
Knowledge-Based Systems xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Constructing Bayesian networks for criminal profiling from limited data

K. Baumgartner a,1, S. Ferrari a,*,2, G. Palermo b,3

a Pratt School of Engineering, Duke University, P.O. Box 90300, 176, Hudson Hall, Research Drive, Durham, NC 27708-0005, USA
b Psychiatry and Neurology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA

a r t i c l e i n f o
Article history:
Received 21 March 2007
Accepted 21 March 2008
Available online xxxx

Keywords:
Criminal profiling
Crime analysis
Automation
Bayesian networks
Performance metrics
0950-7051/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.knosys.2008.03.019

* Corresponding author. Tel.: +1 919 660 5484; fax
E-mail address: sferrari@duke.edu (S. Ferrari).

1 K. Baumgartner is a graduate student in the Pratt S
2 S. Ferrari is with Faculty of Mechanical Engineering

Faculty of Electrical and Computer Engineering.
3 G. Palermo is with Faculty of Psychiatry and Neuro

Please cite this article in press as: K. Baum
Based Syst. (2008), doi:10.1016/j.knosys.2
a b s t r a c t

The increased availability of information technologies has enabled law enforcement agencies to compile
databases with detailed information about major felonies. Machine learning techniques can utilize these
databases to produce decision-aid tools to support police investigations. This paper presents a method-
ology for obtaining a Bayesian network (BN) model of offender behavior from a database of cleared homi-
cides. The BN can infer the characteristics of an unknown offender from the crime scene evidence, and
help narrow the list of suspects in an unsolved homicide. Our research shows that 80% of offender char-
acteristics are predicted correctly on average in new single-victim homicides, and when confidence levels
are taken into account this accuracy increases to 95.6%.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The study of criminal behavior for the purpose of identifying the
characteristics of an unknown offender and the motivation for the
crime is commonly known as criminal profiling. In current practice,
criminal profiling relies primarily on the personal experience of
criminal investigators and forensic psychologists, rather than on
empirical scientific methods [31]. As such, it may be subject to er-
rors caused by cultural biases and misinterpretation [24,31,32,43].
After clearing a criminal case, investigators file the background
characteristics and psychological diagnosis of the convicted offen-
der together with the forensic evidence obtained from the crime
scene. With the increased availability of computer and information
technologies, law enforcement agencies have been able to compile
databases with detailed offender and crime scene information
from major felonies, such as murder, rape, and arson. Conse-
quently, important authors have advocated that machine learning
techniques will play a significant role in developing decision-aid
tools for police investigations [4,17,27,32,42]. The most significant
contributions to date have been recently reviewed in [17]. Rule-
based systems have been proposed in [4] for knowledge acquisi-
tion from a database with modus operandi information. Research
on inductive profiling has employed statistical analysis to classify
offender behavior into categories or dichotomies, based on the
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crime scene evidence [12,25,34,35,37,39,41]. While this research
has been successfully implemented to predict the approximate res-
idence location of serial homicide offenders [35], it has been un-
able to identify psycho-behavioral offender profiles in single-
victim (non-serial) homicides. This shortcoming has been attrib-
uted to the complexity of human behavior and to the large number
of relevant variables, both of which limit the applicability of behav-
ior classification techniques [2,31,32].

In this paper, a novel Bayesian network (BN) approach to crim-
inal profiling is presented. The approach consists of learning a BN
model of offender behavior from data and, subsequently, imple-
menting the model for profiling by means of an inference engine.
The database used in this paper is similar to the modus operandi
database described in [4]. However, the BN approach is not limited
by decisive ‘‘if-then” relationships, because it views the relation-
ships among all variables as probabilistic. Unlike inductive profil-
ing, the BN approach does not require to postulate behavior
categories a priori and, consequently, it is capable of identifying
psycho-behavioral profiles in single-victim single-offender homi-
cides (Section 6). Also, the inferred offender characteristics include
confidence levels that represent their expected accuracy. Thus,
when provided with a BN profile, the police can easily establish
what are the reliable predictions in the investigated case.

Implementing BN models for inference has proven valuable in
many applications, including medical diagnosis, economic fore-
casting, biological networks, and football predictions [1,19,20,
23,30]. This literature shows that the effectiveness of BN inference
and prediction is highly dependent on the sufficiency of the train-
ing database. While various approaches have been proposed for
dealing with insufficient databases [11,14–16,21,26,30,40], there
are no general guidelines for establishing whether a given database
ayesian networks for criminal profiling from limited data, Knowl.
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is insufficient. In [45], it was shown that the size of a sufficient
database depends on the number of variables, their domain, and
the underlying probability distributions. But, while the variables
and the domain definitions are known from the problem formula-
tion, the underlying probability distribution is often unknown a
priori. This paper presents a set of performance metrics that can
be used to determine the sufficiency of an available database with-
out knowledge of the underlying joint probability distributions
(Section 4). Although a police database may include hundreds of
cleared cases, they may still be insufficient to train a BN model
due to the large number of relevant variables, and to the complex-
ity of their relationships [3]. Therefore, in Section 5 these perfor-
mance metrics are implemented to determine the size of a
sufficient database with single-victim single-offender homicides.
Subsequently, a BN model is trained using a newly modified K20

algorithm that improves performance once the database size is
fixed (Section 5). In Section 6, the trained BN model is applied to
infer the characteristics of unknown offenders from the crime
scene evidence. The results show that when the confidence level
is taken into account, the average accuracy of the BN predictions
is 95.6%. For comparison, the evidence from two homicide cases
has been presented to a team of expert criminologists. Based on
the evidence alone, the experts predict 53% of all offender variables
correctly. Whereas, in the same two cases the BN predicts 86% of
all offender variables correctly, and displays 80% average accuracy
in 1000 other homicide cases. Also, offender characteristics that
cause disagreement among the experts are predicted correctly
and with a high confidence level by the BN. Finally, the structure
of the BN model indicates what are the most significant relation-
ships among the variables and, thus, it could be used for the scien-
tific development of hypothesis on criminal psychology.

