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Abstract—The role of negative information is particularly
important to search-detect-track problems in which the number
of objects is unknown a priori, and the size of the sensor field-of-
view is far smaller than that of the region of interest. This paper
presents an approach for systematically incorporating knowledge
of the field-of-view geometry and position and object inclu-
sion/exclusion evidence into object state densities and random
finite set multi-object cardinality distributions. The approach is
derived for a representative set of multi-object distributions and
demonstrated through a sensor planning problem involving a
multi-Bernoulli process with up to one-hundred potential targets.

Index Terms—Bounded field-of-view, Gaussian mixtures, Gaus-
sian splitting, random finite set theory

I. INTRODUCTION

Random finite set (RFS) theory has been proven a highly
effective framework for developing and analyzing tracking
and sensor planning algorithms in applications involving an
unknown number of multiple targets (objects) [1]–[7]. To date,
however, little attention has been given to the role that bounded
fields-of-view (FoVs) and negative information play in the
finite set statistics (FISST) recursive updates for assimilating
measurements, or lack thereof, into multi-object probability
distributions. Existing algorithms typically terminate object
tracks after the object is believed to have left the sensor FoV.
While this approach is suitable when the FoV doubles as the
tracking region of interest (ROI), it is inapplicable when the
sensor FoV is much smaller than the ROI and, thus, must
be moved or positioned so as to maximize information value
[8]–[11].

Knowledge of object presence inside the FoV is power-
ful evidence that can be incorporated to update the object
probability density function (pdf) in a Bayesian framework.
For example, the absence of detections, referred to as negative
information may suggest that the object state resides outside
the FoV [12], [13]. In contrast, binary-type sensors may
indicate that the object is inside the sensor FoV but provide
no further localization information. Particle-based filtering
algorithms can accommodate such measurements but require a
large number of particles and are computationally expensive.
Another approach [13] uses Gaussian mixtures (GMs) to
model both the object pdf and the state-dependent probability
of detection function. Though GMs efficiently model some
detection probability functions, other simple functions, such
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as uniform probability over a 3D FoV, require problematically
large numbers of components. Recently, a method based
on intermediate particle representation and the expectation
maximization (EM) algorithm has been proposed for forming
GMs inside and outside the FoV [14].

This paper presents relevant bounded FoV statistics both
in the form of state densities and cardinality probability
mass functions (pmfs). Section III presents a deterministic
method that partitions a GM state density along FoV bounds
through recursive Gaussian splitting. In Section IV, FoV
object cardinality pmfs are derived for some of the most
commonly encountered RFS distributions. Section V presents
an application of bounded FoV statistics to a sensor placement
problem, and conclusions are made in Section VI.

II. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the incorporation of bounded FoV
information into algorithms for (multi-)object tracking and
sensor planning when the number of objects is unknown and
time-varying. As shown in [15], the sensor FoV can be defined
as the compact subset S(q) ⊂ Xp, where Xp is a subspace
of the single-object state space X. Typically, Xp represents
the object position space and, thus, vectors and densities
associated with Xp are referred to as “position” quantities in
this paper. However, the methods described in the following
sections are applicable to any arbitrary subspace of X. In
general, the FoV is a function of the sensor state q, which, for
example, may consist of the sensor position, orientation, and
zoom level. However, for notational simplicity this dependence
is omitted in the remainder of this paper.

Now, let the object state x consist of the kinematic variables
that are to be estimated from data via filtering, such as the
object position, velocity, turn rate, etc. Then, the single-object
pdf is denoted by p(x). Letting xp = projXp

x denote the state
elements that correspond to Xp, an object’s presence inside the
FoV can be expressed by the generalized indicator function

1S(x) =

{
1, if xp ∈ S
0, otherwise

The number of objects and their kinematic states are unknown
a priori, but can be assumed to consist of discrete and con-
tinuous variables, respectively. The collection of object states
is modeled as an RFS X or labeled random finite set (LRFS)
X̊ , where the single-object labeled state x̊ = (x, `) ∈ X × L
consists of a kinematic state vector x and unique discrete
label `. It is assumed that the prior multi-object distribution
is known, e.g., from the output of a multi-object filter, and
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modeled using either the RFS density f(X) or LRFS density
f̊(X̊).

