,
and the equality holds if the neighborhoods in R are disjoint,
and Q = R. The heuristic search summarized in Algorithm 1
is developed to compute the minimal disjoint coverage set for a
given IMVP neighborhood set,R. The heuristic search replaces
any two intersecting regions with their mutual intersection for
sampling. Each elementQζ ∈ Qmay consist of multiple disjoint
continuous regions depending on the geometry, position, and
orientation of the neighborhoods inR. Thus, the hitting pointset
is extended to a collection of node sets, P = {P1, . . ., Pm′ },
such that each node set Pζ ⊂ Qζ , for ζ = 1, . . .,m′, consists
of points sampled from each disjoint region in Qζ (Fig. 10).
Different rules can be applied for sampling a point from each
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Fig. 10. Collection of nodesets P = {P1, P2, P3} from the minimal disjoint
coverage set Q in Fig. 9. The shortest TSP tour is represented by a red line.

Algorithm 1: Heuristic Search for Minimal Disjoint Cover-
age Set.

Input:R = {R1, . . ., Rm}
Output: Minimal disjoint neighborhood set ofR
initialize Q ← R
while every element in Q is not pairwise disjoint do

for all pairs of elements Qi ∈ Q and Qj ∈ Q do
if Qi ∩Qj 
= ∅ then

replace Qi and Qj with Qi ∩Qj
end if

end for
end while
return Q

disjoint region in Qζ : sampling a centroid if each region in Qζ
is convex; sampling a pole of inaccessibility [60] if regions in
Qζ are not convex; sampling a point on the boundary of each
region in Qζ to obtain a shorter path. As a result, Problem 3 is
reduced to a GTSP that seeks the shortest path visiting every
node set in a collection P = {P1, . . ., Pm′ }, and, thus, can be
solved efficiently as a classical asymmetric TSP using Noon and
Bean transformations [61].

The previous sections show how, by considering the con-
straints and characteristics of the UUV-based imaging sensor,
the sensor path planning problem defined in Problem 2 can be
reduced to the general GTSPN in Problem 3 and, then, solved as
an asymmetric TSP. Now, the geometry of the sensor FOV can be
used to further simplify the computation required, as follows. In
the case of a sidescan sonar (Fig. 1), each neighborhood consists
of two congruent annular sectors (orange sectors in Fig. 11)
translated by an angle ψ = π, because of the periodic geometry
of the C-target. It can be easily shown that each element Qζ of
the minimal disjoint coverage set Q (obtained by Algorithm 1)
also consists of a pair of disjoint regions that are congruent and
translated by ψ = π. Thus, the projection of Qζ onto the ROI is
comprised of annular sectors, as shown in Fig. 11. To capture not
only acoustic highlights but also shadows of targets inside sonar
images for the purpose of classification, waypoints are chosen
from the centroids (rather than from the boundary) of each region
in Qζ , as illustrated by the blue dots in Fig. 11, providing the

Fig. 11. Illustrative example of shortest path (green solid line) in UUV
configuration space obtained by IMVP algorithm for an initial condition (I.C.)
symbolized by a black cross, through sampled waypoints symbolized by blue
dots.

node set Pζ ∈ P (ζ = 1, . . .,m′). To address navigation errors
and target uncertainty in real applications, the waypoints can
be chosen by directly applying the swath planning approach
developed in the MAC algorithm [1]. By applying this approach,
a waypoint with the highest detection probability will be chosen
by considering the target field as a 2-D Gaussian distribution
and by modeling the sensor profile as a function of its range.
The sensor profile function can model the degradation of sonar
image quality depending on its range, and thus, the quality of
sonar images can also be taken into account.

Then, a symmetric TSP is obtained based on the following
observations. From the neighborhood geometry, each node set
Pζ consists of two UUV configurations characterized by the
same position but opposite headings, i.e.,

Pζ = {[xT(ζ) ψ(ζ,1)]
T , [xT(ζ) ψ(ψ,2)]

T }, ζ = 1, . . .,m′ (23)

such that

|θ(ζ,1) − θ(ζ,2)| = π. (24)