2. Background on Bayesian network inference and training

A Bayesian network (BN) approximates the joint probability dis-
tribution for a multivariate system based on expert knowledge and
sampled observations that are assimilated through training
[18,22]. A BN consists of a directed acyclic graph (DAG) and an at-
tached parameter structure comprised of conditional probability ta-
bles (CPTs) that together specify a joint probability distribution
[22]. The DAG K ¼ fX;Sg is composed of a set of directed arcs S

that represent the dependencies among a set of variables or nodes
X ¼ fX1; . . . ;Xng known as universe, such that S ¼ fðXi;XjÞjXi;Xj

2 X;Xi 6¼ Xj; j > ig. A node Xi represents an event, proposition, or
mathematical quantity that has a finite number of mutually exclu-
sive instantiations (denoted by lower case letters), and is said to be
in its jth instantiation when Xi = xi,j. H = {h1, . . . ,hn} is the parameter
structure that is attached to K, where hi is the conditional probabil-
ity p(Xijpi) attached to node Xi, and the set pi represents the imme-
diate parents of Xi.

In this research, the nodes X and their instantiations are defined
by criminologists and psychologists. The BN arcs S and parameters
H are learned from the database T in this sequence. Structural
training determines the set of arcs that ‘‘best” describes the data-
base by considering all possible arcs between the nodes. The com-
patibility of each hypothesized structure with the training data is
assessed by a scoring metric that approximates the conditional
probability of S given T, pðSjTÞ [18]. Since pðTÞ is independent
of S, the joint probability pðS;TÞ can be maximized in place of
pðSjTÞ. A tractable scoring metric, known as K2, is obtained from
pðS;TÞ using the assumptions in [6], which include fixed ordering
of variables in X:

G ¼ log
Yqi

j¼1

ðri � 1Þ!
ðNij þ ri � 1Þ!

Yri

k¼1

Nijk!

 !
; ð1Þ
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where ri is the number of possible instantiations of Xi, and qi is the
number of unique instantiations of pi. Nijk is the number of cases in
T in which Xi = xi,k, and Nij ¼

Pri
k¼1Nijk. Then, the BN structure that

displays the highest compatibility with the data is sought by max-
imizing (1). Subsequently, the structure is held fixed, and the CPTs
are computed by the Maximum Likelihood Estimation algorithm
(MLE) (reviewed in [8,33]).

The BN (K,H) represents a factorization of the joint probability
over a discrete sample space,

pðXÞ ¼ pðX1; . . . ;XnÞ ¼
Yn

i¼1

pðXijpiÞ; ð2Þ

for which all probabilities on the right-hand side are given by the
CPTs. Therefore, when a variable Xi is unknown or hidden, Bayes’
rule of inference can be used to calculate the posterior probability
distribution of Xi given evidence of the set of l variables, li � X, that
are conditionally dependent on Xi,

pðXij�liÞ ¼
pð�lijXiÞpðXiÞ

pð�liÞ
; ð3Þ

where p(Xi) is the prior probability of Xi. The likelihood function is
factored as pð�lijXiÞ ¼

Q
jpð�liðjÞjXiÞ, where �liðjÞ is the evidence of the

jth variable in li. The marginalization required to obtain pð�liÞ is sim-
plified using (2):

pð�liÞ ¼
Xn

i¼1

pð�li;XiÞ ¼
Xri

k¼1

pðXi ¼ xi;kÞ
Yl

j¼1

pð�liðjÞjXiÞ; ð4Þ

The posterior probability in (3) is used to obtain the prediction
Xi ¼ arg maxk pðXi ¼ xi;kj�liÞ, and its posterior probability is the con-
fidence level of the prediction. Furthermore, by identifying condi-
tional independencies among nodes from the so-called Markov
separation properties, inference of hidden variables can be com-
pleted efficiently even in large networks [9].

Bayesian networks are particularly well suited to criminal pro-
filing because they learn from data, and utilize the experience of
criminologists in selecting the nodes and node ordering. The confi-
dence levels provided for the offender profile inform detectives of
the likely accuracy of each prediction. In addition, the graphical
structure of the BN represents the most significant relationships
between offender behavior and crime scene actions, which may
be useful in developing new scientific hypothesis on criminal
behavior.

3. Bayesian network approach to criminal profiling

This research develops an approach for obtaining a BN model of
criminal behavior that (1) captures the most significant relation-
ships among the relevant criminal profiling variables, and (2) is
used to predict the profile of an unknown offender given evidence
from the crime scene. The methodology consists of using expert
knowledge to define the BN universe, and the fixed node ordering
for structural training (as shown in Section 2). The universe X con-
sists of 57 binary variables that have been identified as relevant to
the criminal process by criminal investigators and forensic psy-
chologists. A sample of these variables is illustrated in Table 1,
and the complete list is shown in [38]. Each variable Xi 2 X is bin-
ary, and represents a characteristic or event that is either present
or absent at the crime. X is partitioned into set E ¼ fE1; . . . ; Ekg
containing k = 36 evidence variables that are observable from the
crime scene, and set Y ¼ fY1; . . . ;Ymg containing m = 21 offender
variables that characterize the offender and, thus, are unknown
or hidden at the crime scene.