Throughout this paper, single-object states are represented
by lowercase letters (e.g. x, x̊), while multi-object states
are represented by italic uppercase letters (e.g. X , X̊). Bold
lowercase letters are used to denote vectors (e.g. x, z) and bold
uppercase letters are used denote matrices (e.g. P , Λ). The
accent “̊ ” is used to distinguish labeled states and functions
(e.g. f̊ , x̊, X̊) from their unlabeled equivalents. Spaces are
represented by blackboard bold symbols (e.g. X, L).

Knowledge of object presence inside the FoV is powerful
evidence that can be used to update the object state pdf
in a Bayesian framework. As an example, the single-object
state pdf conditioned on its presence inside the FoV can be
expressed as

p(x | S) ∝ 1S(x)p(x) , pS(x) (1)

Similarly, knowledge of object presence outside of the FoV
or equivalently, in the complement set C(S) = Xp \S, can be
incorporated, such that

p(x | C(S)) ∝ (1− 1S(x))p(x) , pC(S)(x) (2)

Equation (1) can be used to model occupancy measurements
(e.g. the object was detected somewhere in the FoV), and when
integrated with respect to x, gives the probability that the
object is inside the FoV. Equation (2) is required to properly
incorporate the negative information that an object is not
inside S. For mathematical conciseness, throughout this paper,
object presence and absence are considered rather than object
detection and non-detection. However, Equations (1) and (2)
are easily modified to account for detection probabilities. For
example, the event “object not detected,” denoted by ¬D, is
incorporated through the application of Bayes’ rule, such that

p(x | ¬D) ∝ (1− 1S(x)pD(x)) p(x)

where pD(x) is the state-dependent probability of detection.
In RFS-based tracking, single-object densities are, in fact,

parameters of the higher-dimensional multi-object density.
Non-Gaussian single-object state densities are often modeled
using GMs because they admit closed-form approximations to
the multi-object Bayes recursion under certain conditions [2],
[16]. Therefore, in this paper, it is assumed that single-object
densities (which are parameters of the higher dimensional
multi-object density) are parameterized as

p(x) =

L∑
`=1

w(`)N (x; m(`), P (`))

where L is the number of GM components and w(`), m(`),
and P (`) are the weight, mean, and covariance matrix of the
`th component, respectively.

The multi-object exponential notation,

hA ,
∏
a∈A

h(a)

where h∅ , 1, is adopted throughout. For multivariate func-
tions, the dot (·) denotes the argument of the multi-object
exponential, e.g.:

[g(a, ·, c)]B ,
∏
b∈B

g(a, b, c)

The exponential notation is used to denote the product space,
Xn =

∏n
(X×). Exponents of RFSs are used to denote

RFSs of a given cardinality, e.g. |Xn| = n, where n is
the cardinality. The operator diag(·) places its input on the
diagonal of the zero matrix. The Kronecker delta function is
defined as

δa(b) ,

{
1, if b = a
0, otherwise

for any two arbitrary vectors a, b ∈ Rn. The inner product of
two integrable functions f(·) and g(·) is denoted by

〈f, g〉 =

∫
f(x)g(x)dx

III. GM APPROXIMATION OF FOV-PARTITIONED
DENSITIES

This section presents a method for partitioning the object
pdf into truncated densities pS(x) and pC(S)(x), with sup-
ports X \ C(S) and X \ S , respectively. Focus is given to
the single-object state density with the awareness that the
method is naturally extended to RFS multi-object densities
and algorithms that use GM parameterization. Consider the
single-object density p(x) parameterized by an L-component
GM, as follows:

p(x) = pS(x) + pC(S)(x) =
L∑
`=1

w(`)N (x; m(`),P (`))

One simple approximation of densities partitioned according
to the discrete FoV geometry, referred to as FoV-partitioned
densities hereon, is found by evaluating the indicator function
at the component means [17], i.e.:

pS(x) ≈
L∑
`=1

w(`)1S(m(`))N (x; m(`), P (`)) (3)

pC(S)(x) ≈
L∑
`=1

w(`)(1− 1S(m(`)))N (x; m(`), P (`)) (4)

By this approach, components whose means lie inside (out-
side) the FoV are preserved (pruned), or vice versa.

The accuracy of this mean-based partition approximation
depends strongly on the resolution of the GM near the ge-
ometric boundaries of the FoV. Even though the mean of a
given component lies inside (outside) the FoV, a considerable
proportion of the probability mass may lie outside (inside) the
FoV, as is illustrated in Figure 1a. Therefore, the amount of
FoV overlap, along with the weight of the component, de-
termines the accuracy of the approximations (Eq. (3)-(4)). To
that end, the algorithm presented in the following subsection
iteratively resolves the GM near FoV bounds by recursively
splitting Gaussian components that overlap the FoV bounds.
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Fig. 1: Original component density and FoV with covariance
eigenvectors overlaid (a), and same component density and
FoV after change of variables (b).