The GTSP can be reduced to a symmetric TSP on a Euclidean
plane which seeks the shortest path visiting every waypoint
positionx(1), . . .,x(m′) starting from the given initial UUV con-
figuration, q(0). Then, the shortest path can be computed using
Lin–Kernighan heuristic [62] or ant-colony optimization [63],
by adding the following two dummy points: 1) xd,1, with zero
distances to all other points; 2) xd,2, with zero distance to
xd,1 and q(0). For simplicity, the two optimal (2-opt) heuristic
algorithm [62] is adopted in this article. Subsequently, the path is
modified to take account sensor’s heading angles and geometric
distortions of sonar images by converting each waypoint q(ζ)

(ζ = 1, . . .,m′) to a line segment of length d, i.e.,

τ(ζ)=

{
x ∈ R2 |x=xζ + t [cos θζ sin θζ ]

T , t ∈
[
−d
2
,
d

2

]}
(25)
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TABLE I
INTEGRATED UUV-BASED SONAR SIMULATION VARIABLES AND RESPECTIVE RANGES

where d is chosen by the user based on the sensor application.
Visiting each waypoint through this line segment path ensures
that the UUV-based sonar is able to observe targets while travel-
ing along a straight path with constant heading angle, as required
for high image quality. Finally, the UUV path can be constructed
by choosing the heading angle as θ(ζ,1) or θ(ζ,2), based on which
node sequence results in the shortest path.

VI. UUV-BASED SONAR SIMULATION ENVIRONMENT AND

SEA TEST PREPARATION

A. UUV-Based Sonar Simulation Environment

The novel IMVP approach presented in this article is first
demonstrated on an integrated physics-based simulation of a
UUV-based sidescan sonar developed by coauthor Isaacs. In
this simulation, the dynamics of the UUV are modeled based
on the REMUS 100 autonomous underwater vehicle using six
degrees-of-freedom nonlinear equations of motion [64]. A pair
of sidescan sonar sensors mounted on the UUV are simulated by
generating images obtained from the sensor FOV by beamform-
ing the time domain signals using ω − k beamforming [65].
Other beamforming techniques, such as time-delay and chirp
scaling, can also potentially be utilized [66]. As can be seen in
Fig. 14, objects of interest exhibit strong highlights with varying
shadows depths that, while not necessarily unique to objects
of interest, provide information about the object features and
class. After the image is generated by traveling along a straight
line, l = 3 m, the ATR algorithm described in Section III, taken
from [42], is used to classify objects that have been detected in
sonar imagery and to distinguish them from clutter and seafloor
ripples.

The simulated sonar FOV geometry is characterized by the
minimum and maximum ranges rmin = 15m and rmax = 150m,
respectively. Once the UUV trajectory is planned by the IMVP
approach, the UUV motion is controlled by a proportional-
integral-derivative controller that determines the UUV stern
angle, rudder angle, and propeller revolution per minute for
accurate trajectory following. For simplicity, in this article,

it is assumed that the UUV position and the target informa-
tion are provided relative to the inertial frame FW , inside an
ROIW = [−L,L]× [−L,L]× [0, H], where L = 1200 m and
H = 50 m. A target field is generated by sampling a database
of underwater objects with the characteristics summarized in
Table I and by distributing the objects in the ROI randomly
and uniformly, or in random clusters that replicate real-world
object fields. Each underwater object may be classified as a
TOI, yi = 1, or clutter, yi = 0, based on its features. As shown
in Table I, target features available in the sonar simulation are
shape (Xi1) and volume (Xi2), i.e., Xi = {Xi1, Xi2}.

From the target features estimated from the sonar imagery,
denoted by Zi = {X̂i1, X̂i2}, the class of the ith object, Ŷi, is
inferred using the measurement model provided by the joint
PMF in Section II, learned from a training database of 260
objects using the ATR approach in [42]. A different database
comprised of 260 objects, randomly sampled from the simu-
lation database and not included in the training database, is
then used to generate the target fields for the simulated ROI
and, subsequently, for testing the path planning algorithms
presented in this article. Three classification sets of increasing
difficulty are used in this article. The first classification set,
labeled as Set A, contains objects that can be classified as
TOIs based solely on their volume. The second classification
set, labeled as Set B, contains objects that can be classified as
TOIs based on both their volume and their shape. The third
classification set, labeled as Set C, consists of the same objects
as Set B but is characterized by harsher simulated environmental
conditions.

