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Abstract—In this paper, we present a stochastic hybrid model
of mobile networks able to encompass a large variety of multi-
agent problems and phenomena. The model is applied to a case
study where a heterogeneous mobile sensor network cooperatively
detects and tracks mobile targets in the plane based on intermit-
tent observations. When these observations form a satisfactory
target trajectory, a mobile sensor is switched to pursuit mode
and deployed to capture the target in minimum time. The mobile
sensor network consists of a set of robotic sensors modeled as
hybrid systems with processing capabilities. Since the sensors
are installed on robotic platforms and have limited range, the
geometry of the mobile sensors’ field-of-view plays a critical role
in motion planning and obstacle avoidance. The cost of operating
the sensors is determined from the geometric properties of the
network, its workspace and the probability of target detection.
Simulation results verify the validity of the developed model and
tracking methodology.

I. INTRODUCTION

Every day, we witness numerous achievements and im-
provements in both technology and science. The field of
robotics is not an exception. Technology pushes hardware
limits further providing processors decreasing in size and
increasing in performance, more advanced robots and sensors.
As a consequence, networks of commercially available UAVs
and UGVs1 are capable of successfully resolving complicated
problems such as search and rescue missions, monitoring ur-
ban environments or endangered species, landmine or intruder
detection, and pursuit-evasion problems. At the same time,
science invents methods and techniques to solve these chal-
lenging tasks more efficiently. This means better coordination
of large heterogeneous robot networks, improvements in plan-
ning, sensing and estimation requirements along with higher
flexibility, robustness and fault tolerance of the networks.

Considerable number of methodologies for coordination of
robotic networks and sensor planning approaches have been
proposed in recent years. Distributed control of synchronous
robotic networks with an emphasis on communication proto-
cols and geometric notions relevant in motion coordination are
described in [1]. An investigation of maintaining connectivity
of a dynamic multi-agent network including hybrid modeling
is discussed in [2]. An overview of stochastic hybrid models
is given in [3]. Planning algorithms are thoroughly explained
in [4], while [5] describes autonomous mobile robots from

1Unmanned Aerial Vehicles and Unmanned Ground Vehicles, respectively.

Fig. 1. A cooperation of UAVs and UGVs.

sensing, decision making and application perspectives. A hy-
brid modeling framework for robust maneuver-based motion
planning algorithms for nonlinear systems with symmetries
is proposed in [6]. Cell decomposition approaches are cov-
ered in [7], whereas a specific case of cell decomposition
is implemented in [8]. All aforementioned approaches focus
only on certain problems in modeling multi-agent cooperation.
However, we need a broad, yet simple enough, model of
mobile multi-agent networks for our work.

In this paper, we present a comprehensive hybrid network
model able to capture a wide range of multi-agent problems.
By applying the model to a multi-target tracking case study,
we demonstrate its versatility and flexibility. The multi-target
tracking case study is motivated by the Marco Polo game (first
introduced in [9]) where a network of mobile robotic sensors
must track and capture mobile targets based on the information
obtained through cooperative detections of the sensors. This
pursuit-evasion game combines cooperative multi-target track-
ing, distributed estimation, intermittent communication and
geometric properties of the sensor network. Specifically, we
extend this previous work in order to consider more realistic
scenarios. An illustration of an multi-target environment is
shown in Figure 1 where aerial and ground sensors are used
to detect and capture mobile targets in the plane. Numerous
simulations are successfully carried out in order to verify the
model.

The remainder of the paper is organized as follows. In
Section II we state the problem and assumptions considered
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herein. A detailed analysis of concepts and methods stated in
Section II is given in Section III. Mathematical details of the
developed hybrid model are conveyed in the first subsection
of Section III. The second part of the section is reserved for
concepts and definitions regarding the application of the hybrid
model and methods used to solve the multi-target tracking
case study. In Section IV we further investigate specifics of
the applied hybrid model. Simulations and numerical results
are provided in Section V. Finally, we draw conclusions in
Section VI.

