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Abstract—Through automatic control, intelligent sensors can
be manipulated to obtain the most informative measurements
about objects in their environment. In object tracking appli-
cations, sensor actions are chosen based on the predicted im-
provement in estimation accuracy, or information gain. Although
random finite set theory provides a formalism for measuring
information gain for multi-object tracking problems, predicting
the information gain remains computationally challenging. This
paper presents a new tractable approximation of the random
finite set expected information gain applicable to multi-object
search and tracking. The approximation presented in this paper
accounts for noisy measurements, missed detections, false alarms,
and object appearance/disappearance. The effectiveness of the
approach is demonstrated through a ground vehicle tracking
problem using real video data from a remote optical sensor.

Index Terms—sensor control, information gain, multi-object
tracking, random finite set, cell multi-Bernoulli, bounded field-
of-view, Kullback-Leibler divergence

I. INTRODUCTION

MANY modern multi-object tracking applications in-
volve mobile and reconfigurable sensors able to con-

trol the position and orientation of their field-of-view (FoV)
in order to expand their operational tracking capacity and
improve state estimation accuracy when compared to fixed
sensor systems. By incorporating active sensor control in
these dynamic tracking systems, the sensor can autonomously
make decisions that produce observations with the highest
information content based on prior knowledge and sensor
measurements [1]–[3]. However, as the sensor FoV moves and
covers extensive regions of interest, potentially for prolonged
periods of time, several difficulties are introduced. The number
of objects inside the FoV changes over time and is unknown a
priori, as are the individual object states, which may also be
time-varying and subject to significant measurement errors.
As a result, existing tracking algorithms and information
gain functions, such as those in [1]–[3], which assume a
known number of objects and known data association, are
either inapplicable or significantly degrade in performance
due to measurement noise, object maneuvers, missed/spurious
detections, and unknown measurement origin.
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Through the use of random finite set (RFS) theory, this
paper formulates the multi-object information-driven control
problem as a partially-observed Markov decision process
(POMDP), wherein sensor actions are selected to maximize
an expected reward conditioned on a probabilistic information
state. Information-theoretic functionals known as information
gain, such as expected entropy reduction (EER) [4], Cauchy-
Schwarz Divergence (CSD) [5], [6], Kullback-Leibler diver-
gence (KLD) [7], and Rényi divergence [8], [9], have been
successfully used to represent sensing objectives, such as
detection, classification, identification, and tracking, without
an exhaustive enumeration of mission-specific contingencies.
However, RFS-based information-theoretic sensor control re-
mains computationally challenging. Most tractable solutions
to date employ the so-called predicted ideal measurement
set (PIMS) approximation [10], wherein sensor actions are
selected based on ideal measurements with no measure-
ment noise, false alarms, or missed detections. This paper
presents a new computationally tractable higher-order approx-
imation to the multi-object information gain using the cell
multi-Bernoulli (cell-MB) approximation. Unlike previously
proposed methods, the cell-MB approximation incorporates
higher-order effects due to false alarms, missed detections,
and non-Gaussian object probability distributions.

The cell-MB approximation and KLD information gain
function presented in this paper also account for both detected
and undetected objects by enabling the efficient computation
of the RFS expectation operation. In particular, a partially
piecewise homogeneous Poisson process is used to model
undetected objects efficiently over space and time, including in
challenging settings in which objects are diffusely distributed
over a large geographic region. Prior work in [11] established
a multi-agent probability hypothesis density (PHD)-based path
planning algorithm aimed at maximizing the detection of
relatively static objects. In [12], the exploration/exploitation
problem was addressed by establishing an information theo-
retic uncertainty threshold for triggering pre-planned search
modalities. The occupancy grid approach in [13] was suc-
cessfully implemented for tracking and discovering objects
with identity-tagged observations. A unified search and track
solution was also proposed in [14] based on Poisson multi-
Bernoulli mixture (PMBM) priors and a non-information-
theoretic reward. However, these previous methods all rely on
the PIMS approximation and, therefore, neglect the contribu-
tion of non-ideal measurements in the prediction of informa-
tion gain.