A. Gaussian Splitting Algorithm

The Gaussian splitting algorithm presented in this sub-
section forms an FoV-partitioned GM approximation of the
original GM by using a higher number of components near
the FoV boundaries, ∂S, so as to improve the accuracy of the
mean-based partition.

Consider for simplicity a two-dimensional example in which
the original GM, p(x), has a single component whose mean
lies outside the FoV, as shown in Figure 1a. The algorithm
first applies a change of variables x 7→ z such that p(z) is
symmetric, has zero mean and unit variance. The basis vectors
of the space Z 3 z correspond to the principal directions of
the component’s positional covariance. The same change of
variables is applied to the FoV bounds (Figure 1b).

A pre-computed point grid is then tested for inclusion in
the transformed FoV in order to decide whether to split the
component, and if so, along which principal direction. For
each new split component, the process is repeated–if a new
component significantly overlaps the FoV boundaries, it may
be further split into several smaller components, as illustrated
in Figure 2b. This process is repeated until stopping criteria
are satisfied. After the GM splitting terminates, pS(x) and
pC(S)(x) are approximated by the mean-based partition, as
illustrated in Figure 3.
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Fig. 2: 1σ contours of components after first split operation
(a), and second split operation (b), where components formed
in the second operation are shown in red.
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Fig. 3: The GM approximations to densities pC(S)(x) (a), and
pS(x) (b) after two iterations of splitting.

B. Univariate Splitting Library

Splitting is performed efficiently by utilizing a pre-generated
library of optimal split parameters for the univariate standard
Gaussian q(x), as first proposed in [18] and later generalized
in [19]. The univariate split parameters are retrieved at run-
time and applied to arbitrary multivariate Gaussian densities
via scaling, shifting, and covariance diagonalization.

Generation of the univariate split library is performed by
minimizing the cost function

J = L2(q||q̃) + λσ̃2 s.t.
R∑
j=1

w̃(j) = 1

where

q̃(x) =
R∑
j=1

w̃(j)N (x; m̃(j), σ̃2)

for different parameter values R, λ. The regularization term λ
balances the importance of using smaller standard deviations σ̃
with the minimization of the L2 distance. While other distance
measures may be used, the L2 distance is attractive because
it can be computed in closed form for GMs [19].

C. Change of Variables

The determination of which components should be split, and
if so, along which direction, is simplified by first establishing
a change of variables. For each component with index `, the
change of variables h(`) : Xp 7→ Z is applied as follows:

z = h(`)(x(`)
p ;m(`)

p ,P (`)
p ) , (Λ(`)

p )−
1
2V (`)T

p (xp −m(`)
p )

(5)

where

V (`)
p = [v

(`)
p,1 · · · v(`)

p,np
]

(Λ(`)
p )−1/2 = diag

([
1√
λ
(`)
p,1

· · · 1√
λ
(`)
p,np

])

and m
(`)
p is the np-element position portion of the full-state

mean, and the columns of V (`)
p are the normalized eigen-

vectors of the position-marginal covariance P (`)
p , with v

(`)
p,i
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corresponding to the ith eigenvalue λ
(`)
p,i. In the transformed

space,

pz(z) = N (z; 0, I)

Note that, in defining the transformation over Xp, the same
transformation can be applied to the FoV, such that

S(`)
z = {h(`)(xp;m(`)

p ,P (`)
p ) : xp ∈ S} (6)

In Z, the Euclidean distances to boundary points of S(`)
z

can be interpreted as probabilistically normalized distances.
In fact, the Euclidean distance of a point z from the origin in
Z corresponds exactly to the Mahalanobis distance between
the corresponding point xp and the original position-marginal
component.