II. PROBLEM STATEMENT AND ASSUMPTIONS

The problem considered in this paper is stated here. Given
a heterogeneous set P of N pursuers and a set T of M
targets moving within a specified game area S, find a set of
control policies of sensors which maximizes the total sensing
reward, and minimizes the total time required to capture
targets in T that have been positively detected. The objectives
of the sensors in detection mode are to (i) avoid obstacles;
(ii) maximize the probability of cooperatively detecting unob-
served tracks; and (iii) maximize the probability of detecting
partially-observed tracks. The objectives of a sensor in pursuit
mode are to (i) avoid obstacles; and (ii) minimize the time
required to capture a positively detected target, based on its
fully-observed track and the first k−1 detections where k ∈ N.

In this paper, targets move in piece-wise straight fashion
with uniformly distributed orientations. We require that the
scalar product of initial velocity and current velocity is pos-
itive. This requirement assures the traversing nature of the
targets. Moreover, the changes of the targets’ direction happen
randomly within a time interval based on the properties of the
targets, environment, and user’s preferences. The sensors com-
municate among themselves when their state changes or when
they detect the targets. A sensor detects evaders when they
enter its circular sensing region (isotropic or omnidirectional
sensors). The sensor collects data of the target’s position when
the target enters its sensing region for the first time. Hence,
time instances of the detections are randomly distributed and
cannot be anticipated. Since the sensors do not have perfect
measurements, information regarding the position of targets
are not accurate, but are prone to noise. As a consequence, a
transition from one behavior of a sensor to another is based
purely on stochastic events.

After k − 1 independent detections of a target, a sensor
is deployed to obtain the kth independent observation of the
target. We define a C-target as a region in the game area
where the probability that a deployed sensor will get the kth

observation of the target is above a threshold ε determined
by user’s preferences (energy at disposal, percent of targets
captured, etc.), and properties of both sensors and targets. C-
targets can be approximated with cone-like areas as illustrated
in Figure 2. In order to cover the C-target with a finite
sensing region, the sensor moves orthogonally to the bisector
of the C-target within the boundaries of the C-target. We
require k independent detections before deploying a sensor
into pursuit mode in order to avoid false alarms. The decision

Fig. 2. An illustrative detail of a simulation. Red squares represent UGVs,
the green square represents a UGV in pursuit mode, purple squares represent
UGVs, circles denote corresponding sensing regions, blue polygons represent
targets, black rectangles represent obstacles, and the blue shaded cone-
like area is a C-target. Red shaded polygons represent areas with poor
communication.

of which sensor to deploy for either of the above mentioned
tasks is based on the reward function (defined in Section III).
The function is designed for straight line moving targets in
[10]. Therefore, the maximal value of detecting the targets
cooperatively is obtained when the sensors are grouped in the
corners of the rectangular game area (for a comprehensive
discussion see [11]). To accommodate the optimality criteria
for the targets in this paper, we maximize the reward function
with the constraint that a certain minimal area coverage must
be satisfied.

Next, in order to make the problem more realistic, we
consider heterogeneous sensors (i.e., sensors with different
properties) installed on robotic platforms with different func-
tionalities. The sensors have different sensing regions while
the platforms are UGVs and UAVs. Sensors on UGVs have
smaller sensing areas than those on UAVs. In addition, UGVs
are slower then UAVs, but UGVs can capture targets whereas
UAVs cannot. Unlike ground vehicles, aerial vehicles can fly
over obstacles. The properties of both sensors and platforms
are taken into account for motion planning. Throughout the
paper, we refer to both the sensors and associated platforms
as sensors.

Finally, we assume that there are areas in the environment
where communication is not possible or is very poor. We
model these areas as virtual obstacles that sensors would avoid
but targets can enter. Virtual obstacles due to communication
are introduced in [12].