The RFS information-driven approach presented in this

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 20:09:57 UTC from IEEE Xplore.  Restrictions apply. 



paper, on the other hand, introduces a cell-MB approximation
of the RFS reward expectation that accounts for non-ideal
measurements. A new KLD reward is employed to measure
information gain for detected and undetected objects, the effi-
cient expectation of which is enabled by cell-MB approxima-
tion. The effectiveness of this approach is demonstrated using
real video data in a challenging vehicle tracking application
involving multiple closely-spaced and maneuvering objects in
a cluttered environment. The proposed approach is shown
to effectively track and maintain discovered objects while
simultaneously searching and discovering new objects as they
enter the surveillance region.

II. PROBLEM FORMULATION

This paper considers an online search-while-tracking (SWT)
problem involving a single sensor whose FoV can be manip-
ulated through sensing platform motion and/or sensor config-
uration. The sensor objective is to discover and track multiple
unidentified moving objects with partially hidden states and
subject to unknown random inputs. The sensor control inputs
are to be optimized at every time step in order to maximize the
expected reduction in track uncertainty, as well as the overall
state estimation performance.

The number of objects in the scene is unknown and changes
over time, as objects enter and exit the surveillance region as
well as, potentially, the sensor FoV, Sk. Throughout this paper,
single-object states are represented by lowercase letters (e.g. x,
s), while multi-object states are represented by finite sets
and denoted by italic uppercase letters (e.g. X , X̊). Bold
lowercase letters are used to denote vectors (e.g. x, z). The
accent “̊ ” is used to distinguish labeled states and functions
(e.g. f̊ , x̊, X̊) from their unlabeled equivalents, where a state’s
label is simply a unique number or tuple to distinguish it from
the states of other objects and associate track estimates over
time. Spaces are represented by blackboard bold symbols (e.g.
X, L), where N` denotes the set of natural numbers

N` , {1, . . . , `} (1)

For brevity, the multi-object exponential notation,

hA ,
∏
a∈A

h(a) (2)

where h∅ , 1, is adopted throughout. For multivariate func-
tions, the dot “ · ” denotes the argument of the multi-object
exponential, e.g.:

[g(a, ·, c)]B ,
∏
b∈B

g(a, b, c) (3)

Let Nk denote the number of objects present in the surveil-
lance region W at time tk. The multi-object state Xk is the
collection of Nk single-object states at time tk and is expressed
as the finite set

Xk = {xk,1, . . . ,xk,Nk
} ∈ F(X) (4)

where F(X) denotes the collection of all finite subsets of the
object state space X. Similarly, the multi-object measurement

is the collection of Mk single-object measurements at time tk
and is expressed as the set

Zk = {zk,1, . . . , zk,Mk
} ∈ F(Z) (5)

where Z denotes the measurement space. The sensor res-
olution is such that single-object detections zk,i are repre-
sented by points, e.g., a centroidal pixel, with no additional
classification-quality information. Because detections contain
no identifying information, the association between tracked
objects and incoming measurement data is unknown.

Depending on the sensor, the detectability of an object
may depend only on the partial state sk ∈ Xs ⊆ X. For
example, the instantaneous ability of a sensor to detect an
object may depend only on the object’s position. In that case,
Xs is the position space, and the complement space X \ Xs
is comprised of non-position states, such as object velocity.
This nomenclature is adopted throughout while noting that
the presented approach is applicable to other non-spatial state
definitions.

Object detection is assumed to be random and characterized
by the probability function,

pD,k(xk;Sk) = 1Sk(sk) · pD,k(sk) (6)

where the FoV Sk ⊂ Xs and pD,k(sk) is the probability of
object detection conditioned on the object’s presence in Sk.
When an object is detected, a noisy measurement of its state
xk is produced according to the likelihood function

zk ∼ gk(z|xk) (7)

where zk ∈ Z. In addition to detections originating from true
objects, the sensor produces extraneous measurements due to
random phenomena, which are referred to as clutter or false
alarms. Each resolution cell (e.g., a pixel) of the sensor is
equally likely to produce a false alarm, and thus, the clutter
process is modeled as a Poisson RFS process with PHD κc(z).