D. Component Selection and Collocation Points

Components are selected for splitting if they have sufficient
weight and significant statistical overlap of the FoV boundaries
(∂S). For components of sufficient weight, the change of
variables is applied to the FoV to obtain S(`)

z per Equation (6).
The overlap of the original component on S is then equivalent
to the overlap of the standard Gaussian distribution on S(`)

z ,
which is quantified using a grid of collocation points on Z.
Define a uniform grid of collocation points {z̄i1,...inp

} on Z
such that

z̄i1,...,inp
= [z̄1(i1) . . . z̄np

(inp
)]T

z̄j(ij) = −ζ + 2ζ

(
ij − 1

N − 1

)
, ij = 1,..., N

where ζ is a user-specified bound for the grid and N is
the number of points per dimension. An inclusion variable
is defined as

d
(`)
i1,...,inp

, 1S(`)
z

(z̄i1,...,inp
)

A function s(`)
Sz (·) is established to mark total inclusion or total

exclusion as

s
(`)
Sz (z̄i1,...,inp

) =
∏

i1,...,inp

δ
d
(`)
1,...,1

(d
(`)
i1,...,inp

)

which is equal to unity if all grid points lie inside of S(`)
z or

all grid points lie outside of S(`)
z , and is zero otherwise. If

either all or no points are included, no splitting is required.
Otherwise, the component is marked for splitting.

E. Positional Split Direction

Rather than split a component along each of its principal
directions, a more judicious selection can be made by limiting
split operations to a single direction (per component) per
recursion. Thus, by performing one split per component per
recursion, the component selection criteria are re-evaluated,
reducing the overall number of components generated. In the
aforementioned two-dimensional example, only a subset of
new components generated from the first split are selected
for further splitting as shown in Figure 2b.

The split direction is chosen based on the relative geom-
etry of the FoV, and thus positional vectors are of interest.
Choosing the best positional split direction is a challenging
problem. Ideally, splitting along the chosen direction should
minimize the number of splits required in the next iteration as
well as improve the accuracy of the partition approximation
applied after the final iteration. The computational complexity
of exhaustive optimization of the split direction would likely
negate the computational efficiency of the overall algorithm.
Instead, to minimize the number of splits required in the next
iteration, the positional split direction is chosen as the direction
that is orthogonal to the most grid planes of consistent
inclusion/exclusion. The plane of constant zj = z̄j(ij) is
consistently inside or consistently outside if

s
(`)
j (ij) =

∏
i1,...,ij−1,ij+1,inp

δ
d
(`)
1,...,ij ,...,1

(d
(`)
i1,...,ij ,...,inp

)

is equal to unity. The optimal positional split direction is then
given by the eigenvector vp,j∗ , where the optimal eigenvector
index is found as

j∗ = arg max
j

∑
ij

s
(`)
j (ij)

 (7)

For notational simplicity, the implicit dependence of j∗ on
the component index ` is omitted. For example, referring
back to the two-dimensional example and Figure 1b, there
are more rows than columns that are consistently inside or
outside the transformed FoV, and thus j∗ = 2 is chosen
as the desired positional split direction index. In the case
where multiple maxima exist, the eigenvector with largest
eigenvalue is selected, which corresponds to the direction of
largest variance among the maximizing eigenvectors.

F. Multivariate Split of Full-state Component

Gaussian splitting must be performed along the principal
directions of the full-state covariance. The general multivariate
split approximation, splitting along the kth eigenvector v(`)

k is
given by [19]

w(`)N (x; m(`), P (`)) ≈
R∑
j=1

w(`,j)N (x; m(`,j), P (`,j))

(8)

where

w(`,j) = w̃(j)w(`), m(`,j) = m(`) +

√
λ

(`)
k m̃(j)v

(`)
k

P (`,j) =V (`)Λ(`)V (`)T , Λ(`) =diag
(
[λ1 · · · σ̃2λk · · · λn]

)
and the optimal univariate split parameters w̃(j), m̃(j), and
σ̃ are found from the pre-computed split library given the
number of split components R and regularization parameter
λ. In general, the positional components of the full-state
eigenvectors will not perfectly match the desired positional
split vector due to correlations between the states. Rather,
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the actual full-state split is performed along v
(`)
k∗ , where the

optimal eigenvector index is found according to

k∗ = arg max
k

∣∣[v(`)T
p,j∗ 0T

]
v

(`)
k

∣∣ (9)

where, without loss of generality, a specific state convention
is assumed such that position states are first in element order.

G. Recursion and Role of Negative Information

The splitting procedure is applied recursively, as detailed
in Algorithm 1. The recursion is terminated when no re-
maining components satisfy the criteria for splitting. Each
recursion further refines the GM near the FoV bounds to
improve the approximations of Equations (3)-(4). However,
because a Gaussian component’s split approximation (Eq. 8)
does not perfectly replicate the original component, a small
error is induced with each split. Given enough recursions,
this error may become dominant. In the authors’ experience,
the recursion is terminated well before the cumulative split
approximation error dominates.

