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Abstract— A constrained penalty function method for ex-
ploratory adaptive-critic neural network (NN) control is pre-
sented. While constrained approximate dynamic programming
has been effective to guarantee closed-loop system performance
and stability objectives, in the presence of a change in the
plant dynamics it may not have the necessary plasticity to
explore and fully adapt to the new behaviors of the plant,
if these violate the constraints. A generalized constrained
approach is introduced to overcome these limitations. Through
this methodology it is shown that NNs are not only capable
to acquire new plasticity when necessary, but also can adjust
their parametric structure reducing their hidden nodes and
becoming more computationally efficient.

Index Terms— Approximate dynamic programming (ADP),
constrained optimization, neural networks (NNs), forgetting,
penalty function.

I. INTRODUCTION

OPTIMAL control finds a plethora of applications in

different areas, spanning from finance [1] to buffer

management [2] and aerospace engineering [3]–[5]; yet, the

known curse of dimensionality [6] often makes finding and

implementing solutions impractical. Approximate Dynamic

Programming (ADP) [7], has emerged as an efficient an-

swer to this issue. ADP approximates the optimal solution

through functional parametric structures, as Artificial Neural

Networks (ANNs). The method has been proved to converge

to the optimal solution with proper policy iteration (proof

in [8]); besides it does not require a priori knowledge of

the process dynamics, but the system is capable to learn

the optimal policy (control) on-line. Albeit these appealing

features, ADP NN controllers have not found to assure

and maintain a high level of safety and performance at all

times and they are often criticized for the lack of closed-

loop stability and performance guarantees that characterize

classical controllers.

A recent approach [9] avoids these limitations, adopting a

constrained formulation, through which prior knowledge of

linearized equations of motion is used to guarantee minimum

performance requirements, crucial in real-time aerospace

applications, among others. As shown in [9] ADP NN

controllers do provide the same performances of classical

controllers if the plant is in a linear parameter-varying (LPV)

condition, still being capable to adapt online to new nonlinear

dynamics and approximate the optimal solution over time,
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whereas classical controllers are suboptimal. Nonetheless,

constrained optimization gives enough plasticity to learn

new dynamics online, but does not allow violation of the

constraints; if new dynamics contradict the linear-parameter

varying region, constrained ADP is not capable to adapt and

approximate the new optimal solution.

In this paper we introduce new plasticity to the network,

giving further exploratory features to the parametric structure

(i.e.: NNs), introducing a penalty function. Through this for-

mulation, if new knowledge contradicts Long Term Memory

(LTM) constraints, the importance of constraints is lessened

over time; moreover if new information is capable to give

better performance, the constraints are gradually discharged.

Also, new memory is released and the network is capable

to dismiss useless hidden nodes, reducing its adjustable

parameters and its computational complexity.

II. METHODOLOGY

Given the infinite-horizon optimal control problem, the

cost function to be minimized with respect to the control

law takes the form,

J = lim
tf→∞

tf−1∑
tk=t0

L[x(tk),u(tk)] (1)

according to [10], subject to the dynamic constraints imposed

by the plant dynamics, which are not supposed to be known

a priori. The lagrangian L is the cost associated with one

time increment, xk ∈ X ⊂ R
n is the state, uk ∈ U ⊂ Rm

is the control, whereas the plant dynamics are subjected by

a difference equation of the form

x(tk+1) = f [x(tk),u(tk)] (2)

It should be stressed that in (2) the form of f may not

be known a priori and may be learned online. ADP pro-

vides an approximate solution to the minimization of (1)

subject to (2). Specifically, parametric structures (in our

case feedforward NNs) are used to approximate the optimal

control law and the relative cost function. In [11] several

algorithms are presented to update these two functions;

without loss of generality, we are going to focus to the

Heuristic-Dynamic Programming (HDP) Algorithm. Given

the recursive relation of dynamic programming, the value

function may be minimized exclusively with respect to the

present value of the control, uk, if the future cost of operation

is optimal; ADP provides an estimate of the future cost-to-go
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through a policy improvement routine. Therefore we have:

V ∗(x∗k) = min
uk

{L(x∗,uk) + V ∗(x∗k+1} (3)

where in eq:recurrRel V ∗ and x∗ refer to the optimal policy

and the optimal state, respectively.