Let uk ∈ Uk denote the sensor control inputs that, through
translation and/or rotation at time tk, determine the position of
the sensor FoV at time tk+1, namely Sk+1; and, let Uk denote
the set of all admissible controls. Decisions about uk influence
both the FoV geometry, Sk+1, and the sensor measurements,
Zk+1 due to varying object visibility. Because in many modern
applications the surveillance regionW is much larger than the
sensor FoV, only a fraction of the total object population can
be observed at any given time. Given the admissible control
inputs Uk, the field-of-regard (FoR)

Tk+1 =
⋃

uk∈Uk

Sk+1(uk) (8)

is the composite of regions that the sensor could (although not
simultaneously) cover at the next time step.

The presented sensor control problem can be formulated as
a POMDP [15], [16]. Elements of an RFS POMDP include a
partially- and noisily-observed state Xk, a known initial dis-
tribution of the state f0(X0), a probabilistic transition model
fk|k−1(Xk|Xk−1) that describes the stochastic evolution of the
state, a set of admissible control actions Uk, and a reward Rk
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associated with each control action. At every time step k, an
RFS multi-object tracker processes incoming measurements to
produce the posterior information state fk(Xk|Z0:k). Then, the
sensor control input is chosen so as to maximize the expected
information gain, or,

u∗k = arg max
uk∈Uk

{E [Rk(Zk+1; Sk+1, fk(Xk|Z0:k), u0:k−1)]}

(9)

where the functional dependence of Zk+1 and Sk+1 on uk is
omitted for brevity here but is described in [17].

A computationally tractable approximation of the expected
reward in (9) is found using the new cell-MB approxima-
tion presented in Section IV. A new sensor control policy
for SWT applications is formulated in Section V based on
dual detected/undetected information gain. The dual reward
formulation treats detected and undetected objects as separate
processes. A new model proposed in Section V models unde-
tected objects as a partially piecewise homogeneous Poisson
process, which enables computationally efficient SWT over
potentially large geographic regions.

III. BACKGROUND ON RANDOM FINITE SETS

An RFS X is a random variable that takes values on F(X).
A labeled random finite set (LRFS) X̊ is a random variable
that takes values on F(X × L), where L is a discrete label
space. Both RFS and LRFS distributions can be described
by set density functions, as established by Mahler’s finite
set statistics (FISST) [17], [18]. Three distributions important
to this paper are the Poisson RFS, multi-Bernoulli (MB)
RFS, and generalized labeled multi-Bernoulli (GLMB) LRFS
distributions.

A. Poisson RFS

The density of a Poisson-distributed RFS X is

f(X) = e−NX [D]X (10)

where NX is the object cardinality mean, and D(x) is the
PHD, or intensity function, of X , which is defined on the
single-object space X. The PHD is an important statistic in
RFS theory as its integral over a set gives the expected number
of objects in that set. The PHD of a general RFS X is given
in terms of its set density f(X) as [19]

D(x) =

∫
f({x} ∪X ′)δX ′ (11)

The integral in (11) is a set integral, defined as∫
f(Y )δY ,

∞∑
n=0

1

n!

∫
f({y1, . . . ,yn})dy1 · · · dyn (12)

B. Multi-Bernoulli RFS

The density of an MB distribution is [17, p. 102]

f(X) =
[
1− r(·)

]NM ∑
1≤i1 6=···6=in≤M

[
ri(·)pi(·)(x(·))

1− ri(·)

]Nn

(13)

where n = |X|, | · | denotes the cardinality operator, M is
the number of MB components and maximum possible object
cardinality, ri is the probability that the ith object exists, and
pi(x) is the single-object state probability density of the ith

object if it exists.