Algorithm 1: split_for_fov({w(`),m(`),P (`)}L`=1,
wmin, S, R, λ)

split ← {}, no_split ← {}
if L = 0 then

return split
end if
for ` = 1, . . . , L do

if w(`) < wmin then
add {w(`),m(`),P (`)} to no_split
continue

end if
Compute S(`)

z accrd. to Eq. (6)
if sS(`)

z
(z̄i1,...,inp

) = 1 then
add {w(`),m(`),P (`)} to no_split

else
j∗ ← Eq. (7) , k∗ ← Eq. (9)
{w(`,j),m(`,j),P (`,j)}Rj=1 ← Eq. (8) with k = k∗

add {w(`,j),m(`,j),P (`,j)}Rj=1 to split
end if

end for
split←split_for_fov(split, wmin, S, R, λ)
return split ∪ no_split

One of the many potential applications of the recursive
algorithm presented in this section involves incorporating the
evidence of non-detections, or negative information, in single-
or multi-object filtering. To demonstrate, a single-object filter-
ing problem with a bounded square FoV is considered where,
in three subsequent sensor reports, no object is detected. The
true object position and constant velocity are unknown but
are distributed according to a known GM pdf at the first time
step. As the initial pdf is propagated over time, the position-
marginal pdf travels from left to right, as pictured in Figure 4.
For simplicity, the probability of detection inside the FoV is

assumed equal to one. At each time step, the GM is refined by
Algorithm 1 using wmin = 0.01, R = 3, and λ = 0.001. Then,
the mean-based partition approximation is applied (Eq. 4) and
the updated filtering density is found (Eq. 2). By this approach,
the number of components may increase over time but can be
reduced as needed through component merging and pruning.

Fig. 4: Negative information, comprised of absence of detec-
tions inside the sensor FoV S, is used to update the object pdf
as the object moves across the ROI.

IV. FOV CARDINALITY DISTRIBUTION

This section presents pmfs for the cardinality of objects in-
side a bounded FoV S given different multi-object workspace
densities f(·). The Poisson, independent identically distributed
cluster (i.i.d.c.), multi-Bernoulli (MB), and generalized labeled
multi-Bernoulli (GLMB) distributions are considered in Sub-
sections IV-A, IV-B, IV-C, and IV-D, respectively.

The probability of n objects existing inside FoV S condi-
tioned on X can be written in terms of the indicator function
as

ρS(n |X) =
∑

Xn⊆X

[1S(·)]X
n

[1− 1S(·)]X\X
n

(10)

where the summation is taken over all subsets Xn ⊆ X
with cardinality n. Given the RFS density f(X), the FoV
cardinality distribution is obtained via the set integral as

ρS(n) =

∫
ρS(n |X)f(X)δX

Expanding the integral,

ρS(n) = (11)
∞∑
m=n

1

m!

∫
Xm

ρS(n | {x1,...,xm})f({x1,...,xm})dx1···dxm

Remark: The results presented in this section can be triv-
ially extended to express the predicted cardinality of object-
originated detections Z (excluding false alarms) by noting that

ρS(nZ |X) =
∑

Xn⊆X

[pD(·)1S(·)]X
n

[1− pD(·)1S(·)]X\X
n

where nZ = |Z|.

A. Poisson Distribution

The density of a Poisson-distributed RFS is

f(X) = e−NX [D]X (12)

where NX is the global cardinality mean, and D(x) is the
probability hypothesis density (PHD), or intensity function,
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of X , which is defined on the single-object space X. One
important property of the PHD is that its integral over a closed
set on X yields the expected number of objects within that set,
i.e.

E[|X ∩ T |] =

∫
T

D(x)dx (13)

Proposition 1: Given a Poisson-distributed RFS with PHD
D(x) and global cardinality mean NX , the cardinality of
objects inside the field of view S ⊆ X is distributed according
to

ρS(n) =
∞∑
m=n

e−NX

n!(m− n)!
〈1S , D〉n 〈1− 1S , D〉m−n (14)

Proof: Substituting Equation (12) into Equation (11),

ρS(n) =
∞∑
m=n

1

m!
e−NX

∫
Xm

∑
Xn⊆X

[1S(·)D(·)]X
n

· [(1− 1S(·))D(·)]X\X
n

dx1 · · · dxm (15)

The nested integrals of Equation (15) can be distributed,
rewriting the second sum over n-cardinality index sets In as

ρS(n) =

∞∑
m=n

1

m!
e−NX

∑
In⊆{1..m}

[∫
1S(x(·))D(x(·))dx(·)