B. Autonomous Vehicle Architecture

As part of the sea-test preparation, the IMVP algorithm was
implemented as a standalone C++ library and integrated within
the AVA known as AVA. AVA is a software framework initially
developed at the Naval Surface Warfare Center Panama City Di-
vision (NSWC PCD) to simplify S&T development and reduce
the recreation of software year by year for research projects [67].
AVA is structured in three layers to provide a balanced level of
individual control: High-level mission and sortie management,
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Fig. 12. AVA framework for seatest preparation.

intermediate task layer with deliberative planning capabilities,
and low-level behavior planner for reactive capabilities. Addi-
tionally, AVA has functions that provide replanning through lev-
els of monitors and solvers while also interacting with perception
modules such as world models or automated target recognition
software. A layout of the framework for AVA is provided in
Fig. 12.

AVA was originally built using the mission oriented operating
suite interval programming (MOOS-IvP) environment as a base
communication layer while also taking advantage of the low-
level behavior components of IvPHelm. Over the past few years,
all components of AVA have moved to the robot operating system
(ROS) 2.0 for the myriad of advantages the new environment
provides. Additionally, IvPHelm and other relevant components
of MOOS-IvP have also been converted to ROS 2.0 environment
under a similarly named ROS-IvP [68]. These components have
greatly been improved since their first iteration into the ROS 1.0
environment.

Using the aforementioned tools as well as other open source
tools, AVA works to follow the modular open system approach
for components by providing a general framework for commu-
nicating between components and multiple base classes that
will provide general functionality for new components (tasks,
behaviors, etc.). Software is made to simplify the addition of
new components and have minimal impact on the architecture.
The architecture is created to be platform agnostic and has been
demonstrated on several unmanned vehicles across multiple
domains (undersea, surface, and ground). AVA is also configured
to be third party behavior agnostic, having developed multiple
interfaces in the past to collaborate and work with software
environment such as operating in parallel with other auton-
omy architectures, such as SeeByte’s Neptune, International
Partners, etc.

VII. IMVP PERFORMANCE RESULTS

The IMVP approach developed in this article is tested on
a variety of target fields and compared to the state-of-the-art
multiview planning methods known as MAC and clustered MAC
(CMAC) [1], [2], [38], [69], [70]. Because the objects’ locations
and features used for classification all influence the UUV-based
sensor performance, the IMVP approach is demonstrated first by
considering different object layouts (Section VII-A) and, then,
different classification sets (Section VII-B) using the simulation
environment described in Section VI. The computational com-
plexity of the IMVP solution algorithm proposed in Section V
is analyzed in Section VII-C.

The IMVP performance is evaluated based on the following
metrics:

1) the travel time (T ) required to classify all targets with a
minimum CL, εCL;

2) the total number of contacts (N ) per travel time;
3) the average CL of the targets of interest classified along

the path.
Unlike existing multiview planning methods, which take into

account only the location of the targets, IMVP seeks to minimize
the travel time and images processed by the sensor by selecting
only the most informative views. To demonstrate that the desired
classification confidence is met by the IMVP planner, the actual
CL of all TOIs in the ROI is evaluated by the ATR algorithm
(Section III) and, then, averaged as follows:

c̄T =
1

n′

∑
{i | yi=1}

c(Yi;Mi(K)). (26)

Because the CL threshold (εCL) is only required for TOIs, the
average is taken over the total number of TOIs in the region (n′),
not including clutter.
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Fig. 13. Path planning results obtained by the (a) IMVP, (b) MAC, and (c) CMAC algorithms for a representative example of target field with classification
features drawn from Set B and object locations sampled from a uniform distribution (red stars), where the I.C. of the UUV-based sonar is denoted by the black
cross.

The IMVP classification performance is also evaluated by
assessing CA, false-alarm ratio (FA), and missed-detection ratio
(MD). CA, also known as true positive rate, is defined as the ratio
of the number of correctly classified TOIs over total number of
TOIs (n′). FA is defined as the total number of objects incorrectly
classified as TOI over the total number of objects (n). The MD
or false negative rate is defined as the total number of TOIs
incorrectly classified as clutter over n. The CA per travel time,
referred to here as classification efficiency, is also evaluated and
denoted by η = CA/T .

In the following sections, the IMVP performance is demon-
strated for a variety of target fields characterized by different
layouts (Section VII-A) and classification features (Section VII-
B). In every case study, the IMVP performance is compared to
the MAC algorithm, which plans the shortest multiview path to
cover every object using a fixed preplanned number of aspect
angles, such that every object is detected at least once from
each aspect angle [1], [38], [69], [70]. The MAC path may be
inefficient for sparse object layouts, requiring the UUV-based
sensor to travel long times without observing any objects [1],
[38], [69], [70]. The modification proposed in [2], known as
CMAC, overcomes this limitation by designing the path based
on the size of object clusters that may occur in applications
with man-made TOIs [71], [72]. Objects are first grouped in
clusters by using density-based spatial clustering of applications
with noise method and, then, the shortest path between clusters
is found, typically reducing travel time compared to MAC
solutions.