The BN model structure, S, and parameters, H, are learned
using a police database of cleared single-victim single-offender
homicides, D ¼ fC1; . . . ;Cdg. Each case Ci is a complete observation
ayesian networks for criminal profiling from limited data, Knowl.



Table 1
Definition of selected offender and crime scene variables

Variable Definition

Y4 Prior record of property damage
Y5 Prior record of disorderly conduct
Y6 Previous imprisonment or youth detention
Y9 History of sex crime
Y10 Record of armed services
E11 Victim sustained stabbing wounds
E12 Blunt instrument used on victim
E13 Offender used own body as weapon (e.g. strangulation)
E14 Victim was shot
E15 Victim sustained wounds to head (excluding face and neck)
E16 Victim sustained wounds to face (ears forward)
E31 Victim was sexually assaulted
E33 Arson to crime scene or body
E34 Body was found in water
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of X that is obtained from a cleared homicide case. The values of all
variables in Y are obtained from interviews with the convicted of-
fender, and the values of all variables in E are obtained from the
police record of the investigation. Then, D is randomly partitioned
into a training set T and a validation set V, such that T \V ¼ ;.
Thus, none of the validation cases are used for training and can be
considered to be new to the BN model.

A set of performance metrics is developed in the next section to
establish the size of T that is sufficient to train the BN model by
means of a modified K20 algorithm presented in Section 5. Finally,
the BN model is used to produce psycho-behavioral offender pro-
files in new criminal cases (Section 6). In this research, the new
cases are taken from V in order to determine the accuracy of the
BN predictions. However, since T \V ¼ ;, the same approach
and accuracy would apply to new unsolved cases, such as those
encountered by investigators.

Let �e ¼ f�e1; . . . ; �ekg denote the evidence obtained from the crime
scene of a new case, where �ei is the observed value of Ei (see Table 1
for examples). Then, the junction tree inference engine [10], imple-
mented by the MATLAB Bayesian Network Toolbox function
jtree_inf_engine [29], is used to compute the posterior probability
distribution for every offender variable Yi 2 Y. An offender variable
prediction, bY i, is the instantiation with the largest posterior prob-
ability, bY i ¼ y�i � arg max‘pðYi ¼ yi;‘j�eÞ, and pðy�i j�eÞ is said to be the
confidence level (CL) of the prediction bY i. The set of all predictions,bY ¼ fbY 1; . . . ; bY mg, and corresponding confidence levels is referred
to as BN profile. The results in Section 6 indicate that this BN ap-
proach is able to produce accurate psycho-behavioral profiles in
single-victim single-offender homicides and, thus, is a promising
decision-support tool for police investigations.

4. Development of Bayesian network performance metrics

The performance of Bayesian network training algorithms al-
ways depends on the sufficiency of the training database. A suffi-
cient database is representative of the statistical population and
sample complexity [5]. Since the type of criminal cases that are
solved and recorded in a police database cannot be controlled,
we are interested in determining whether the database size is suf-
ficient. The size of a criminal profiling database can be increased by
obtaining data from different law enforcement agencies. However,
due to the legalities associated with criminal records and to the
non-uniformity of the agencies protocols, obtaining new data is
both difficult and expensive. In [45], it was shown that the size
of a sufficient BN database depends on the number of nodes, the
size of their domain, and the underlying probability distributions.
While the nodes and their domain are known from the problem
formulation, the underlying probability distribution is typically
unknown a priori. Therefore, in this section, we present a set of
Please cite this article in press as: K. Baumgartner et al., Constructing B
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metrics that can be used to determine whether an available data-
base is sufficient without obtaining new data, and without knowl-
edge of the underlying probability distributions.

An important use of a BN model of offender behavior is the pre-
diction of a criminal profile in a new, unsolved homicide. We de-
fine the predictive accuracy of a BN to be the average frequency at
which the hidden variables Y are predicted correctly from the evi-
dence �e, when their predicted value is equal to the instantiation
with maximum posterior probability. A common approach to
viewing the performance of the training algorithm is to plot the
prediction performance versus the size of the training set, obtain-
ing a so-called learning curve [36]. If a BN accurately represents the
joint probability distribution over X, then its predictive accuracy
for m hidden variables is,

QBNðYÞ ¼
1
m

Xm

i¼1

XNe

j¼1

max‘½pðyi;‘Þpðnjjyi;‘Þ�; ð5Þ

where nj denotes the simultaneous occurrence of a set of instantia-
tions of E, and thus j = 1, . . . ,Ne, with Ne ¼

Q
kri. The proof and a sim-

ple example are provided in Appendix A. As the size of T becomes
sufficient and the trained BN approaches the actual joint probability
distribution, this learning curve approaches QBN.

Also, a lower bound of (5) that is independent of the underlying
distribution is derived and used to establish whether the BN can be
improved by additional training data. We define the frequency of
occurrence prediction of a variable Yi to be the instantiation that oc-
curs most frequently in the database D, and denote it by bY F

i . If Yi is
independent of any other variable in X, then bY F

i is the optimal pre-
diction, and the average accuracy for m hidden variables is

QFOðYjDÞ ¼
1
m

Xm

i¼1

max
‘

f ð�yi;‘jDÞ; ð6Þ

where the frequency f ð�yi;‘jDÞ is the number of cases in D in which
Yi = yi,‘ divided by d, and ð��Þ denotes evidence of the instantiation. It
is shown in Appendix B that if the variables in Y are not indepen-
dent and the BN accurately represents the joint probability distribu-
tion over X, then QBN P QFO. It follows that when a trained BN
displays QBN < QFO, it cannot represent the underlying probability
distribution and, thus, the database T is insufficient. Therefore,
QBN P QFO is a necessary but not sufficient condition for deeming
a database T sufficient for training.