]In

·
[∫

(1− 1S(x(·)))D(x(·))

]{1..m}\In
where the shorthand {1..m} is used to denote the set of
integers {1,...,m}. Note that the value of the integrals is
independent of the variable index, and thus

ρS(n) =

∞∑
m=n

e−NX
1

m!

m!

n!(m− n)!
〈1S , D〉n 〈1− 1S , D〉m−n

from which Equation (14) follows. �
Remark: Computation of Equation (14) requires only one

integral computation; namely
〈
1S , D

〉
, which can be found

either by summing the weights of Equation (3) or through
Monte Carlo integration. Using the integral property of the
PHD (Eq. 13), the integral〈

1− 1S , D
〉

= NX −
〈
1S , D

〉
Furthermore, for m� NX , the summand of Equation (14) is
negligible, and the infinite sum can be safely truncated at an
appropriately chosen m = mmax(NX).

B. Independent Identically Distributed Cluster Distribution

The density of an i.i.d.c. RFS is

f(X) = |X|! · ρ(|X|)[p]X , (16)

where ρ(n) is the cardinality pmf and p(x) is the single-object
state pdf.

Proposition 2: Given an i.i.d.c.-distributed RFS with cardi-
nality pmf ρ(·) and state density p(·), the cardinality of objects
inside the FoV S is distributed according to

ρS(n) =
∞∑
m=n

ρ(m)

(
m

n

)〈
1S , p

〉n〈
1− 1S , p

〉m−n
(17)

where
(
m
n

)
is the binomial coefficient.

Proof : Substituting Equation (16) into Equation (11),

ρS(n) =
∞∑
m=n

1

m!
m!ρ(m)∫

Xm

∑
Xn⊆X

·[1s(·)p(·)]X
n

[(1− 1s(·))p(·)]X\X
n

dx1···dxm

The integral can be moved inside the products so that

ρS(n) =
∞∑
m=n

ρ(m)
∑

In⊆{1..m}

[∫
1s(x(·))p(x(·))dx(·)

]In

·
[∫

(1− 1s(x(·)))p(x(·))dx(·)

]{1..m}\In
(18)

Equation (17) follows from Equation (18) by noting that
there are

(
m
n

)
unique unordered n-cardinality index subsets

of {1,...,m}. �

C. Multi-Bernoulli Distribution

The density of a MB distribution is [20, p. 102]

f(X) =
[(

1− r(·)
)]{1..M}∑

1≤i1 6=···6=in≤M

[
ri(·)pi(·)(x(·))

1− ri(·)

]{1..n}
(19)

where M is the number of MB components and maximum
possible object cardinality, ri is the probability that the ith

object exists, and pi(x) is the single-object state density of
the ith object if it exists.

Proposition 3: Given at MB density of the form of Equa-
tion (19), the cardinality of objects inside the FoV S is
distributed according to

ρS(n) =
[(

1− r(·)
)]{1..M}

·
∑

I1]I2]I3

δn(|I1|)

[〈
1S , r

(·)p(·)〉
1− r(·)

]I1 [〈
1− 1S , r

(·)p(·)〉
1− r(·)

]I2
(20)

where the summation is taken over all mutually exclusive
index partitions I1 ] I2 ] I3 = {1..M}.

Proof of Proposition 3 is given in Appendix A. Following
the same procedure, similar results for the labeled multi-
Bernoulli (LMB) [3] and multi-Bernoulli mixture (MBM) [21]
RFS distributions may be obtained.

Direct computation of Equation (20) is only feasible for
small M due to the sum over all permutations I1 ] I2 ] I3.
For large M , a stochastic approximation may be used, as
detailed in Algorithm 2 and summarized as follows. For each
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MB component, the integral
〈
1S , p

(i)
〉

is computed either by
summing the weights of the partitioned GM or by Monte Carlo
integration. Using the integral results, the probability of object
i existing inside the FoV is found as

r
(i)
S = r(i)

〈
1S , p

(i)
〉

These probabilities are then sampled in Ns Monte Carlo trials
to randomly generate n̄i,j which is unity if the object i is in
S in the jth trial and zero otherwise. The cardinality of each
random trial is tallied, and the probability of n objects existing
inside the FoV is given by the proportion of the number of
trials with n objects with respect to the total number of trials.