As part of the collaboration with NSWC PCD, the IMVP al-
gorithm is integrated and simulated within the AVA architecture
before the sea tests (Section VI). A single new task is introduced
into AVA that allows for a new reacquire and identify function to
be added to the UUV missions. This integration provides both
a test case for quickly integrating new functionality into the
AVA environment, while also providing real world simulation
and in-water testing of the IMVP algorithms. The simulations of
the IMVP algorithm within the AVA architecture are performed
only for the test cases in Section VII-A due to vehicle issues
and available in-water testing time. During the situations where

the vehicle are having issues, the algorithm is operating as
required and simply does not result in a complete resultant
dataset.

A. Influence of Object Location on IMVP Performance

Previous multiview planning studies showed that path per-
formance depends strongly on the object layout [1], [2], [38],
[69], [70]. In particular, algorithms that perform well for objects
uniformly distributed spatially, at random, over the ROI may not
perform adequately when objects are laid out into clusters, and
viceversa. In this section, the features of the IMVP algorithm
are demonstrated using two case studies with relatively small
target fields obtained by sampling the same classification Set
B to obtain n = 12 underwater objects, with n′ = 4 TOIs. The
integrated UUV-based sonar and ATR simulation (Section VI)
is then used to evaluate all performance metrics after the UUV’s
trajectory is executed. The paths computed by the IMVP al-
gorithm are simulated using a high-fidelity AVA simulator to
demonstrate that the path is executable under the UUV dynam-
ics constraints for the sea test (Section VII-D). Larger target
fields are used in the following section to investigate the IMVP
performance with a statistically significant number of objects.

In the first case study, the target field is generated by placing
objects in the ROI by randomly sampling underwater objects
from the classification Set B (Section VI) and, then, by placing
them in W at a position and orientation obtained by sampling
a uniform distribution defined over W × S1. A representative
example of IMVP sensor path is plotted in Fig. 13(a), which
is a simulated path from the AVA architecture. By leveraging
prior sensor measurements, or evidence Ei(0) (i = 1, . . . , n),
the IMVP path is able to minimize distance traveled between
multiple swaths per target, as well as to decide and plan the
number of swaths based on the target examined. When the MAC
and CMAC algorithms are applied to the same target field, the
resulting paths are as shown in Fig. 13(b) and (c), respectively.
It can be seen that these existing algorithms plan the number of
swaths a priori and equally for all targets, only based on their
locations. As a result, the IMVP approach developed in this
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TABLE II
PATH PLANNING AND CLASSIFICATION PERFORMANCE COMPARISON FOR A UNIFORMLY SAMPLED OBJECT DISTRIBUTION

The bold entities indicates to stress the improvement of the proposed approach over the existing approaches.

Fig. 14. Sonar images obtained by the (a) IMVP, (b) MAC, and (c) CMAC algorithms around the coordinate x = −400 (m) and y = −350 (m) from the uniform
distribution in Fig. 13 and afforded total gain in CL.

article significantly reduces the travel time, while achieving the
same required CL for the TOIs (Table II) and the same classifica-
tion performance reflected in CA, MD, and FA. This is because,
while reducing the travel time by approximately 52% compared
to the best existing algorithm, the IMVP approach uses prior
target information to obtain a large number of high-quality object
images (Fig. 14), as demonstrated by the number of contacts and
CA per unit time (Table II).

In the second case study, the target field is generated by
placing objects in clusters, after randomly sampling underwater
objects from the classification Set B (Section VI), using a

1Percent improvement over best existing algorithm.

uniformly sampled object orientation. Object clusters typically
present themselves in applications with man-made TOIs [71],
[72] and offer the opportunity to view many objects in a single
swatch, provided the optimal aspect angle is planned for the
UUV-based sonar. A representative target field with 3 clusters,
shown in Fig. 15, is used to compare the trajectories generated
by the IMVP, MAC, and CMAC algorithms. As shown by
the performance metrics summarized in Table III, the IMVP
algorithm obtain images more efficiently by observing multiple
targets through a single pass, thus achieving the required TOI
CL in less travel time. The CMAC algorithm also exploits the
cluster configuration to reduce travel time. However, the IMVP
approach is significantly more effective at planning sensor paths
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Fig. 15. Path planning results obtained by the (a) IMVP, (b) MAC, and (c) CMAC algorithms for a representative example of target field with classification
features drawn from Set B and clustered object locations (red stars), where the I.C. of the UUV-based sonar is denoted by the black cross.