C. GLMB RFS

The density of a GLMB distribution is given by [20]

f̊(X̊) = ∆(X̊)
∑
ξ∈Ξ

w(ξ)(L(X̊))[p(ξ)]X̊ , (14)

where Ξ is a discrete space, and where each ξ ∈ Ξ represents
a history of measurement association maps. Each p(ξ)(·, `) is a
probability density on X, and each weight w(ξ) is non-negative
with ∑

(I,ξ)∈F(L)×Ξ

w(ξ)(I) = 1 (15)

The label of a labeled state x̊ is recovered by L(̊x), where
L : X × L 7→ L is the projection defined by L((x, `)) , `.
Similarly, for LRFSs, L(X̊) , {L(̊x) : x̊ ∈ X̊}. The distinct
label indicator ∆(X̊) = δ(|X̊|)(|L(X̊)|) ensures that only sets
with distinct labels are considered.

D. Multi-Object Filtering

Online estimation of the multi-object state is performed us-
ing the data-driven GLMB filter, which provides the recursive
solution of the measurement-driven Bayes filter [21]:

f̊p(X̊p,k|Z0:k−1) =

∫
f̊(X̊p,k|X̊k−1)f̊(X̊k−1|Z0:k−1)δX̊k−1

(16)

f̊(X̊k|Z0:k) =
g(Zk|X̊k)f̊p(X̊p,k|Z0:k−1)f̊b(X̊b,k)∫
g(Zk|X̊)f̊p(X̊p,k|Z0:k−1)f̊b(X̊b,k)δX̊

(17)

where the function time indices have been suppressed for
brevity, and where f̊p,k(X̊p,k) and f̊b,k(X̊b,k) denote the
density of persisting and birth objects, respectively, X̊k =
X̊p,k∪X̊b,k, f̊k|k−1(X̊p,k|X̊k−1) is the multi-object transition
density, gk(Zk|X̊k) is the multi-object likelihood function,
and, as a slight abuse of notation, gk is used to denote both the
single-object and multi-object likelihood function. The correct
function usage can be easily determined by the nature of its
arguments.

IV. INFORMATION-DRIVEN CONTROL

The objective of information-driven control is to maximize
the information gained through future measurements when
they are still unknown to the sensor. The reward expectation
over unknown measurements Zk+1 can be obtained using the
set integral

E[Rk] =

∫
Rk(Zk+1; ·)f(Zk+1)δZk+1 (18)

where f(Zk+1) is the predicted measurement density condi-
tioned on past measurements. Unfortunately, direct evaluation
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of (18) is, in general, intractable due to the infinite sum-
mation of nested single-object integrals. Furthermore, each
integrand evaluation encompasses a multi-object filter update
and subsequent divergence computation. As such, principled
approximations are needed for tractable computation of the
reward expectation.

A. The Cell-MB Distribution
In this paper, a new approximation is established for com-

puting the reward expectation. We refer to this as the cell-MB
approach, which approximates an arbitrary measurement den-
sity as an MB density with existence probabilities and single-
object densities derived from a cell decomposition of the
measurement space.

Definition 1: Consider the tessellation of the space Y into
P disjoint subspaces, or cells, as

Y =
1

Y ] · · · ]
P

Y (19)

Given the cell-decomposition (19), the RFS Y = {y1, . . . ,yn}
is considered to be cell-MB if it is distributed according to the
density

f(Y ) = ∆(Y,Y)
[
1− r(·)

]NP ∑
1≤j1 6=···6=jn≤P

[
rj(·)pj(·)(y(·))

1− rj(·)

]Nn

(20)

where

∆(Y,Y) ,

1 |Y ∩
j

Y| ≤ 1 ∀ j ∈ {1, . . . , P}
0 otherwise

(21)

and ∫
j

Y
pj(y)dy = 1, j = 1, . . . , P (22)

In essence, the cell-MB distribution is a special case of the
MB distribution in which the probability of more than one
object occupying the same cell is zero.

As shown in [22], a collection of Bernoulli distributions can
be defined over an occupancy grid by integration of the PHD.
Inspired by [22], in this paper, the cell-MB approximation
for an arbitrary density and appropriate cell-decomposition is
established. The best cell-MB approximation, as defined by
KLD minimization, has a matching PHD and cell weights
equal to the expected number of objects in each cell. This
is established in the following proposition.