Algorithm 2: Stochastic MB FOV Cardinality

for i = 1, . . . ,M do
r

(i)
S ← r(i)

〈
1S , p

(i)
〉

end for
for j = 1, . . . , Ns do

for i = 1, . . . ,M do
u ∼ Uniform[0, 1]

n̄i,j ← r
(i)
S ≥ u

end for
n̄j ←

∑M
i=1 n̄i,j

end for
ρS(n)← 1

Ns

∑Ns
j=1 δn(n̂j)

D. Generalized Labeled Multi-Bernoulli Distribution

The density of a GLMB distribution is given by [2]

f̊(X̊) = ∆(X̊)
∑
ξ∈Ξ

w(ξ)(L(X̊))[p(ξ)]X̊ , (21)

where each ξ ∈ Ξ represents a history of measure-
ment association maps, each p(ξ)(·, `) is a probability den-
sity on X, and each weight w(ξ) is non-negative with∑
(I,ξ)∈F(L)×Ξ

w(ξ)(I) = 1. The label of a labeled state x̊ is

recovered by L(̊x), where L : X × L 7→ L is the pro-
jection defined by L((x, `)) , `. Similarly, for LRFSs,
L(X̊) , {L(̊x) : x̊ ∈ X̊}. The distinct label indicator
∆(X̊) = δ(|X̊|)(|L(X̊)|) ensures that only sets with distinct
labels are considered.

Proposition 4: Given a GLMB density f̊(X̊) of the form
of Equation (21), the cardinality of objects inside a bounded
FoV S is distributed according to

ρS(n) =
∑

(ξ,I1]I2)∈Ξ×F(L)

w(ξ)(I)δn(|I1|) 〈1S , p〉I1 〈1− 1S , p〉I2 (22)

Proof : Equation (10) can be rewritten to accommodate the
labeled RFS as

ρS(n | X̊) =
∑

X̊n⊆X̊

[1S(·)]X̊
n

[1− 1S(·)]X̊\X̊
n

(23)

If X̊ is distributed according to the LRFS density f̊(X̊), the
FoV cardinality distribution is obtained via the set integral

ρS(n) =

∫
ρS(n | X̊)f̊(X̊)δX̊

Expanding the integral,

ρS(n)

=
∞∑
m=n

1

m!

∑
(`1,...,`m)∈Lm

∫
Xm

ρS(n | {(x1, `1),..., (xm, `m)})

· f̊({(x1, `1),..., (xm, `m)})dx1 · · · dxm

Defining p(ξ,`)(x) , p(ξ)(x, `), substitution of Equations (21)
and (23) yields

ρS(n) =
∞∑
m=n

1

m!
m!

∑
{`1,...,`m}∈Lm

∑
ξ∈Ξ

w(ξ)({`1, . . . , `m})∑
In⊆{`1,...`m}

〈
1S , p

(ξ,·)〉In〈1− 1S , p
(ξ,·)〉{`1,...,`m}\In

=
∑

(ξ,I)∈Ξ×F(L)

w(ξ)(I)
∑
In⊆I

〈
1S , p

(ξ,·)〉In〈1− 1S , p
(ξ,·)〉I\In

from which Equation (22) follows. �
Remark: Substitution of n = 0 in Equation 22 gives

the GLMB void probability functional [6, Eq. 22], which,
while less general, has theoretical significance and practical
applications in sensor management.

V. SENSOR PLACEMENT EXAMPLE

The FoV statistics developed in this paper are demonstrated
through a sensor placement optimization problem subject to
multi-object uncertainty. For brevity, the workspace distribu-
tion is assumed MB-distributed. Numerical simulation is per-
formed for the case of 100 MB components, with probabilities
of existence randomly chosen between 0.35 and 1. Each MB
component has a Gaussian density and randomly chosen mean
and covariance. To visualize the workspace distribution, the
PHD is shown in Figure 5.

The objective of the sensor control problem is to place the
FoV, comprised of a square of 1× 1 dimensions, in the ROI
(Figure 5) such that the variance of object cardinality inside
the FoV is maximized. This objective can be interpreted as
placing the FoV in a region of the workspace where the object
cardinality is most uncertain. A related objective which mini-
mizes the variance of the global cardinality using cardinality-
balanced multi-Bernoulli (CB-MeMBer) predictions was first
proposed in [5]. For each candidate FoV placement, the FoV
cardinality pmf is given by Equation (20) and is efficiently
approximated using Algorithm 2. The variance of the resulting
pmf is shown as a function of the FoV center location in
Figure 6. The optimal FoV center location is found to be
(−0.8,−1.25).