TABLE III
PATH PLANNING AND CLASSIFICATION PERFORMANCE COMPARISON FOR A CLUSTERED OBJECT DISTRIBUTION

The bold entities indicates to stress the improvement of the proposed approach over the existing approaches.

that enable multiple detections and utilize the most informative
aspect angles, as demonstrated both by the number of object
contacts and classification performance per unit time (Table III).
This is because the IMVP aspect angles take into consideration
the geometry of the C-targets as well as the object features to
determine the most informative views and, thus, obtain the most
informative sonar images (Fig. 16). As evidenced by these two
representative case studies, the IMVP approach is similarly able
to determine the optimal path for different object configurations
(uniformly distributed or clustered) because of the systematic
geometric construction of the C-targets obtained from the sonar
FOV geometry and object locations.

B. Influence of Classification Features on IMVP Performance

In addition to accounting for the sonar FOV geometry and
object location, the IMVP approach also provides a systematic
methodology for determining the most valuable views based on
prior information about the target features and ATR character-
istics. The IMVP ability to adapt the path to the complexity
of the classification task is demonstrated by using three object
classification databases of increasing complexity, referred to as
sets A, B, and C, described in Section VI. Using the same set
of target locations (Fig. 17), three target fields are generated
by sampling n = 19 underwater objects from sets A, B, and C.
The corresponding IMVP trajectories, respectively, plotted in

2Percent improvement over best existing algorithm.

Fig. 17(a)–(c), show that the optimal number of views and the
shortest path between them highly depend on the target charac-
teristics. On the other hand, the MAC and CMAC algorithms
produce the same identical path for all the three target fields
because they only account for the object location (trajectories
omitted for brevity). The result is not only a reduced travel time
by IMVP but also improved classification efficiency (Table IV),
particularly for challenging classification features (set B) and
environmental conditions (set C). This is because the IMVP
algorithm determines the minimum number of views and the
most informative aspect angles required per object, based on its
ECL and estimated features, and then determines the shortest
path between them.

Finally, a statistically significant analysis of the performance
improvement brought about by the IMVP approach compared to
existing algorithms is conducted by generating ten target fields
for every classification set (set A, B, and C). Every classification
performance metric is then evaluated by averaging 1000 trials
to obtain both its mean value and standard deviation. In addition
to classification efficiency, the actual gain in CL per unit time is
computed as follows,

β =
1

nT

n∑
i=1

c(Yi;Mi(K)) (27)

in order to determine how informative are the sonar images
obtained by the IMVP approach. The mean value and standard
deviation of the classification efficiency (η) and of the CL gain
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Fig. 16. Sonar images obtained by the (a) IMVP, (b) MAC, and (c) CMAC algorithms around the coordinate x = 700 (m) and y = −800 (m) from the clustered
distribution in Fig. 15 and afforded total gain in CL.

Fig. 17. IMVP path planning results obtained for a fixed set of object locations (red stars) and different object features sampled from classification sets A (a), B
(b), and C (c), where the I.C. of the UUV-based sonar is denoted by the black cross.

per unit time (β) are plotted in Figs. 18 and 19, respectively,
for the IMVP approach, as well as for the MAC and CMAC
algorithms.

The results in Fig. 18 show not only that the IMVP approach
achieves a much higher classification efficiency—namely 88%
improvement for set A, 49% improvement for set B, and 13%
improvement for set C—but also a much smaller standard
deviation than that of MAC and CMAC algorithms, indicating
that the IMVP performance is not only higher but also more

robust. Furthermore, the classification results obtained by the
IMVP approach also have higher confidence than those provided
by the MAC and CMAC algorithms. The results in Fig. 19 show
that the IMVP approach results in a much higher CL gain per unit
time – namely 91% improvement for set A, 43% improvement
for set B, and 18% improvement for set C—as well as in a
much smaller standard deviation than that of MAC and CMAC
algorithms, indicating that the CL improvement also is more
robust.
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TABLE IV
PATH PLANNING AND CLASSIFICATION PERFORMANCE COMPARISON FOR DIFFERENT CLASSIFICATION SETS

The bold entities indicates to stress the improvement of the proposed approach over the existing approaches.