When QBN P QFO, the structural robustness of the trained BN
model can provide additional insight into the sufficiency of T. A
BN defined over a fixed universe X is said to be structurally robust
if its arc structure is insensitive to small changes in the training set
T. Structural sensitivity analysis was first proposed in [45], where
the error between the learned structure and the true structure has
been shown to decrease with the size of the training database. We
present a structural robustness metric that is independent of the
true structure, since the true structure is typically unavailable when
the underlying probability distribution is unknown. We represent
the learned graphical structure of a BN with n nodes in matrix form,

S ¼

s1;1 . . . s1;c . . . s1;n

..

. . .
. ..

. . .
. ..

.

sn;1 . . . sn;c . . . sn;n;

2664
3775 ð7Þ

where each entry sr,c represents the presence (±1) or absence (0) of
an arc between two variables Xr ;Xc 2 X. The direction of the arcs is
positive according to the expert node ordering and, thus, sr,c = +1
(and, sc,r = �1), when r < c and there exist an arc Xr ? Xc. Let T rep-
resent an available training set, and T0 represent T with 10% of
cases randomly removed. The resulting number of arc differences
is a pairwise comparison of the structures obtained from the two
training sets, denoted by S and S0, respectively, such that:
ayesian networks for criminal profiling from limited data, Knowl.
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DA10 ¼
Xn

r¼1

Xn

c¼1

jsr;c � s0r;cj: ð8Þ

Thus, the metric 1/DA10 can be used to represent BN structural
robustness, and is expected to increase as the size of T increases. A
lack of structural robustness typically indicates that S is not reli-
able, and that the parameters H learned subsequently to S may
also be inaccurate. Therefore, when the size of T becomes suffi-
cient, 1/DA10 is small and approximately constant, as demonstrated
by the numerical results in Section 5.

Information theory has been applied to BNs for the purpose of
improving the training process and for performance analysis
[14,28,44,45]. For instance, the cross-entropy measure between a
trained BN and a known underlying probability distribution is uti-
lized in [45] for evaluating and comparing the learning perfor-
mance of several training algorithms. In [14], conditional mutual
information is used as a scoring function in a new structural train-
ing algorithm. Here, we present a different BN application of mu-
tual information to obtain a metric quantifying the reduction in
uncertainty in the hidden variables Y brought about by evidence
of E. The mutual information between two sets of random vari-
ables, IðY;EÞ, represents the amount of information that E has
about Y, and is related to the entropy as follows [7]:

IðY;EÞ ¼ HðYÞ � HðYjEÞ ¼ HðYÞ þ HðEÞ � HðY;EÞ: ð9Þ

Thus, we let IðY;EÞ denote the mutual information of a Bayesian net-
work with hidden variables Y to be inferred from evidence of the
variables E. The joint entropy of the BN can be computed using
the BN factorization (2):

HðY;EÞ ¼ HðXÞ ¼ HðX1; . . . ;XnÞ ¼
Xn

i¼1

HðXijpiÞ: ð10Þ

Then, assuming that the evidence variables are conditionally
independent (Section 5), a formula is derived expressing the BN
mutual information in terms of the learned CPTs,

IðY;EÞ ¼
Xk

j¼1

½HðEjÞ � HðEjjpjÞ� þ
Xm

i¼1

½HðYiÞ � HðYijpiÞ�

¼
Xk

j¼1

Xrj

‘¼1

X
pj

pðpjÞpðej;‘jpjÞ log½pðpjÞpðej;‘jpjÞ�

8<:
�pðpjÞpðej;‘jpjÞ log½pðpjÞpðej;‘jpjÞ�

)

þ
Xm

i¼1

Xri

‘¼1

X
pi

pðpiÞpðyi;‘jpiÞ log½pðpiÞpðyi;‘jpiÞ�
(

�pðpiÞpðyi;‘jpiÞ log½pðpiÞpðyi;‘jpiÞ�
)
; ð11Þ

where the summations over pi;pj 2 X denote marginalization. As
can be seen from (11), IðY;EÞ can be computed from the BN CPTs
Y3

E1 E2 E1 E2

Y1 Y2 Y1

E4E3 EE3

a b

Fig. 1. A simple BN structure learned by the K20 algorithm (a) omitting arcs between ev
one that is not (c).
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and, based on its definition, constitutes a performance metric for
BN inference. Consequently, the mutual information learning
curve will approach a constant value as the size of the database
becomes sufficient.

When only one database T is available, several databases of
increasing size can be obtained by sampling T. These databases
are used to plot learning curves for the performance metrics de-
rived in this section. Then, these learning curves can be used in
combination with QFO to determine whether T is sufficient, as
shown in the next section.

5. Numerical studies and implementation of performance
metrics

The performance metrics presented in the previous section are
used to determine whether a database T with 5000 cases is suffi-
cient for obtaining the BN model of criminal behavior described in
Section 3. The universe X and its partition into offender and evi-
dence variables are described in Section 3. Databases of size t vary-
ing from 50 to 5000 in increments of 50 cases are generated via
sampling. For every database, a BN model is obtained through
structural and parameter training algorithms. Then, the metrics
QBN, 1/DA10, and IðY;EÞ, are computed for each BN model and plot-
ted on a learning curve. Structural training is performed using the
K2 algorithm (Section 2) as well as a newly modified version, re-
ferred to as K20, which has shown to improve the performance of
the criminal profiling BNs.