Proposition 1: Let f(Y ) be an arbitrary set density with

PHD D(y) and Y =
1

Y]· · ·]
P

Y be a cell decomposition such
that ∫

j

Y
D(y)dy ≤ 1, j = 1, . . . , P (23)

If f̄(Y ) is a cell-MB over the same cell-decomposition with
parameters {rj , pj}Pj=1, the KLD between f(Y ) and f̄(Y ) is
minimized by parameters

rj =

∫
1 j

Y
(y)D(y)dy (24)

pj(y) =
1

rj
1 j

Y
(y)D(y) (25)

The proof is provided in [23]. The cell-MB approximation,
when applied to the predicted measurement density, results
in a simplified multi-object expectation for a specific class of
reward functions, as described in the following subsection.

B. Reward Expectation: Cell-MB Approximation
In order to reduce the computational complexity associated

with the set integral, this subsection shows that the multi-
object reward expectation simplifies to a finite sum involving
only single-object integrals, assuming the measurement is
cell-MB distributed and the reward function is additive over
FoV subsets.

Given the FoV S ⊂ Xs, define
j

S , S ∩
j

Xs (26)

Further assume that position state cells do not overlap at the

FoV bounds, such that each position state cell
j

Xs is either
wholly included in or wholly excluded by S:

j

Xs \
j

S = ∅ ∀
j

S 6= ∅ (27)

Proposition 2: Let Zk+1 be distributed according to the
cell-MB density f(Zk+1) with parameters {rj , pj}Pj=1 and the
cell decomposition

Z =
1

Z ] · · · ]
P

Z (28)

If the reward function Rk(·) is integrable and additive over
disjoint cells, i.e.,

Rk(Zk;Sk) =

P∑
j=1

Rk(Zk+1 ∩
j

Z;
j

Sk) (29)

then the expected reward is

E[Rk] =

P∑
j=1

Rk(∅;
j

Sk)
(
1− rj

)
+ R̂jz,k · r

j (30)

where

R̂jz,k ,
∫

j

Z
Rk({z};

j

Sk)pj(z)dz (31)

The proof is provided in [23].
The remainder of this paper considers reward functions

satisfying the cell-additivity constraint of (29), such as the
PHD filter based KLD reward. Note that adopting the PHD
filter for estimating the information gain does not require
using it for multi-object tracking. Given an arbitrary RFS prior
density fk|k−1(X) and its PHD Dk|k−1(x), the PHD-based
KLD reward is

Rk(Z;S, Dk|k−1) =

∫
X
Dk|k−1(x) (32)

· {1− LZ(x;S) + LZ(x;S) log[LZ(x;S)]}dx

where the pseudo-likelihood function is [17, p. 193]

LZ(x;S) = 1− pD(x;S) (33)

+
∑
z∈Z

pD(x;S) · g(z|x)

κc(z) +
∫
pD(x;S)g(z|x)Dk+1|k(x)dx
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The following proposition establishes that (32) is cell-additive
for appropriate cell decompositions.

Proposition 3: Assume there exists a decomposition

Z =
1

Z ] · · · ]
P

Z , X =
1

X ] · · · ]
P

X (34)

such that (27) is satisfied and

Dk+1|k(x)gk+1(z|x) = 0 ∀ x ∈
j

X, z ∈
j′

Z, j 6= j′ (35)

Then, the PHD-based KLD is additive over cells:

Rk(Z;S, Dk|k−1) =

P∑
j=1

Rk(Z ∩
j

Z;
j

S, Dk|k−1) (36)

The proof of Proposition 3 is provided in [23]. Perfect cell-
additivity requires satisfying (35), which, in turn, implies that

an object in cell
i

X does not generate a measurement in
j

Z for
i 6= j. In general, violations of (35) are tolerable and result in
approximation errors that are negligible in comparison to the
stochastic variations in the actual information gain. Further-
more, these simplifying assumptions need not be satisfied by
the multi-object tracker.

The cell-MB approximation accounts for the potential re-
ward of non-ideal measurements, which may include missed
detections, clutter, and measurements originating from new
objects. The latter case is particularly important for the search
of undetected objects, as is shown in the following section.