Fig. 18. Classification efficiency mean-value and standard deviation (vertical
bars) for IMVP, MAC, and CMAC algorithms.

Fig. 19. CL gain per unit time and standard deviation (vertical bars) for IMVP,
MAC, and CMAC algorithms.

C. Computational Complexity Analysis

The IMVP solution algorithm relies on two steps. The first
step is to obtain a set Q of downselect discretized C-target

regions characterized by satisfactory ECL for every object in
the ROI.3 The second step is to solve a TSPN and produce
the shortest path that visits all regions in Q at least once.
The computational complexity of the first step is lower than
O(n · 2M ), because checking every possible combinations of
C-target regions takes

∑M
k=1

(
M
k

)
= 2M time. Let L denote

the number of regions that are downselected from all C-targets.
Then, the TSPN solution requires at worst O(L2) time. Since
the two steps are conducted consecutively, the overall IMVP
computational complexity is O(n · 2M ) +O(L2).

The main factor contributing to the IMVP computational
complexity is 2M , a term which derives from evaluating the ECL
of every possible combination of discretized C-target regions.
This computation can be reduced to O(M) when the maximum
number of downselected regions can be fixed a priori as in
the CMAC algorithm. Also, the term L2, derived from the
computation of neighborhood intersections, dictates the highest
complexity of the TSPN solution. This computation can be
reduced by adopting a greedy solution algorithm that does not
consider neighborhood intersections at the expense of travel time
optimality.

D. Sea Test Experimental Results

Sea tests were conducted in collaboration with NSWC PCD
to demonstrate the feasibility and effectiveness of the IMVP
algorithm. The sea trials were performed at Saint Andrew Bay
area near Panama City, FL, USA [Fig. 20(a)]. The IMVP plan-
ner was first integrated within the AVA architecture (Fig. 12)
and, then, executed onboard a REMUS 100 for the test case
described in Fig. 13(a). The REMUS trajectory executed during
the sea trial is shown in Fig. 20, and the corresponding ATR
performance is evaluated using the sonar simulation described in
Section VI. The results in Table V show that the sea-test REMUS
trajectory and classification performance are similar or better
than those obtained by the AVA simulation. The REMUS speed
was maintained at approximately 3 m/s, as in the simulation
environment (Section VI). The number of target contacts was,

3Percent improvement over best existing algorithm.
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Fig. 20. (a) Bird-eye view of the sea tests in the Saint Andrew Bay area in Panama City, FL, USA. (b) Close view of the REMUS IMVP trajectory executed at
sea for the target field described in Fig. 13(a), and a vehicle I.C. denoted by the black cross.

TABLE V
IMVP ALGORITHM PATH PLANNING AND CLASSIFICATION PERFORMANCE

COMPARISON FOR SEA TEST AND AVA SIMULATION

however, reduced from 49 (in AVA simulation) to 40 in the sea
test due to disturbance in the yawing motion caused by the sea
waves. For the targets acquired, the results in Table V show
that the REMUS was able to execute the IMVP path with good
accuracy in real undersea environments, thus resulting in similar
target classification performance.

VIII. CONCLUSIONS

This article presents a novel approach to planning sensor
measurements and motions in applications that require multiple
looks or views per target, such as underwater imaging. The
approach, referred to as IMVP, takes into account the sensor FOV
geometry and the target position and orientation by construct-
ing a so-called C-target in the mobile sensor’s configuration
space. By this approach, the expected information value of
every possible sensor look (or view) of the target can be quan-
tified systematically as a function of the sensor configuration.
The IMVP approach is demonstrated on a UUV-based sides-
can sonar that must classify multiple targets with a minimum
required CL. As a result, the information value of C-target
regions is represented by the ECL derived from prior sensor
measurements and ATR model. An approximate algorithm for
solving the multiview planning problem, reduced to a GTSPN,
is also presented to leverage intersecting C-target regions and
maximize the number of targets detected in sonar images. The
results obtained from a high-fidelity closed-loop imaging sonar
simulation show that IMVP significantly outperforms existing

state-of-the-art multiview planning methods, known as MAC
and CMAC algorithms. In fact, IMVP-guided sonar are able to
complete multitarget classification tasks with equal or superior
classification performance in approximately half the time of
existing algorithms.