It is well known that structural training can be significantly im-
proved by impeding arcs a priori based on expert knowledge [13]
and heuristics [14,16]. We present a new and simple approach
for deciding which arcs to inhibit that is based on Markov separa-
tion properties. This approach, referred to as K20, is applicable to
BNs in which evidence is always available about the same subset
of variables, E. Markov separation properties are typically
exploited to simplify inference (Section 2). In the K20 algorithm
these properties are exploited to simplify structural training by
inhibiting arcs between the evidence variables in E. When all vari-
ables in E are instantiated, a BN structure can be Markov equiva-
lent to one in which these arcs are removed, and thus can
produce the same inference results even if the evidence variables
are not independent. In particular, any two evidence variables
Ei; Ej 2 E are d-separated Ei ? Ej, [22], if for all paths between them
there is an intermediate variable, Xl, such that the connection is (I)
diverging and Xl 2 E, or (II) the connection is converging, and
Xl; ll 2 Y. If these conditions do not apply, a small error is intro-
duced only if . Both instances are illustrated by an example
in Fig. 1. The numerical results presented in this section demon-
strate that BNs obtained by the K20 outperform the BNs obtained
by the K2 algorithm using the same training data.

The predictive accuracy of the criminal profiling BN is plotted
on the learning curve in Fig. 2. It can be seen that for a BN trained
Y3 Y3

E1 E2

Y2 Y1 Y2

4 E4E3

c

idence variables is compared to a K2 structure that is Markov equivalent (b), and to

ayesian networks for criminal profiling from limited data, Knowl.



Fig. 2. Predictive accuracy learning curve for BNs obtained by the K20 and K2 algorithms, with Dt = 50.
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with the K20 algorithm, Q BNK20
< Q FO when the training database

contains less than 250 training cases. Thus, any database with
t < 250 is insufficient, based on QFO alone. Fig. 2 also shows the pre-
dictive accuracy learning curve for the K2 algorithm. Since the K2
algorithm utilizes the training data less efficiently than the K20,
any database with t < 600 is insufficient. Also, the learning curve
in Fig. 2 illustrates that both QBNK20

and QBNK2
become approxi-

mately constant when t � 800. Therefore, based on the predictive
accuracy metric, a sufficient database must contain at least 800
cases.

Structural robustness is evaluated by retraining each BN model
after 10% of the cases has been removed from each training set
Fig. 3. Structural robustness learning curve for BNs ob

Please cite this article in press as: K. Baumgartner et al., Constructing B
Based Syst. (2008), doi:10.1016/j.knosys.2008.03.019
sampled from T. Then, the structural robustness metric DA10 in
(8) is plotted on the learning curve in Fig. 3, where the abscissa
represents the size t before 0.01�t cases are removed. As in Fig. 2,
the training sets sampled from T have a size t that varies between
50 and 5000 in increments of 50. When the training set contains
more than 1000 cases, 0 6 DA10 < 10 and becomes approximately
constant. Also, these curves indicate that the robustness of BNs
learned by the K2 algorithm is only slightly worse than that of
BNs learned by the K20. It can be seen from Fig. 3 that for both algo-
rithms a sufficient database contains at least 1000 cases.

The BN mutual information (11) is used to obtain the learning
curves in Fig. 4. The mutual information decreases as the amount
tained by the K20 and K2 algorithms, with Dt = 50.

ayesian networks for criminal profiling from limited data, Knowl.



Fig. 4. Mutual information learning curve for BNs obtained by the K20 and K2 algorithms, with Dt = 50.

6 K. Baumgartner et al. / Knowledge-Based Systems xxx (2008) xxx–xxx

ARTICLE IN PRESS
of training data increases because, when the data is insufficient,
spurious arcs are introduced by the structural training algorithm.
As the amount of data increases, these spurious dependencies are
eliminated and the BN structure becomes more reliable and robust
(Fig. 3). Therefore, when the underlying probability distributions
are unknown the sufficiency of the training set can be established
based on the sensitivity of the BN robustness and mutual informa-
tion to the number of training cases. It can be seen from Fig. 4 that
when the training set contains more than 500 cases, the BN mutual
information becomes approximately constant. When t > 1000, the
BN structure is robust, all performance metrics are approximately
constant (Figs. 2–4), and QBN > QFO. Therefore, it can be concluded
that a database of size ts = 1000 is sufficient for training a BN model
of criminal behavior (as described in Section 3). Subsequently, this
BN can be utilized to support criminal investigations as shown in
the following section.

6. Bayesian network profiler for decision-support in criminal
investigations

A trained BN model of offender behavior can constitute a valu-
able decision-support tool for police investigations. As schema-
Training

Crime Scene Variables:
- Victimology analysis 
- Police report 
- Crime scene analysis
- Autopsy report 

P
da

Trained BN
model

Investigation

Updates

Fig. 5. Implementation of BN model as decisi
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tized in Fig. 5, the evidence obtained from the crime scene of a
new case is inserted in the trained BN model and, through the
inference engine, the offender psycho-behavioral profile is pro-
duced. The BN profile consists of a set of predictions comprising
the most likely values of the offender variables and the corre-
sponding confidence levels (CLs). This information is then dis-
played to investigators on a computer screen or palm pilot to
help narrow the list of suspects in an unsolved case, and identify
the motive for the crime. As additional cases are cleared by the po-
lice, the BN can be updated through incremental training off line
(dashed lines).