V. SEARCH-WHILE-TRACKING METHODOLOGY

This section presents a dual reward function that takes
into account both detected and undetected objects. The pro-
posed reward function balances the competing objectives of
object search and tracking by means of a unified information-
theoretic framework.

A. Dual Reward

Separate density parameterizations for detected and unde-
tected objects are employed such that their unique charac-
teristics may be leveraged for computational efficiency. Let
Xu,k ∈ F(X) be the state of objects that were not detected
during steps 0, . . . , k − 1 and Xd,k ∈ F(X) be the state of
objects detected prior to k. Denote by Zu,k, Zd,k, and Zc,k the
detections generated by Xu,k, Xd,k, and clutter, respectively.
Let Vk , Zd,k∪Zc,k and Wk , Zu,k∪Zc,k. Then, the sensor
control policy is defined in terms of the dual reward as

u∗k = arg max
uk∈Uk

{
E[Rdk(Vk+1;Sk+1(uk))]

+ E[Ruk(Wk+1;Sk+1(uk))]

}
(37)

where

Rdk(·; ·) = Rk(·; ·, Dd,k+1|k) (38)
Ruk(·; ·) = Rk(·; ·, Du,k+1|k) (39)

are used for brevity, and Dd,k+1|k and Du,k+1|k are the prior
PHDs of detected and undetected objects, respectively. The

individual reward expectations for detected and undetected
objects are derived in the following subsections.

B. Detected Object Reward Expectation

If f(Vk+1) is cell-MB with parameters {rjv, pjv}Pj=1, then
by Proposition 2

E[Rdk] =

P∑
j=1

Rdk(∅;
j

Sk+1)
(
1− rjv

)
+ R̂d,jv,k(

j

Sk+1) · rjv (40)

where

R̂d,jv,k(
j

S) ,
∫

j

Z
Rdk({z};

j

S)pjv(z)dz (41)

rjv(S) =

∫
1j

Z
(z)Dv,k+1|k(z;S)dz (42)

pjv(z;S) =
1

rjv
1j

Z
(z)Dv,k+1|k(z;S) (43)

The multi-object tracker provides the prior GLMB density
f̊p,k+1|k(X̊p,k+1|Z0:k), from which the detected object PHD
is obtained as

Dd,k+1|k(x) =
∑

(I,ξ)∈F(L)×Ξ

∑
`∈I

w(ξ)(I)p(ξ)(x, `) (44)

The PHD Dv,k+1|k can be obtained from the predicted mea-
surement density fk+1|k(Vk+1) through application of (11).
From the prior GLMB density,

fk+1|k(Vk+1) =

∫
gk+1(Vk+1|X̊)f̊k|k−1(X̊)δX̊ (45)

Given a GLMB prior, explicit computation of the predicted
measurement density is computationally challenging. Thus,
Dv,k+1|k is directly computed from the detected object PHD
using the approximation

Dv,k+1|k(z;S) ≈
∫
Dd,k+1|k(x)pD,k+1(x;S)gk+1(z|x)dx

+ κc,k+1(z) (46)

C. Undetected Object Reward Expectation

This subsection presents a new approach to efficiently model
the undetected object distribution, which may be diffuse over a
large region. Although Gaussian mixtures (GMs) and particle
representations can be used to model undetected objects,
they are highly inefficient at representing diffuse distributions.
Thus, in this paper, the position-marginal density of undetected
objects is taken to be piecewise homogeneous with PHD

Du,k+1|k(s) =

P∑
j=1

1 j

Xs

(s)

A(
j

Xs)
· λj,k+1|k (47)

where λj,k+1|k is the expected number of undetected objects

in
j

Xs at time step k+ 1 and A(
j

Xs) is the volume of cell
j

Xs.
For ease of exposition, the undetected object PHD is modeled
using the same cell decomposition employed in the cell-MB
approximation.
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If f(Wk+1) is cell-MB with parameters {rjw, pjw}Pj=1, then
by Proposition 2,