The IMVP approach is shown to adapt the UUV path based on
individual target features, the difficulty of classification task, and
the configuration of the target field. In real operations, the IMVP
method can be reformulated to have a time constraint and to
maximize the ECL or information gain for target classification.
In this formulation, the IMVP method will vary the number of
views for each target to limit the operation time while choosing
the most informative viewpoints. When an additional total time
constraint is given, the IMVP approach can be modified to
limit the number of views by removing the least informative
viewpoint. The proposed IMVP approach can also be extended to
operate in the online configuration, where the contact reinspec-
tion is performed right after the detection. This online approach
will plan an additional view based on the ECL until the CL
reaches a user-defined threshold. Therefore, the IMVP approach
is not only promising for other multiview sensor applications but
also for the development of adaptive planning algorithms.
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[57] J. Faigl, P. Váňa, and J. Deckerová, “Fast heuristics for the 3-D multi-goal
path planning based on the generalized traveling salesman problem with
neighborhoods,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2439–2446,
Jul. 2019.

[58] J. Faigl, “GSOA: Growing self-organizing array-unsupervised learning for
the close-enough traveling salesman problem and other routing problems,”
Neurocomputing, vol. 312, pp. 120–134, 2018.

https://dx.doi.org/10.1109/CDC.2017.8264055


798 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 47, NO. 3, JULY 2022

[59] K. Elbassioni, A. V. Fishkin, and R. Sitters, “Approximation algorithms
for the Euclidean traveling salesman problem with discrete and contin-
uous neighborhoods,” Int. J. Comput. Geometry Appl., vol. 19, no. 2,
pp. 173–193, 2009.

[60] D. Garcia-Castellanos and U. Lombardo, “Poles of inaccessibility: A cal-
culation algorithm for the remotest places on earth,” Scottish Geographical
J., vol. 123, no. 3, pp. 227–233, 2007.

[61] C. E. Noon and J. C. Bean, “An efficient transformation of the generalized
traveling salesman problem,” INFOR: Inf. Syst. Oper. Res., vol. 31, no. 1,
pp. 39–44, 1993.

[62] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Res., vol. 21, no. 2, pp. 498–516,
1973.

[63] M. Dorigo and M. Birattari, Ant Colony Optimization. Berlin, Germany:
Springer, 2010.

[64] S. Ferrari and G. Foderaro, “A potential field approach to finding
minimum-exposure paths in wireless sensor networks,” in Proc. IEEE Int.
Conf. Robot. Autom., 2010, pp. 335–341.

[65] J. C. Isaacs, “Unsupervised domain transfer of latent dirichlet allocation
derived representations from synthetic aperture sonar imagery,” Proc.
SPIE, vol. 8709, 2013, Art. no. 87090G.

[66] P. T. Gough and D. W. Hawkins, “Imaging algorithms for a strip-map
synthetic aperture sonar: Minimizing the effects of aperture errors and
aperture undersampling,” IEEE J. Ocean. Eng., vol. 22, no. 1, pp. 27–39,
Jan. 1997.

[67] J. Weaver, J. Perkins, and D. Sternlicht, “Advanced autonomy architecture
for maritime applications AVA,” in Proc. MTS/IEEE OCEANS Conf.,
Monterey, CA, USA, 2016, pp. 1–8.

[68] M. Snyder, J. N. Weaver, and M. J. Bays, “ROS-IVP: Porting the interval
programming suite into the robot operating system for maritime auton-
omy,” in Proc. MTS/IEEE OCEANS Conf., Monterey, CA, USA, 2016,
pp. 1–6.

[69] B. Nguyen, M. J. Bays, A. Shende, and D. J. Stilwell, “An approach to
subsea survey for safe naval transit,” in Proc. MTS/IEEE OCEANS KONA
Conf., 2011, pp. 1–6.

[70] M. J. Bays, “Stochastic motion planning for applications in subsea survey
and area protection,” Ph.D. dissertation, Dept. Mech. Eng. Virginia Tech,
Blacksburg, VA, USA, 2012.

[71] J. R. Stack and C. M. Smith, “Combining random and data-driven coverage
planning for underwater mine detection,” in Proc. IEEE Oceans Conf.,
2003, vol. 5, pp. 2463–2468, doi: 10.1109/OCEANS.2003.178298.

