
Optimal Self-Triggering for Nonlinear Systems via Approximate
Dynamic Programming

Domagoj Tolić, Rafael Fierro and Silvia Ferrari

Abstract— In this paper we investigate optimal intermittent
feedback for nonlinear control systems. Using the currently
available measurements from a plant, we develop a method-
ology that outputs when to update the controller with new
measurements such that a given cost function is minimized. Our
cost function captures trade-offs between the performance and
energy consumption of the control system. The optimization
problem is formulated as a Dynamic Programming problem,
and Approximate Dynamic Programming is employed to solve
it. Instead of advocating a particular approximation architec-
ture for Approximate Dynamic Programming, we formulate
properties that successful approximation architectures satisfy.
In addition, we consider problems with partially observable
states, and propose Particle Filtering to deal with partially ob-
servable states and intermittent feedback. Finally, our approach
is applied to a mobile robot trajectory tracking problem.

I. INTRODUCTION

Recent years have witnessed an increasing interest in
event-triggered implementations of control laws. Many
works, such as [1], [2], [3], [4], [5] and [6], replace the
traditional periodic paradigm, where the up-to-date infor-
mation is transmitted and control laws are executed in a
periodic fashion, with the event-triggered paradigm. In the
event-triggered paradigm, one defines a desired performance
and sampling (i.e., transmission of the up-to-date informa-
tion) is triggered when an event, called a triggering event,
representing the unwanted performance occurs. A variant of
event-triggering, known as self-triggering, uses the current
sampling instance to predict and preclude an occurrence
of the triggering event (refer to [1], [2] and [6]). In order
to simplify this presentation and improve readability, we
refer to all these paradigms simply as intermittent feedback.
Intermittent feedback is motivated by the rational use of
expensive resources at disposition in an effort to decrease
energy consumption, processing and sensing requirements.

At the moment, the research community is interested in
extending intersampling intervals as much as possible with-
out taking into account a deterioration in the performance
due to intermittent feedback. In applications where energy
consumption for using sensors, transmitting the obtained
information, and executing control laws is relatively inex-
pensive compared to the slower convergence and excessive
use of control power, extending intersampling intervals is

This work was supported by NSF grants ECCS #1027775 and ECCS
#1028506.

D. Tolić and R. Fierro are with MARHES Lab, Department of Electrical
and Computer Engineering, University of New Mexico, Albuquerque, NM
87131–0001, USA, {dtolic}@ece.unm.edu. S. Ferrari is with
LISC, Department of Mechanical Engineering, Duke University, Durham,
NC 27708-0005, USA.

not desirable. For instance, think of an airplane driven by an
autopilot system designed to follow the shortest path between
two points. Any deviation from the shortest path caused
by intermittent feedback increases overall fuel consumption.
This increase in fuel consumption is probably more costly
than the cost of energy saved due to intermittent feedback.
In this paper, we encode these energy consumption trade-
offs in a cost function, and design an Approximate Dynamic
Programming (ADP) approach that yields optimal intertrans-
mission intervals with respect to the cost function.

The main contributions of this paper are threefold: a)
formulation of the optimal self-triggering problem as a
Dynamic Programming (DP) problem; b) employment of
Particle Filters (PFs) fed by intermittent feedback to account
for partially observable states; and c) formulation of prop-
erties that successful approximation architectures in ADP
approaches satisfy. To the best of our knowledge, the problem
of optimal intermittent feedback has yet to be addressed.

Similar problems to the problem considered herein are
discussed in [7] and [8]. The authors in [7] balance control
performance versus network cost by choosing the appropriate
time delay-controller pair. The work in [8] investigates opti-
mal control of hybrid systems based on ideas from dynamic
and convex programming. While [7] associates costs with
each of time delay-controller pairs, the work in [8] associates
costs with switches between controllers. The optimization
methods from [7] and [8] boil down to optimal control of
switching systems (refer to [9] and [10]).

Motivated by [10], we adopt ADP (see [11] and [12])
as the strategy for tackling our problem. ADP is a set of
methods for solving sequential decision-making problems
under uncertainty by alleviating the computational burden
of the infamous curses of dimensionality in DP [13]. In
theory, DP solves a wide spectrum of optimization problems
providing an optimal solution. In practice, straightforward
implementations of DP algorithms are deemed computation-
ally intractable for most of the applications. Therefore the
need for efficient ADP methods. However, comprehensive
analyses and performance guarantees of these approximate
methods are still unresolved (except in very special settings),
and present a critical area of research.