Uniform distribution is used throughout this paper because it
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is ‘the most random’ distribution. Use of any other zero-mean
distribution for modeling directions of the targets gives even
better results in a sense of fulfilling the problem objectives.

III. MATHEMATICAL PRELIMINARIES AND DEFINITIONS

Mathematical preliminaries are divided into two subsec-
tions. In the first subsection, we present concepts and details
of the hybrid model developed in this work. In the second
subsection, the methods brought together in order to success-
fully solve the case study are conveyed. We combine cell
decomposition, geometric optimization and track coverage into
a cohesive framework.

A. Hybrid modeling

A stochastic hybrid model capable of describing a wide
range of multi-agent problems is developed and applied to
a multi-target tracking problem using heterogeneous mobile
sensor networks.

Roughly speaking, hybrid systems are dynamical systems
that involve the interaction of different types of dynamics (i.e.,
continuous state and discrete state dynamics). While modeling,
discrete states are related to different modes of behavior
such as sensing, pursuing or avoiding obstacles. These modes
generally have different goals, continuous dynamics, control
laws, sensing and communication policies.

A hybrid automaton is often used as a modeling language
for hybrid systems. Merging discussions from [3] and [13],
we define the following:

Definition 1: A hybrid automaton H is a tuple H =
(Q,X, f,Υ, U,∆, D, Init,Dom,E,G,R) that describes the
evolution of
• discrete state variables q ∈ Q and continuous state

variables x ∈ X ,
• control inputs υ ∈ Υ and u ∈ U , and
• stochastic or disturbance inputs δ ∈ ∆ and d ∈ D

by means of four functions:
• a vector field f(·, ·, ·, ·) : Q×X × U ×D → X ,
• a domain set Dom(·, ·, ·) : Q×Υ× υ → P (X),
• a guard sets G(·, ·, ·) : E ×Υ×∆→ P (X), and
• a reset function R(·, ·, ·, ·) : E ×X ×Υ×∆→ X ,

where Init ⊆ Q×X is a set of initial states and E ⊆ Q×Q
is a set of edges.
In the above definition P (X) denotes the power set of X .
Furthermore, we refer to (q, x) ∈ Q × X as the state of H .
We assume that the sets Q,Υ and ∆ are countable and that
X = Rn (or Cn,Sn), U ⊆ Rm, and D ⊆ Rn for integers
n,m, and p, where Cn is n-dimensional complex space, and
Sn is n-dimensional sphere. It should be noted that function
f is a mapping to TX (tangent space of X) with form

ẋ(t) = f(t, q0, x0, x(t), u(t), d(t)), t ∈ Rt≥0, (1)

and is required to be continuous. With (1), the evolution x :
Rt≥0 → X of the dynamical system starting at some initial
state (q0, x0) ∈ Init, with input u : Rt≥0 → U and stochastic
input d : Rt≥0 → D is given. The set of nonnegative real
numbers is denoted with Rt≥0.

To characterize the evolution of the state of a hybrid
automaton, there is a need for an appropriate set of times.
Such set has to capture both continuous intervals (over which
continuous evolution takes place) and discrete points in time
(when discrete transitions happen). This set of times is called
a hybrid time set. From [13], we have,

Definition 2: A hybrid time set is a sequence of intervals
τ = I0, I1, , IN = {Ii}Ni=0, finite or infinite (i.e., N = ∞ is
allowed) such that
• Ii = [τi, τ ′i ],∀i < N ;
• if N <∞ then either IN = [τN , τ ′N ] or IN = [τN , τ ′N )
• τi ≤ τ ′i = τi+1,∀i.
In multi-agent applications, each agent can be represented

as a hybrid automaton. Such hybrid automata form a mobile
hybrid network (MHN) of agents (e.g., networks of sensors
and pursuers) that are able to interact within the network and
with members of other networks. MHNs can be modeled such
that each node represents a mobile agent (sensor or target) with
communication, sensing, and control capabilities. Following
some ideas from [1], we define a MHN as follows:

Definition 3: A mobile hybrid network Σ is a tuple Σ =
(I,A,Gc,Gs,Gh), where I = {1, . . . , N} is the set of unique
identifiers representing agents in the network, A = {Hi}i∈I
is a set of control systems (physical agents) with processing
power modeled as hybrid automata, Gc = {V, Ec} is a directed
communication graph, where V is the set of nodes and Ec is
the communication edge map, and Gs = {V, Es} is a directed
sensing graph, where Es is the sensing edge map. Finally,
Gh = {V, Eh} is a directed control graph with the set of nodes
V and the control edge map Eh. If Hi = Hj ,∀i, j ∈ I, the
network is uniform. Otherwise, the network is heterogeneous.

Several graphs are needed to capture the interactions of the
agents within the network and environment. In some cases,
agents can ’hear’ but not ’see’ each other. We use proximity
graphs to form Gc and Gs. Proximity graphs provide a natural
way to mathematically model the network interconnection
topology resulting from the agents sensing and/or commu-
nication capabilities. Sensors exchange information using a
communication protocol. The design of the control graph Gh
involves the assignment of control policies for each agent.
The set Eh is related to the communication Ec and sensing Es
graphs. An edge between two nodes in the control graph can be
created only if a communication edge or sensing edge exists.
Furthermore, processing capabilities of agents bring parallel
processing (e.g., coverage optimization), hierarchical structure,
(distributed) control and estimation into focus.

Based on the characteristics of the events (upon which
state evolution of a hybrid automata forming the network
depend) occurring in the network, a hybrid network could be
synchronous, asynchronous or a combination of both. That
bring us to the following definition:

Definition 4: A synchronous hybrid network is a set of
hybrid systems where exists a scheduled increasing sequence
of time instants T = {tk}k∈N or a sequence of events
E = {ek}k∈N that take place at Te = {tek

}k∈N when
executions of the hybrid automata happen.
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On the other hand, there is no such sequence in asynchronous
networks. In the networks that are a combination of both, sub-
sets of the network’s elements are not mutually synchronized,
but the elements within each subset are synchronized.

The evolution (or solution) of a hybrid automaton could be
deterministic, nondeterministic and stochastic. The nondeter-
ministic hybrid automata are those with certain freedom in
defining a solution, while for given input and initial state of
a deterministic hybrid automaton its state is uniquely defined
at any instant of time in the future. Refining nondeterministic
models in order to get better analysis of uncertain systems calls
for a stochastic hybrid model. In such model, uncertainties
(failures, duration of operations, switching between states,
etc.) are modeled as random variables or random processes
in order to include probabilistic phenomena.

B. Cooperative multi-target tracking - a case study

We consider a pursuit-evasion game where the set P of
N heterogeneous robotic sensors have to detect, pursue and
capture M randomly moving targets members of the set T .
Elements of set P and T are denoted Pi and Ti respectively.
With IP we denote the index set of P , and with IT the
index set of T . The game takes place in a polygonal area-of-
interest S ⊂ R2 with boundary ∂S. The area S is populated
by n fixed and convex obstacles {O1, . . . ,On} ⊂ S . The
geometry of the i th pursuer is assumed to be a convex polygon
denoted by Ai , with a configuration qPi (t) that specifies its
position and orientation at time t with respect to a fixed (or
inertial) Cartesian frame FS related to S. When dealing with
targets, position and orientation of the ith target at time t is
comprised in qTi (t). Let us point out that qPi

(t) and qTi (t) are
3-dimensional vectors, i.e., qPi

(t) = [XPi
(t) YPi

(t) θPi
(t)]T ,

and qTi (t) = [XTi (t) YTi (t) θTi (t)]
T . We use θTi (t) inter-

changeably with θTi,t throughout the paper.
At this stage of the implementation, the orientation of

pursuers does not play a significant role since sensors are
assumed omnidirectional and holonomic. Therefore, we have,

q̇Pi
(t) = ui(t), (2)

where ui(t) ∈ R2 is the input of the pursuer Pi.
Let us introduce the following definitions in order to pro-

ceed. From [14] we have,
Definition 5: A continuous-time random process is a family

of random variables Xt where t ranges over a specified
interval of time.