[72] T. Qin et al., “Underwater archaeological investigation using ground
penetrating radar: A case analysis of Shanglinhu Yue Kiln sites (China),”
J. Appl. Geophys., vol. 154, pp. 11–19, 2018.

Jaejeong (Jane) Shin (Member, IEEE) received the
M.S. and Ph.D. degrees in mechanical engineering
from Cornell University, Ithaca, NY, USA, in 2019
and 2021, respectively, and the B.S. degree in naval
architecture and ocean engineering from Seoul Na-
tional University, Seoul, South Korea, in 2017.

She has been an Assistant Professor with the De-
partment of Mechanical and Aerospace Engineering,
University of Florida, Gainesville, FL, USA, since
2021. Her research interests encompass information
theoretic learning, computational geometry, motion

planning, machine learning, and optimization.

Shi Chang (Student Member, IEEE) received the
B.S. degree in mechanical engineering from Penn-
sylvania State University, State College, PA, USA,
in 2017. He is currently working toward the Ph.D.
degree in mechanical engineering with the Laboratory
for Intelligent Systems and Controls (LISC), Cornell
University, Ithaca, NY, USA.

His research interests include computer vision, ma-
chine learning, information theory, and information-
driven path planning of robots.

Joshua Weaver (Member, IEEE) received B.S. degree in electrical engineering
from Florida State University, Tallahassee, FL, USA in 2007, and the M.S. and
Ph.D. degrees in electrical and computer engineering from the University of
Florida, Gainesville, FL, USA, in 2012 and 2014 respectively.

He currently works as a Senior Scientist for Autonomy at the Naval Surface
Warfare Center in Panama City, Florida (NSWC PCD). He is the principal
investigator on multiple unmanned systems projects that focus on developing
autonomy architectures, behaviors, world models, and perception algorithms.
His current work also includes supporting the Office of Naval Research (ONR)
as well as developments in the international community.

Jason C. Isaacs received the Ph.D. degree in electrical engineering from the
Florida State University, Gainesville, FL, USA, in 2008.

Since 2008, he has been a Research Engineer with the Science, Technology,
Analysis, and Simulation Division, Naval Surface Warfare Center (NSWC
PCD), Panama City, FL, USA. His research is focused on the use of machine
learning, computer vision, and image processing for automatic target recog-
nition applications. Specific areas of interest are in representational learning,
knowledge transfer, and graph-based methods for shape analysis.

Bo Fu (Member, IEEE) received the Ph.D. degree
in mechanical and aerospace engineering from the
University of California, Davis, Davis, CA, USA, in
2016.

He is currently the Founder of Oiler (Oiler Equa-
tion, Inc.), Houston, TX, USA, a startup company
focused on delivering the next generation innovative
and intelligent gas detection solutions for the oil and
gas industry. He was a Postdoctoral Associate with
the Laboratory for Intelligent Systems and Controls
(LISC), Cornell University, Ithaca, NY, USA, where

his work focused on applied machine learning, computer vision, and image
sciences. His current research focuses on image-based algorithm development
for optical gas imaging (OGI) systems.

Silvia Ferrari (Senior Member, IEEE) received the
B.S. degree from Embry-Riddle Aeronautical Uni-
versity, Daytona Beach, FL, USA, in 1997, and the
M.A. and Ph.D. degrees from Princeton University,
Princeton, NJ, USA, in 1999 and 2002, respectively.

She is currently the John Brancaccio Professor of
Mechanical and Aerospace Engineering with Cornell
University, Ithaca, NY, USA. Before, she was a Pro-
fessor of Engineering and Computer Science with
Duke University, Durham, NC, USA, and the Founder
and the Director of the NSF Integrative Graduate

Education and Research Traineeship (IGERT) and Fellowship program on
Wireless Intelligent Sensor Networks (WISeNet). She is currently the Director of
the Laboratory for Intelligent Systems and Controls (LISC), Cornell University,
and her principal research interests include robust adaptive control of aircraft,
learning and approximate dynamic programming, and optimal control of mobile
sensor networks.

Dr. Ferrari is a member of ASME, SPIE, and AIAA. She is the recipient of the
ONR young investigator award (2004), the NSF CAREER award (2005), and the
Presidential Early Career Award for Scientists and Engineers (PECASE) award
(2006).

https://dx.doi.org/10.1109/OCEANS.2003.178298


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