As an example, we analyze two homicide cases that are taken
from V and, thus, have never been used for training the BN model.
In the first case, the actual offender is a male with no prior criminal
record, who had no prior relationship with the victim but is famil-
iar with the crime scene. Table 2 shows a sample of the 21 offender
variables comprising the profile Y. Actual evidence of the 36 crime
scene variables (not shown for confidentiality reasons) is provided
to both the BN model and a team of experts in forensic psychiatry.
The results of the BN and experts’ profiles are shown in Table 2 for
the same sample variables. A ‘‘yes/no” answer indicates that ‘‘yes”
is considered a more likely value for the variable, but there is dis-
Display to 
operator 

Offender Variables and 
Confidence Levels (CL): 
- Demographic information 
- Relationship with victim 
- Prior criminal record 
- Psychological profile 

olice
tabase 

Inference
engine 

BN profile 

on-support tool for police investigations.
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Table 2
BN profile and profile produced by a team of forensic psychiatry experts for a single-
victim homicide

Offender profile First homicide

Variables Actual BN (CL %) Expert team

Y3 = prior record of violence No No (74) No
Y4 = prior record of damage No No (84) No
Y8 = unemployed Yes No (51) Yes
Y11 = familiar with CS Yes Yes (84) Yes
Y12 = gender Male Male (73) Male
Y14 = prior record of abuse No No (80) Yes
Y17 = prior record of fraud No No (67) No
Y19 = prior sexual relationship with victim No No (57) Yes
Y20 = blood relative of victim No No (90) YesnNo

Average accuracy (CL %) – 90.5% (79) 62%

Table 4
Average BN predictive accuracy as a function of confidence level

Confidence level
(%)

Correct k Total (number of
predictions)

Average accuracy
(%)

CL P 50 16,511 k 21,000 78.6
CL P 60 15,054 k 18,361 82
CL P 70 12,845 k 14,952 85.9
CL P 80 10,515 k 11,802 89.1
CL P 90 5,084 k 5,321 95.6

Table 5
Accuracy range for offender variables that display, on average, a confidence level
within the specified ranges

Confidence level range
(%)

Accuracy range
(%)

Number of offender variables
(Example)

50–60 55.8 1, (Y8 = unemployed)
60–70 63.8–67.8 4, (Y19 = priori sexual relationship)
70–80 71.0–77.7 5, (Y5 = prior record of burglary)
80–90 79.4–92.4 8, (Y11 = familiarity with crime

scene)
90–100 97.0–98.8 3, (Y20 = blood relative of victim)
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agreement among the experts. Whereas, the BN predictions are
accompanied by a percent CL indicated in parenthesis. For the sam-
ple variables in Table 2, the BN produces only one incorrect predic-
tion, bY 8, compared to three incorrect predictions by the experts.
Even more importantly, bY 8 carries a very low confidence,
CL = 51%, indicating to a potential user that there is a fairly high
probability (0.49) that this prediction is incorrect. Also, when all
21 offender variables are considered, the BN displays a much high-
er percent accuracy (90.5%) than the team of experts (62%).

In a second homicide case illustrated in Table 3 the actual offen-
der is a female with no prior criminal record, who is familiar with
the crime scene, and is a blood relative of the victim. This is consid-
ered to be a more difficult case, partly because the offender is a fe-
male while the gender of single-victim homicide offenders is
predominately male (e.g. 91% of cases in D). Although both the
BN and the team of experts predict the offender gender correctly,
they also produce more incorrect predictions than in the first case
(Table 3). It can be seen that the BN is not only able to correctly
identify the gender, but also provides a high confidence in this pre-
diction, CL = 99%. When all 21 offender variables are considered,
the BN displays a much higher average percent accuracy (85.7%)
than the team of experts (47.6%), and its predictions carry high
confidence levels on average (86.2%). It was found that in these
two homicide cases, the BN model displayed a high average confi-
dence level, CL = 82.6%, for the variables that are predicted incor-
rectly by the experts.

The BN model was tested using the entire validation set V con-
taining 1,000 single-victim homicide cases and each reporting 21
offender variables. The results show that 80% of offender character-
istics are predicted correctly on average. Moreover, since the accu-
racy of the prediction increases with the confidence level, higher
accuracy can be obtained by considering only those predictions
with a high confidence level. This result is shown in Table 4, where
the average accuracy is shown for offender variable predictions
Table 3
BN profile and profile produced by a team of forensic psychiatry experts for a single-
victim homicide

Offender profile Second homicide

Variables Actual BN (CL %) Expert team

Y3 = prior record of violence No No (83) YesnNo
Y4 = prior record of damage No No (95) YesnNo
Y8 = unemployed No Yes (66) YesnNo
Y11 = familiar with CS Yes Yes (88) Yes
Y12 = gender Female Female (99) Female
Y14 = prior record of abuse No No (80) Yes
Y17 = prior record of fraud No No (80) Yes
Y19 = prior sexual relationship with victim No No (99) Yes
Y20 = blood relative of victim Yes No (66) YesnNo

Average accuracy (CL %) – 85.7% (86) 47.6%
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that are organized by confidence level. Also, the accuracy range ob-
tained for variables that, on average, display a particular confi-
dence level range is shown in Table 5. It can be concluded that
the confidence levels are representative of the accuracy of individ-
ual predictions, as well as of offender variables, on average. In
other words, if in an unsolved case an offender variable is predicted
with CL P 70%, then its accuracy is approximately 85.9% (Table 4).
Also, if an offender variable, such as Y11, displays a confidence level
80% 6 CL < 90%, on average, then its accuracy varies between 79.4%
and 92.4% in all cases considered in this study (Table 5). Finally, the
average percent accuracy of a sample of offender variables is
shown in Table 6. These results illustrate what offender character-
istics are typically predicted incorrectly by the BN. This could be
due to the data not being representative of their relationships with
the other variables in the universe X, for example due to bias and
collection errors, or to these relationships being weak. Therefore,
these offender variables can be the subject of future research. On
the other hand, characteristics such as the age and gender of the
offender and family relationship with the victim are typically pre-
dicted correctly by the BN and, therefore, can be used to narrow
the list of suspects in unsolved cases.