Definition 6: We say that Xt is a continuous-time Markov
process if for 0 ≤ s0 < · · · < sn−1 < s < t we have Pr{Xt ∈
B|Xs = x,Xsn−1 = xn−1, · · · , Xs0 = x0} = Pr{Xt ∈
B|Xs = x} where Pr denotes probability.
As a consequence of Definition 5, a target Ti is a continuous-
time random process of random variables θTi,t where t
ranges from t0 to ∞ (t0 is time when target entered S).
The random variable θTi,t describes the target’s direction. A
three-dimensional real valued vector function (components are
continuous functions) maps the family of random variables
θTi,t into qTi (t). At particular time instant t, the value of

process Ti is given by qTi (t). Notice that the future value
of qTi (t) at any given time is a function of target’s current
velocity, current position and θTi,t given with the following
expressions,

ẊTi (t) = vTi
(t) cos θTi (t),

ẎTi (t) = vTi(t) sin θTi (t), (3)

and therefore, Ti is a Markov process. The third component
of the vector function is the identity function.

The first two components of Ti are piece-wise linear, while
the third component has discontinuities at time instants when
a change in direction happens. The implemented time span
between two consecutive instants is uniformly distributed in
interval [Ti,min, Ti,max] determined by the user’s preferences.
A change of direction is uniformly distributed in interval
(θTi (t0) − π/2, θTi (t0) + π/2). Therefore, θTi,t is uniformly
distributed random variable for countably many time instants t
(i.e., a sequence of independent identically distributed random
variables), and otherwise is deterministic (holds a value of the
last change of the target’s direction).

The maximum translational speed of all sensors and targets
is known, and vP,max > vT ,max. While sensors can move
with any speed in [0, vP,max], it is assumed that the speed of
every target is uniformly distributed in [vT ,min, vT ,max], with
vT ,min > 0.

Let Cfree,i denote the configuration space of the ith sensor
that is free of obstacles and other sensors. Let FAi denote a
moving Cartesian frame embedded in Ai. If we assume that Di
(the geometry of the sensor’s field-of-view) and Ai are both
rigid, then qPi

(t) also specifies the position of every point in
Di (or Ai) relative to FS . Using the k− 1 individual sensors’
detections up to time τ where k ∈ N, it is possible to identify
the area in S where the sensor may obtain measurements of
a target with the probability higher then some threshold. That
leads to the following definition and proposition.

Definition 7: The target Tj in S maps in the ith sensor
configuration space C to the C-target region CRj = {qi ∈ C |
Pr{Di ∩ Ti} > ε,∀t ≥ τ, i ∈ IP , j ∈ IT }.

Proposition 1: C-target can be approximated with cone-like
area (as shown in Figure 2).

Proof: Let Fi be a Cartesian coordinate system associated
to C-target of target i. Let its y-axis be a minimum squared
error line with respect to k − 1 detection points of the target.
Note that the y-axis is a bisector of the C-target. The x-
axis contains a point of the k − 1th detection. For the sake
of simplicity, let us assume that the change of direction
happens periodically so the distance covered by the target in
one period is d. Let us define sums of independent random
variables An =

∑n
i=1 d cos θi and Bn =

∑n
i=1 d sin θi.