Through this formulation, the optimal control law is ap-

proximated by a NN, called the actor, and the NN weights

are adjusted to approximate the optimal solution; similarly

the value function (cost-to-go) is approximated by another

NN, called the critic. As shown in [8], if the control law

and the value function approximations, cl and Vl at a generic

iterative step l, are updated through a policy improvement

routine, for which the control law is such to minimize

the forecasted value function and then the value function

determination is based on this improvement, they eventually

converge to the optimal solution, provided that the plant

dynamics do not suddenly change over time. Specifically the

next iteration for the actor is given by:

cl+1[x(tK)] = arg min
u(tK)

{L(x(tK),uk) + Vl[x(tK), cl]}
(4)

where cl is approximated by a NN and the minimization

problem given by (4) has to be expressed in terms of the

adjustable parameters of the NN; similarly the critic update

is given by:

Vl+1[x(tK), cl+1] = L[x(tK), cl] + Vl[x(tK), cl+1] (5)

The ADP algorithms (4) and (5) are locally implemented us-

ing only one state sample at every iteration k = l. According

to the methodology described in [12], the NN parameters

are partitioned in Long Term Memory (LTM) and Short

Term Memory (STM) connections, and former are expressed

as a function of the latter in order to guarantee stability

performance and enforcing the gain-scheduled controllers

dynamics, when the plant is in the LPV regime. Therefore

we can claim that:

wL = g(wS) (6)

where in (6) we have addressed with wL and wS the LTM

and STM weights, respectively and g is the function which

maps the ones into the others and assures the satisfaction of

the constraints. Hence we can formulate the problem as a

constrained optimization problem and at every iteration step

we are aiming to apply equations (4) and (5), subject to (6).

There are two different well established methodologies to

solve the constrained optimization problem. A first approach

is to augment the function to be minimized by the implicit

equality constraints, obtaining an augmented Lagrangian to

be minimized with respect to all variables, which are given

by the ANN’s weights. Another approach is to ensure the

relaxed constraints through direct elimination. In order to

introduce new plasticity into the network and let the LTM to

be gradually forgotten, a new type of agumented Lagrangian

may be introduced, defined as:

Jl = el(wL,ws) + λT
l Flg(wL,ws) +

1
2

cl‖g(wL,ws)‖
(7)

where in (7) Fl models the ability of the NN to forget

the LTM, expressed by the function g; finally the index l
refers to the lth epoch in sequential training. In this paper

we will adopt the approach of direct elimination and it will

be described in detail in section II-A.

A. Forgetting: exploratory adaptive function approximation

Suppose that an Artificial Neural Network (ANN) is

composed of Short Term Memory (STM) and Long Term

Memory (LTM) connections and that it has been alge-

braically trained to satisfy the LTM training sets T 1 out
LTM =

{ξj , ζj}j=1,...,rLTM
and T 1 der

LTM = {νl, χl}l=1,...,pLTM
which

contain input/output and derivative samples, respectively

and that it has also been re-trained through a constrained

backpropagation approach (CPROP) to suppress interference

using an STM training set T 1
STM = {yk, uk}k=1,...,rSTM

, as

proposed in [13]. Only to deal with simpler notation, we

assume that pLTM = rLTM and ILTM = {ξj}j=1,...,rLTM
=

{νj}j=1,...,rLTM
; i.e.: derivative information is available for

the same set, for which the output information is provided.

In the ADP context the aforementioned ANN might be the

parametric structure to approximate the actor function and

the constraints would be constituted by linearized dynamics,

provided by a set of linear-time invariant vertex controllers,

as proposed in [9].

Now let us suppose that there is a new training set T 2
STM

accessible at a later time, which partially contradicts the

LTM constraints and contains the previous STM training

set; therefore we have that T 2
STM = T 1

STM

⋃ T̂ 2
STM, where

T 1
STM = {yk, uk}k=1,...,r2

STM
and T̂ 2

STM = {yk, uk}k=1,...,r ˆSTM
,

with I2
STM ⊂ ILTM but different targets. From now on we

will refer to the STM connections of the network using Latin

letters, whereas Greek letters will address LTM connections.