Another benefit of BN modeling is the graphical display of the
relationships learned from data. A slice of the trained BN model
structure, which represents the most significant relationships be-
tween the criminal profiling variables, is shown in Fig. 6. For
example, the arc between Y13 and E27 indicates that hiding the
victim’s body outdoors is influenced by the offender being ac-
Table 6
Average percent accuracy of a selected group of offender variables

Offender variable Average percent accuracy

Y19 = sexual relationship with victim 63.8%
Y16 = prior record of fraud 67.7%
Y6 = history of psychiatric/social problems 67.8%
Y17 = prior record of fraud 71.0%
Y3 = prior record of violence 73.6%
Y5 = prior record of burglary 77.6%
Y4 = prior record of damage 77.7%
Y14 = prior record of abuse 79.4%
Y7 = young offender, 17–21 years old 82.8%
Y11 = familiarity with crime scene 86.1%
Y12 = male gender 89.7%
Y20 = blood relative to victim 91.1%
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E32

E10

Y9
Y17

E14

Y12

E5
E23

 p(E27|Y13)   p(e27,1|Y13)    p(e27,2|Y13)

Y13 = y13,1        0.05  0.95 

  Y13 = y13,2        0.32  0.68 

Offender Variables 
Y2 = Prior record of burglary 
Y8 = Unemployed 
Y9 = Prior record of sex crime 
Y11 = Familiar with crime scene       
Y12 = Gender 
Y13 = Knew victim  
Y17 = Prior record of fraud 
Y19 = Prior sexual relationship w/ victim    
Y20 = Blood relative of victim 

Crime Scene Variables 
E5 = Victim’s face not deliberately  
        hidden
E10 = Blindfolded 
E23 = Weapon from scene  
E14 = Victim was shot 
E27 = Body hidden outdoors 
E32 = Suffocation 

Y13

Y19

Y20

…… …

…
…

E27

Fig. 6. Slice of the trained BN structure, including one example of a CPT attached to node E27.
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quainted with the victim prior to the crime. As another example,
the arc between Y12 and E23 indicates that the gender of the of-
fender influences whether the weapon is brought to the crime
scene. This finding is consistent with our understanding of fe-
male offenders, who typically employ weapons that are already
present at the scene, such as knives from the kitchen. The rela-
tionship between the existence of a prior sexual relationship be-
tween the offender and the victim (Y19) and the victim being
blindfolded during the crime (E10) is also known to forensic psy-
chiatrists. This is attributed to the offender wanting to avoid eye
contact and feelings of shame brought about by his or her famil-
iarity with the victim. On the other hand, the influence that the
offender’s prior record of fraud (Y17) and employment status
(Y19) have on the presence of victim suffocation (E32) is surpris-
ing to the experts. A possible explanation is that such an offen-
der may feel inferior due to unemployment and find manual
strangulation a source of empowerment.

Through the inference engine, the influence of the offender
characteristics on the behavior exhibited at the crime scene
and reflected in the evidence variables is taken into account
automatically. But, another important advantage of this ap-
proach is that the trained BN structure can be easily inter-
preted and utilized by forensic psychiatrists for conducting
research on the psychological mechanisms underlying criminal
behavior.

7. Conclusions

The increased availability of computer and information technol-
ogies has enabled law enforcement agencies to compile extensive
databases with detailed information about major felonies, such as
murder, rape, and arson. Consequently, several authors have advo-
cated that machine learning techniques will play a significant role
in developing decision-aid tools for police investigations
[4,17,27,32,42]. The most significant contributions to date have been
recently reviewed in [17]. In this paper, we develop an approach for
obtaining BN decision-aid tools that consists of the following steps:
(1) assessing the sufficiency of an available database; (2) training a
BN model using both expert knowledge and data; and, (3)
implementing an inference engine to produce offender profiles in
Please cite this article in press as: K. Baumgartner et al., Constructing B
Based Syst. (2008), doi:10.1016/j.knosys.2008.03.019
unsolved cases. Numerical studies demonstrate that the BN model
can be used to successfully infer the characteristics of an unknown
offender from the crime scene evidence in single-victim homicides.
On average, 80% of the offender characteristics are predicted cor-
rectly by the BN profile. Moreover, since each prediction is accompa-
nied by a confidence level that is proportional to its expected
accuracy, by considering only predictions with high confidence lev-
els the average accuracy increases to 95.6%. Hence, the BN profile can
be implemented by investigators to narrow the list of suspects in un-
solved homicides, and identify the motivation for the crime.
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Appendix A. Bayesian network predictive Accuracy