Expectation of An is 0 and of Bn is 2nd
π while variances

are nd
2 and ndπ

2−8d2

2π2 , respectively. Therefore, as n grows, the
likelihood that the target could be found further away from
the bisector increases. Moreover, the target is more likely
to progress along the bisector. Since Bn−Bn−1

An−An−1
= tan θn,

using Pr{0 ≤ tan θn ≤ α} = 1−ε
2 we can approximate the
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boundaries of the C-target with lines. Their slopes are α and
π−α with respect to Fi where α = tan(π 1−ε

2 ). Intersections
of the lines with x-axis of Fi are given with ±riε where ri is
the radius of the sensor.
A target with k−1 independent detections is called a partially-
observed target. A sensor receiving the highest reward is
deployed to investigate the C-target of the partially-observed
target making maneuvers described in Section II. After gath-
ering k independent observations of the target Ti , a sensor
with highest reward is deployed to capture the target. Our
goal is to estimate the future position of the target and use a
pursuit strategy that maximizes the likelihood of capturing the
target. Therefore, based on k intermittent observations of the
target’s position, the following capturing policy is proposed
and implemented: Move to the point of the last detection.
Afterwards, move to the intersection of minimum squared error
line and ∂S . The error that is minimized is the sum of squared
distances of k detection points and the line.

In order to reduce computational complexity of uncountable
space R2, a cell decomposition of S is implemented. We
discretized the environment using uniform cell decomposition.
Uniform cell decomposition is used because of its implemen-
tation tractability and optimal dispersion (see [4]). Optimal
dispersion (in L2 norm) is important since the sensing regions
are circles with finite area. Based on the cell decomposition,
a connectivity graph G is obtained. Every sensor has its
own connectivity graph. Cells forming Cfree,i are divided
into void and observation cells. Void cells are cells with
the probability of detection of partially-observed targets less
than threshold ε, while observation cells are those with the
probability larger than the threshold. The connectivity graph,
void and observation cells of each sensor have to be updated
as the game progresses. Cells in the decomposition (nodes
of the graph) are denoted ki, and sensors (except in pursue
mode and initial placement) move among centroids of the
cells. Therefore, we have a framework to define the underlying
performance index in order to achieve the goals stated in
Section II.

The sensing objectives are expressed in terms of a reward
function that represents the improvement in the overall prob-
ability of detection that would be obtained by moving from a
configuration qTi (t1) ∈ kl to a configuration in an adjacent cell
qTi (t2) ∈ ki (obviously, t1 < t2) taking into account distance.
The reward function is as follows:

R(kl, ki) = PR(ki) + ∆P kS (kl, ki)− d(kl, ki), (4)

where PR is the probability of cooperatively detecting a
partially-observed target, ∆P kS is the gain in the probability
of cooperatively detecting unobserved targets and d(kl, ki) is
distance between centroids of the cells. An unobserved target
is a target with less then k − 1 independent observations.
These probability density functions are obtained using the
methodology based on geometric properties of sensors and
area-of-interests described in [10]. The performance index (4)
is maximized with the constraint that minimal area coverage
has to be satisfied because of the reason stated in Section II.

The reason is that the maximal value of P kS , contributing as
difference in (4), is obtained when the sensors are grouped
in the corners of S. Based on the reward function, a sensor
with maximal reward along a path in the graph is deployed.
The terms in the reward function are weighted based on
user’s preferences. While choosing a sensor for pursuit, more
weight is put on the distance term since the pursuit is a costly
operation. In order to find a sensor Pi with maximal path
reward, we use graph searching algorithm A*. After finding
an optimal sensor, we determine a control input ui(t) in (2)
corresponding to the optimal path.

IV. HYBRID SYSTEM MODEL

The sensors (or pursuers) form MHN ΣP , and the targets (or
evaders) form MHN ΣT . The sensors are fully connected, and
the associated control graph is omitted since the sensors do not
perform a coordinated motion as a group (e.g., keeping some
formation) to accomplish the goal. Through communication,
sensors exchange their current position. Therefore, a sensing
graph is redundant, but sensing capability is essential for target
tracking. The sensors are able to sense targets (i.e., a sensing
between nodes of different networks takes place). Each new
observation triggers exchange of the information between the
sensors causing a change of the behavior, i.e., network ΣP is
synchronized by events related to targets. On the other hand,
collision avoidance with other sensors gives ΣP asynchronous
behavior.