Also, inputs with a bar (¯) will belong to the TLTM training

set, whereas inputs with a breve (˘ ) will refer to the TSTM

training set. For example S̄0 refers to the STM transfer

function matrix of zeroth order fed with the LTM inputs

and similarly Σ̆1 refers to the LTM transfer function matrix

of first order fed with STM inputs; whereas the new targets,

provided by the new training set T̂ 2
STM, will be denoted by

the hat (ˆ ).

Since CPROP analytically preserves the knowledge em-

bedded into the LTM connections, it does not have -as it

is- sufficient plasticity to contradict it; therefore in order to

acquire sufficient plasticity we have to generalize CPROP,

using appropriate weighting functions and a new inner prod-

uct for the error, as we shall see. First let us partition the

original LTM training input set ILTM into the memory to be

retained and the contradicted one to be gradually forgotten

indicated as IR
LTM and IF

LTM, respectively; thus we have that

ILTM = IR
LTM

⋃ IF
LTM.
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B. The Forgetting Algorithm

Taking inspiration from what has been found in biological

neural networks [14]–[16], we claim that the association of

new targets referred to a subset of the old LTM training

set is induced by proactive interference. Hence, at this

purpose, we introduce the persisting memory coefficient

(PMC) η ∈ (0, 1): it may be thought as the probability that

a certain neuron preserves its past LTM memory. If new

samples, contradicting previous knowledge, are presented

several times to the NN, the PMC is progressively reduced

and approaches zero, which is equivalent to total forgetting.

Also, we can exclude the extreme values (0 and 1): since they

represent a reduced NN and the original NN, respectively.

First of all let us assume, without the loss of generality,

that the first P̄ LTM samples are not reproposed to the

network and that the remaining H̄ = r ˆSTM − P̄ are affected

by proactive interference. We can partition the LTM synapses

accordingly so that ωT = [ω1 ω2]
T

, with ω1 ∈ R
1×2P̄

and ω2 ∈ R
1×2H̄ , if output and derivative information

is provided for every LTM sample. We assume that the

connections deputed to the part of the memory which has to

be updated are partially active, with a percentage, expressed

by the PMC, which may also be interpreted as fraction

of the memory connections still active and decays as long

as new STM samples contradicts the old LTM constraints.

According to this hypothesis the actual NN output, computed

on T 2
STM, is given by:

u = S̆0 vT + Σ̆0
1 ωT

1 + Σ̆0
2 η ωT

2 (8)

and the LTM constraints may be written as:

Φ̄11 ωT
1 + Φ̄12 η ωT

2 = t̄1 − F̄1 vT (9)

Φ̄21 ωT
1 + Φ̄22 ωT

2 = t̄2 − F̄2 vT (10)

where we have partition all the operators accordingly. The

first 2P̄ equations (9) are relative to the LTM knowledge to

be retained and so take into account the induced interference

to preserve the previous memory, whereas the remaining

2H̄ constraints (10) are affected by interference and can not

take into account the reduction of the efficacy of the LTM

connections ω2, induced by the PMC. Moreover, we have

to modify the cost function in order to differently weight

the STM samples which contradict part of the LTM ones.

In order to achieve that we introduce a new cost function,

which takes the form:

J̃ = ĕT Gĕ (11)

where ĕ is the error vector of the whole NN on the STM

training set and G ∈ R
r2

STM×r2
STM , with G > 0 to introduce a

consistent metric. Therefore it exists the operator
√

G and

we can define the weighted error vector as:

ẽ =
√

G ĕ (12)

thus we can express the weighted cost function (11) through

(12) simply as:

J̃ = ẽT ẽ

therefore we can use, again, CPROP to train the NN where

the error vector is defined using (12). In order to have a minor

weight of the STM samples, which contradict the LTM ones,

we have simply chosen G to be:

G =
[

I 0
0 B

]

where I is the identity matrix of r2
STM order and B ∈

R
r ˆSTM×r ˆSTM and B > 0 and consistently with the definition

of the CPM has been chosen to be: B = (1− η) I.