E[Ruk ] =

P∑
j=1

Ruk(∅;
j

Sk+1)
(
1− rjw

)
+ R̂u,jw,k(

j

Sk+1) · rjw

(48)

where

R̂u,jw,k(
j

S) ,
∫

j

Z
Ruk({z};

j

S)pjw(z)dz (49)

rjw(S) =

∫
1j

Z
(z)Dw,k+1|k(z;S)dz (50)

≈
λj,k+1|k

A(
j

Xs)

∫
j

Xs

pD(s;S)ds (51)

pjw(z;S) =
1

rjw
1j

Z
(z)Dw,k+1|k(z;S) (52)

Dw,k+1|k(z;S) =

∫
Du,k+1|k(x)pD,k+1(x;S)gk+1(z|x)dx

+ κc,k+1(z) (53)

Under a piecewise homogeneous PHD, the undetected ob-
ject reward simplifies drastically if the measurement likelihood
is independent of non-position states: i.e. g(·|x) = g(·|s).
Following (32),

Ruk(Wk+1; Sk+1) (54)

=

∫
Xs

Du,k+1|k(s){1− LWk+1
(s;Sk+1)

+ LWk+1
(s;Sk+1) log[LWk+1

(s;Sk+1)]}ds

Given that at most one measurement may exist per cell, two
cases need be considered: the null measurement case and the
singleton measurement case. Substitution of Wk+1 = ∅ and
some algebraic manipulation yields

Ruk(∅;Sk+1) =

P∑
j=1

Ruk(∅;
j

Sk+1) (55)

Ruk(∅;
j

Sk+1) = λj,k+1|k · dj · (1− δ∅(
j

Sk+1)) (56)

dj ,
1

A(
j

Xs)

∫
j

Xs

pD(s) + (1− pD(s)) log[1− pD(s)]ds

(57)

Furthermore, if the probability of detection is homogeneous
within cells such that

pD(s) = pD,j ∀ s ∈
j

Xs (58)

then (57) simplifies to

dj = pD,j + (1− pD,j) log(1− pD,j) (59)

Within a cell, the uniform position density of undetected
objects is known a priori up to an unknown factor λj,k+1|k.
Thus, the undetected object reward can be pre-computed for

efficiency and

R̂u,jw,k(
j

Sk+1) ≈ R̄u,jw (λj,k+1|k) (60)

where the function R̄u,jw (λj,k+1|k) returns interpolated reward
values over λj,k+1|k ∈ [0, 1].

VI. APPLICATION TO VEHICLE TRACKING

The cell-MB SWT framework is demonstrated in a vehi-
cle tracking problem using real video data. The video was
recorded using a fixed camera with a large FoV (Fig. 1.a), and
real-time FoV controlled motion was simulated by windowing
the data over a small fraction of the image, as illustrated in
Fig. 1.b. This dataset presents significant tracking challenges,
including jitter-induced noise and clutter, unknown measure-
ment origin, merged detections from closely-spaced vehicles,
and most significantly, temporal sparsity of detections.

Fig. 1. Example video frame (a), artificially windowed to emulate smaller,
movable FoV, which is enlarged in (b) to show detail.

A. Vehicle Dynamics

Vehicle dynamics are modeled directly in the image frame.
While vehicle dynamics are more naturally expressed in the
terrestrial frame, the camera’s precise location and orientation
is unknown. Thus, transformation between image and terres-
trial coordinates could not be readily established.

The object state is modeled as

x = [sT ζT ]T (61)

s = [ξ η]T , ζ = [ξ̇ η̇ Ω]T (62)

where ξ and η are the horizontal and vertical coordinates,
respectively, of the vehicle position with respect to the full
frame origin, ξ̇ and η̇ are the corresponding rates, and Ω is
the vehicle turn rate.