First, consider the case of one hidden variable, Yi, and let
U ¼ fYjjYj 2 Y; j 6¼ ig. The prediction bY i is obtained by inferring Yi

from evidence �e such that,bY i ¼ y�i � arg max
‘

pðyi;‘j�eÞ ¼ arg max
‘

pðyi;‘; �eÞ; ‘ ¼ 1; . . . ; ri: ðA:1Þ

Therefore, the predictive accuracy of one hidden variable is,

QBNðYiÞ ¼ pðy�i j�eÞpð�eÞ; ðA:2Þ

and QBN 2 [0,1] for any ri. Since there are Ne ¼
Q

kri possible evi-
dence combinations, the probability of any simultaneous occur-
rence of a set of instantiations nj � {e1,j [ . . .[ ek,j} is the prior p(nj),
where j = 1, . . . ,Ne. Then, the predictive accuracy of Yi can also be
written in terms of the BN CPTs, as follows,

QBNðYiÞ ¼
XNe

j¼1

max
‘

pðyi;‘jnjÞpðnjÞ ¼
XNe

j¼1

max
‘

pðnjjyi;‘Þpðyi;‘Þ; ðA:3Þ

where pðyi;‘Þ ¼
P

pi
pðpiÞpðyi;‘jpiÞ. Then, for a set of m hidden vari-

ables, Y ¼ fY1; . . . ; Ymg, the BN predictive accuracy is the average
of the individual predictive accuracies
ayesian networks for criminal profiling from limited data, Knowl.
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Fig. 7. Example of a two-node Bayesian network model.
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Q BNðYÞ ¼
1
m

Xm

i¼1

XNe

j¼1

max
‘
½pðyi;‘Þpðnjjyi;‘Þ�

¼ 1
m

Xm

i¼1

XNe

j¼1

max
‘

pðnjjyi;‘Þ
X

pi

pðyi;‘jpiÞpðpiÞ
" #

: ðA:4Þ

As a simple example, consider the two-node BN shown in Fig. 7.
Y is the hidden variable to be inferred from E, and both variables
are binary. Then, the predictive accuracy of Y is computed from
(5) as follows,

Q BNðYÞ ¼
XNe¼2

j¼1

max
‘

pðy‘jnjÞpðnjÞ ¼
XNe¼2

j¼1

max
‘

pðnjjy‘Þpðy‘Þ; ðA:5Þ

where ‘ = 1,2, n1 = {e1}, and n2 = {e2}. Hence, for the BN in Fig. 7,
QBN(Y) = 0.7.

Appendix B. Frequency of occurrence lower bound

Consider one hidden variable Yi and a set of k evidence variables
E. Then, the predictive accuracy of a prediction bY i is given by (A.3),
where, ‘ = 1, . . .,ri, and Ne is the number of all possible evidence
combinations. Similarly to (A.1), based on the definition of predic-
tion we let y�ðjÞi denote the instantiation with the highest posterior
probability when E ¼ nj, namely,

y�ðjÞi � arg max
‘
fpðyi;ljnjÞg ¼ arg max

‘
fpðyi;ljnjÞpðnjÞg

¼ arg max
‘
fpðnjjyi;lÞpðyi;lÞg ðB:1Þ

using Bayes’ rule. It follows that pðnjjy�ðjÞi Þpðy
�ðjÞ
i ÞP pðnjjyi;lÞpðyi;lÞ

"‘ = 1, . . . ,ri. Also (A.3) can be written as

Q BNðYiÞ ¼
XNe

j¼1

pðnjjy�ðjÞi Þpðy
�ðjÞ
i Þ: ðB:2Þ

Now let y�ðFÞi denote the instantiation chosen as the frequency of
occurrence prediction bY F

i , such that y�ðFÞi ¼ arg max‘f ð�yi;‘jDÞ, where
both instantiations y�ðjÞi and y�ðFÞi belong to the domain of Yi, which
contains ri mutually exclusive instantiations denoted by yi,‘ (Section
2). Then, if y�ðjÞi ¼ y�ðFÞi "j = 1, . . ., Ne, and the database D is represen-
tative of the statistical population, the predictive accuracy (B.2)
simplifies to,

Q BN ¼
XNe

j¼1

pðnjjy�ðFÞi Þpðy
�ðFÞ
i Þ ¼

X
E

pðEjy�ðFÞi Þpðy
�ðFÞ
i Þ ¼ pðy�ðFÞi Þ

¼ f ðy�ðFÞi jDÞ ¼max
‘

f ð�yi;‘jDÞ ¼ Q FOðYijDÞ ðB:3Þ

achieving the lower bound QFO in (6), for one hidden variable. The
summation sign over E denotes marginalization over all evidence
variables. Because, for a representative database, the prior pðy�ðFÞi Þ
equals the frequency f of the instantiation y�ðFÞi in D.

Otherwise, if y�ðjÞi 6¼ y�ðFÞi for some j, then pðnjjy�ðjÞi Þpðy
�ðjÞ
i Þ >

pðnjjy�ðFÞi Þpðy
�ðFÞ
i Þ, by definition (B.1). It follows that every term in

the summation (B.2) is either equal to or greater than the corre-
sponding term (i.e., with the same j) in the first summation in
Please cite this article in press as: K. Baumgartner et al., Constructing B
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(B.3). Thus, QBNðYiÞP QFOðYijDÞ. Since the latter inequality
holds for any hidden variable Yi 2 Y, the following inequality also
holds:

m � Q BNðYÞ ¼
Xm

i¼1

XNe

j¼1

pðnjjy�ðjÞi Þpðy
�ðjÞ
i Þ

P
Xm

i¼1

XNe

j¼1

pðnjjy�ðFÞi Þpðy
�ðFÞ
i Þ ¼ m �

Xm

i¼1

QFOðYijDÞ

¼ m � Q FOðYjDÞ ðB:4Þ

Thus, Q BNðYÞP Q FOðYjDÞ.
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