Similarly to be able to use a standard CPROP approach

and compute the NN output as usual, we introduce the

weighted LTM output weights, defined as: ω̃T = [ω1 ω̃2]
T

and ω̃2 = ηω2; with this position the NN output (8) may be

easily written as:

u = S̆0 vT + Σ̆0 ω̃T (13)

and the LTM constraints in the new variables take the usual

form:

Φ̃ω̃T = t̄− F̄vT (14)

where t̄ = [t̄1 t̄2] , F̄ =
[
F̄1 F̄2

]
and Φ̃ is defined as

follows:

Φ̃ =
[

Φ̄11 Φ̄12

Φ̄21 Φ̃22

]

with Φ̃22 = Φ̄22 Δ−1, and Δ = η I, in this case, where I
is the identity matrix of 2H̄ order.

C. Another interpretation of the PMC

It is possible to show that the augmented network, given

by the system of equations (9) provides an output which

is a linear combination between the STM and the LTM

targets, provided that the constraints are constituted only by

output information. We will consider two extreme cases. First

suppose the NN is trained to approximate the STM targets

and the constraints which are in disagreement with the new

STM training set are completely released: therefore the NN

output, when fed with the new STM samples -i.e.: the ones

contradicting a subset of the old LTM- is given by:

Σ̄21ω
T
1 + S̆2vT = t̆ (15)

where we have used the bar on Σ21 since the LTM inputs

coincide with the STM inputs for the given set. Now consider

the same NN augmented with ωT
2 weights to enforce the

satisfaction of the old output; thus the following equation

holds:

Σ̄21ω
T
1 + Σ̄22ω

T
2 + S̆2vT = t̄ (16)

According to the methodology we can use (16) to find an

explicit expression for ωT
2 , since Σ̄22 is a known square

matrix and predesigned to be invertible; if we substitute from

(15) into (16) to evaluate the expression of S̆2vT , we have

that :

ωT
2 = [Σ̄22]−1 (t̄− t̆) (17)

Finally, taking this estimate of ωT
2 , and using it in the actual

output of the network for the forgetting algorithm (10), under
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Fig. 1. Neural Network output, after the 1st training session, composed
of 300 epochs; PMC η = .9988
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Fig. 2. Neural Network output, after the 2nd training session, composed
of 300 epochs; PMC η = .33

the assumption that (15) holds, we get that the NN output,

ũ, is given by:

ũ = t̆ + η (t̄− t̆) (18)

which gives the parametric description of the segment indi-

viduated by t̆ and t̄.

III. APPLICATIONS AND RESULTS

As an example, consider the nonlinear function plotted

by a dashed line in Fig. 1 over a domain D = [0, 3π] ⊂ R.

Suppose the shape of the function over a bounded subset S =
[0, π] ⊂ D is known a priori to be a sine function and TLTM
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Fig. 3. Neural Network output, after the 3rd training session, composed
of 900 epochs; PMC η = 1. 10−5
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Fig. 4. Comparison between complete NN and reduced NN (without LTM
weights) : solid and dashed line, respectively

is formed using the LTM samples shown in Fig. 1 by the

asterisks. A sigmoidal NN with 16 hidden nodes is trained to

approximate TLTM using the Levenber-Marquardt algorithm

[17], [18] . Then a new STM training set is available and

new knowledge contradicts LTM constraints. The unknown

function is supposed to be h(y) = αy4 + βy3 + γy2 + δy,

with α = .9503, β = −5.9708, γ = 9.0606, δ = 1 and is

depicted with a solid line. Only some of the data contradicts

old LTM constraints. The PMC parameter is decreased at

every training session and more plasticity is induced into

the LTM connections, as shown in Figs. 1, 2, 3. Finally

the old LTM connections are removed and the hidden nodes

of the network are reduced to 12, without deteriorating the

performance of the network, as shown in Fig. 4, since the

output weights associated to the part of the memory to

be forgotten are completely damped by the PMC, which

assumes extremely low values in the last training

IV. CONCLUSIONS

A generalized constrained ADP with penalty function is

introduced. If new dynamics occur or LPV strategy is not

locally optimal anymore, the novel approach is capable to

assure enough plasticity and gradually lessen previous sub-

optimal constraints. The problem has been reformulated to

previous constraint ADP research, through an appropriate

redefinition of the operators involved. Also, the structure

and the dimension of the NN is flexible and hidden nodes

associated to small output weights may be automatically

completely released, reducing the dimension of the problem.

Further research might update the PMC depending on the

ratio of the standard deviation of the STM samples over the

global standard deviation of the process (if noise is included)

to be able to discriminate between noise and new dynamics

to be incorporated.
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