A compelling result is that, by virtue of the bounded FoV
geometry, spatial information is encoded in the FoV cardinality
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Fig. 5: PHD of MB workspace distribution with 100 potential
objects, where object means are represented by orange circles
and the bounds of the FoV that maximizes the FoV cardinality
variance are shown in white.

pmf. It can be seen that the optimal FoV (Fig. 5) has boundary
segments (lower half of left boundary and right half of lower
boundary) that bisect clusters of MB components. These
boundary segments divide the components’ single-object den-
sities such that significant mass appears inside and outside the
FoV, increasing the overall FoV cardinality variance.

Fig. 6: FoV cardinality variance as a function of FoV center
location, where the red star denotes the maximum variance
point.

VI. CONCLUSIONS

This paper presents an approach for incorporating bounded
field-of-view (FoV) geometry into state density updates and
object cardinality predictions via finite set statistics (FISST).
Negative information is processed in state density updates via
a novel Gaussian splitting algorithm that recursively refines
a Gaussian mixture approximation near the boundaries of the
discrete FoV geometry. Using FISST, cardinality probability
mass functions that describe the probability that a given num-
ber of targets exist inside the FoV are derived. The approach
is presented for representative random finite set distributions
and, thus, is applicable to a wide range of tracking, perception,
and sensor planning problems.
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APPENDIX A
PROOF OF PROPOSITION 3

Equation (19) can be rewritten as

f(X) =
[(

1− r(·)
)]{1..M} ∑

(Iσ)]I3

[
ri(·)pi(·)(x(·))

1− ri(·)

]{1..n}
(24)

where (Iσ) denotes the (ordered) sequence (i1,..., in) =
(ασ(1),..., ασ(n)), where the n-tuple index set {α1,..., αn} ]
I3 = {1,...,M} and σ is a permutation of {1,..., n}.

Substituting Equation (24) into Equation (11),

ρS(n) =
[(

1− r(·)
)]{1..M}

·
M∑
m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
[
ri(·)pi(·)(x(·))

1− ri(·)

]{1..m}
∑

Xn⊆X

[1S(·)]X
n

[1− 1S(·)]X\X
n

dx1 · · · dxm

The last sum can be written in terms of label index sets I1 ]
I2 = Iσ as

ρS(n) =
[(

1− r(·)
)]{1..M}

·
M∑
m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
[
ri(·)pi(·)(x(·))

1− ri(·)

]{1..m}
·
∑

I1]I2=Iσ

δn(|I1|)[1S(x(·))]
{j:ij∈I1}[1− 1S(x(·))]

{j:ij∈I2}

dx1 · · · dxm

Distributing terms from the second summation,

ρS(n) =
[(

1− r(·)
)]{1..M}

·
M∑
m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
∑

I1]I2=Iσ

δn(|I1|)

·
[

1S(x(·))r
i(·)pi(·)(x(·))

1− ri(·)

]{j:ij∈I1}
·
[

[1− 1S(x(·))]r
i(·)pi(·)(x(·))

1− ri(·)

]{j:ij∈I2}
dx1 · · · dxm

Because I1∩I2 = ∅, then {xj : ij ∈ I1}∩{xj : ij ∈ I2} = ∅
and the integral on Xm becomes a product of integrals on X,
such that

ρS(n) =
[(

1− r(·)
)]{1..M}

·
M∑
m=n

1

m!

∑
(Iσ)]I3

δm(|Iσ|)
∑

I1]I2=Iσ

δn(|I1|)

·

[〈
1S , r

i(·)pi(·)
〉

1− ri(·)

]{j:ij∈I1} [〈
1− 1S , r

i(·)pi(·)
〉

1− ri(·)

]{j:ij∈I2}

Now note that the result of the innermost sum does not depend
the permutation order of (Iσ). Thus the property [22, Lemma
12] that for an arbitrary symmetric function h∑

(i1,...,im)

h({i1, . . . , im}) = m!
∑

{i1,...,im}

h({i1, . . . , im})

is applied, yielding

ρS(n) =
[(

1− r(·)
)]{1,...,M}

·
M∑
m=n

∑
I1]I2]I3

δm(|I1 ] I2|)δn(|I1|)

·

[〈
1S , r

(·)p(·)〉
1− r(·)

]I1 [〈
1− 1S , r

(·)p(·)〉
1− r(·)

]I2
The term δm(|I1 ] I2|) is non-zero only when the combined
cardinality of I1 and I2 is equal to m—the index of the
outermost sum. Thus, the outermost sum is absorbed by the
second sum to give Equation (20). �
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