Vehicle motion is modeled using the nearly coordinated turn
model with directional process noise [24], [25] as

xk+1 = fk(xk) + Γkvk(sk) (63)

where

Γk =

 1
2 (∆t)2I2×2 02×1

(∆t)I2×2 02×1

01×2 ∆t

 (64)
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where ∆t is the discrete time step interval, In×n denotes the
n × n identity matrix, and 0m×n denotes the m × n matrix
whose elements are zero. The covariance of the process noise
is

E[vkv
T
k ] = Qk(s) =

[
DT (s)QdD(s) 0

01×2 σ2
Ω

]
(65)

Qd =

[
σ2
t 0

0 σ2
n

]
, D(s) =

[
cos Ψ(s) sin Ψ(s)
− sin Ψ(s) cos Ψ(s)

]
(66)

where σΩ is the turn rate process noise standard deviation, σt
and σn are the standard deviation of process noise tangential
and normal to the road, respectively, and Ψ(s) is the angle of
the road segment nearest s, measured from the horizontal axis
to the tangent direction.

B. Sensor and Scene Model

Object detections are generated from raw frame data using
normalized difference change detection [26] and fast approxi-
mate power iteration subspace tracking [27] for temporal back-
ground estimation. The single-object measurement function is
linear-Gaussian with corresponding likelihood

g(z|x) = N (z; Hx, R) , (67)

H =
[
I2×2 02×3

]
, R = 9 · I2×2 [pixel2] (68)

The sensor FoV is a rectangular region that is 240 pixels
wide and 160 pixels tall. Moving objects within the FoV are
assumed to be detectable with probability pD,k(sk) = 0.9.

The scene is tessellated by a 16×32 grid of uniformly sized
rectangular cells as shown in Fig. 2. Within the scene, a region
of interest is specified which contains the scene’s two primary
roads and is denoted by T due to its equivalence to the FoR
for this problem. Within the region of interest, cells containing
road pixels comprise the set B, which is used to establish an
initial uniform distribution of undetected objects.

Fig. 2. Field-of-regard, T , and primary road region B, with example image
frame as background.

C. Experiment Results

An experiment consisting of sixty time steps is performed.
To emulate a pan/tilt camera from the wider available frame
data, the FoV is assumed to be able to be move to any location
within the scene in a single time step. This is a reasonable
assumption as these adjustments would be less than a degree.

At each step, the incoming detections are processed by a
GM implementation of the data-driven GLMB tracker [21] to
compute the posterior multi-object set density. The negative
information content from missed detections is leveraged to
refine the multi-object density, incorporating the knowledge
of where objects were not seen at a given instant. This is
achieved by recursively splitting the density’s GM components
that overlap the FoV bounds, as shown in [28].

Some key frames of the experiment are shown in Fig. 3.
In the early time steps, the FoV motion is dominated by the
undetected object component of the reward. As more objects
are discovered and tracked, the observed actions demonstrate
a balance of revisiting established tracks to reduce state
uncertainty and exploring new areas where undetected objects
may exist.

The performance of the presented SWT approach is eval-
uated by the multi-object tracking accuracy, as measured us-
ing the generalized optimal sub-pattern assignment (GOSPA)
metric [29]. The GOSPA metric along with its missed and
false object components, are shown in Fig 4. Note that,
unlike similar metrics, the GOSPA is unnormalized and may
exceed the cutoff distance. The cell-MB approach effectively
balances the competing objectives of new object discovery and
maintenance of established tracks, as illustrated by the decline
in missed objects and consistently low number of false tracks.
An increase in GOSPA is observed in the final time steps of
the experiment, which is caused by a sharp uptick in new
object appearances.

VII. CONCLUSION

This paper presents a novel cell multi-Bernoulli (cell-MB)
approximation that enables the tractable higher-order approxi-
mation of the expectation of set functions that are additive over
disjoint measurable subsets. The cell-MB approximation is
useful for approximating the expectation of computationally-
expensive set functions, such as information-theoretic reward
functions employed in sensor control applications. The ap-
proach is developed in the context of information-driven
sensor control in which the objective is to discover and track
an unknown time-varying number of non-cooperative objects
with minimal estimation error. The problem is formulated
as a partially-observed Markov decision process with a new
Kullback-Leibler divergence based reward that incorporates
both detected and undetected object information gain. In a
demonstration using real sensor data, the approach is used
to manipulate the sensor field-of-view to discover and track
multiple moving ground objects from an aerial vantage point.
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