When considering sensors as processing units, the estima-
tion of the targets’ position is distributed among sensors,
so as sensors’ motion planing algorithms. In other words,
multiple sensors are estimating the random processes (targets
positions) joining information they have collected, while the
control policy for each sensor is obtained considering only its
configuration space. Each sensor calculates its reward function
given in (4) communicating it to the others. The ground
sensors’ modes are:
• sensing (static or mobile with avoiding obstacles),
• pursuing (with obstacle avoidance), and
• communicating and updating information.

Aerial sensors do not have pursuing mode. Collisions among
the sensors are avoided using model prediction. Since the
motion planing of the sensors is distributed among them, such
collisions are possible. Using one step look ahead, collisions
are avoided switching to avoiding obstacles mode.

On the other hand, in this case study we assume that targets
cannot communicate within their network, and each target is
independent from other targets. Hence, network ΣT is purely
asynchronous. Evolution of ΣT is stochastically modeled as
described in Section III. They are only capable of sensing the
obstacles in their vicinity. Target modes are:
• active (avoiding obstacles or changing direction), and
• captured.

Collision avoidance among the targets and obstacles is ob-
tained using model prediction. Targets look one step ahead,
and if there is a collision, they switch to the avoiding obstacles
mode.
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1: Perform initial optimal sensor placement
2: Decompose environment into Cfree and Cobstacle cells
3: for all Sensors do
4: Calculate obstacle and coverage maps
5: end for
6: while Game not over do
7: for all Targets do
8: if Time for change of direction then
9: Change direction

10: end if
11: Update position (avoid obstacles, collisions and add noise)
12: end for
13: for all Sensors do
14: if Sensor update interval then
15: Calculate obstacle and coverage maps
16: end if
17: Update position (do maneuver, avoid obstacles and collisions)
18: if Position changed then
19: Update sensors’ network information
20: end if
21: Detect targets
22: if A target beneath capture threshold then
23: Remove target
24: Update sensors’ network information
25: End associated pursuit or investigations
26: end if
27: end for
28: if Pursued target beneath capture threshold then
29: Remove target
30: End pursuit
31: Update sensors’ network information
32: end if
33: if Detection then
34: Update sensors’ network information
35: if Target detections = k − 1 then
36: Hypothesize target track
37: Calculate observation cells
38: for all Sensors that have not detected this target do
39: Calculate path and reward to investigate target
40: end for
41: Deploy a sensor with the greatest reward
42: Determine maneuver
43: else if Target detections = k then
44: for all Sensors not in pursuit do
45: Calculate path and reward to pursue target
46: end for
47: Deploy a sensor with the greatest reward
48: end if
49: end if
50: end while

Fig. 3. Algorithm developed for the simulation.

The algorithm in Figure 3 clearly shows relations between
aforementioned modes and events triggering transitions from
one mode to the other.

V. SIMULATIONS AND NUMERICAL RESULTS

The information-driven sensor planning and pursuit strate-
gies described in previous sections are integrated in a simu-
lator. A pseudo-code of the implemented algorithm is shown
in Figure 3. We use k = 3 for the reasons stated in [15]. Due
to space limitations of the paper, we omit the most of this
section.

The robustness of the implemented strategies is verified by
introducing noise in the targets’ position and velocity.

VI. CONCLUSION

This paper presents a comprehensive stochastic hybrid
model of mobile agent networks able to capture a wide
range of multi-agent phenomena. A hybrid network consists
of mobile agents modeled as hybrid systems with processing
capabilities. The versatility and the flexibility of the model
are demonstrated by the cooperative multi-target tracking case
study fulfilling demanding tracking and pursuit goals. In the
future, we plan to analyze the complexity of the approach
applied in the case study, and to develop strategies involving
more intelligent targets. In addition, we will apply the model
to more progressive scenarios showing its full potential.
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