The rest of the paper is organized as follows. Section II
presents the problem of optimal intermittent feedback and
assumptions under which the problem is solved. The method-
ology brought together to solve the problem is presented
in Section III. The proposed methodology is verified on a
trajectory tracking controller in Section IV. Conclusions are
drawn and future challenges are discussed in Section V.

2012 IEEE International Conference on Control Applications (CCA)
Part of 2012 IEEE Multi-Conference on Systems and Control
October 3-5, 2012. Dubrovnik, Croatia

978-1-4673-4505-7/12/$31.00 ©2012 IEEE 879

Fig. 1. Diagram of a plant and controller with discrete transmission instants
and communication channels giving rise to intermittent feedback.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider a time-invariant nonlinear feedback control sys-
tem consisting of a plant

ẋp = fp(xp, u, ωp), y = gp(xp), (1)

and a controller

ẋc = fc(xc, y, ωc), u = gc(xc), (2)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny and
u ∈ Rnu are the outputs, and ωp ∈ Rnωp and ωc ∈ Rnωc

are the external/exogenous inputs or disturbances of the plant
and controller, respectively. Notice that y is the input of the
controller, and u is the input of the plant. Let us denote the
compound state of the closed-loop systems (1) and (2) by
x = (xp, xc) where x ∈ Rnx .

In order to account for the intermittent knowledge of y
and ωp by the controller, we model the links between the
plant and controller as communication networks that cause
intermittent exchange of information. More precisely, we
introduce the output error vector e as follows:

e(t) := ŷ(t)− y(t) (3)

where ŷ is an estimate of y performed from the perspective
of the controller, and the input error vector eω as follows:

eω(t) := ω̂p(t)− ωp(t) (4)

where ω̂p is an estimate of ωp from the perspective of the
controller. For the sake of simplicity, we take ŷ and ω̂p to
be the most recently communicated values (or transmitted
measurements) of the output and external input of the plant,
i.e., we use the zero-order-hold strategy. Now we introduce
T := {ti : i ∈ N0} as the set of time instants when
outputs and externals inputs of the plant are transmitted
over communication networks. Finally, many control laws
are designed such that ωc = ω̂p. Examples are trajectory
tracking controllers as in [4], [5] and [14]. An illustration of
a control system indicating the communication channels that
cause intermittent information is provided in Figure 1.

Next, we want to minimize the following cost function
V : Rnx → R that captures performance vs. energy trade-
offs

Vτi(x0) = E
eω

{ ∞∑
i=1

γi
[ti∫
ti−1

(xTpQxp + uTRu)dt+ S

︸ ︷︷ ︸
l(xp,u,τi)

]}

(5)

over all sampling policies τi and for all initial conditions
x0 ∈ Rnx . In addition, γ ∈ (0, 1) is a discount factor that
makes the sum (5) finite provided that l(xp, u, τi) is bounded
over all [ti−1, ti] where ti ∈ T and

ti = ti−1 + τi−1. (6)

For clarity, we use τi instead of τ(ŷ(ti), ω̂p(ti)), but one
has to keep in mind that, in general, intersampling intervals
τi’s depend on the most recently transmitted information
from the plant, i.e., on ŷ(ti) and ω̂p(ti). In addition, Q
and R are positive definite matrices, and a nonnegative
constant S represents the cost incurred for sampling y and
ωp, transmitting ŷ and ω̂p, and updating the control signal
u. In (5), the conditional expectation over a stochastic signal
eω is denoted E

eω
.

The main problem considered herein can now be stated:
Problem 1: For the system (1) and (2) with values of ω̂p

and ŷ received at ti, i ∈ N0, find time intervals τi’s until the
next transmission instants such that (5) is minimized.

We solve the above problem under the following assump-
tions:

Assumption 1: ŷ is corrupted by measurement noise.
Assumption 2: ω̂p is corrupted by measurement noise, and

ωp is arbitrary between two consecutive ti’s.
Due to these assumptions, we have to deal with partially
observable states (see Subsection III-E for more details).

III. METHODOLOGY

This section presents the tools brought together to solve
Problem 1 under Assumptions 1 and 2. Starting from the
input-output-triggering that provides maximal stabilizing in-
tersampling intervals τmax

i ’s, we find optimal τ∗i ’s for the
cost function (5) resorting to ADP and PF.

A. Input-Output-Triggering via the Small-Gain Theorem

Building on the small-gain theorem, we develop input-
output-triggering in [15] (the work from [15] is partially
published in [16]). In other words, based on the currently
available but outdated measurements of the outputs and
external inputs of a plant, a simple expression for when to
obtain new up-to-date measurements and execute the control
law is provided. The details of [15] are out of scope of this
paper and are not needed in order to follow the rest of the
paper. In fact, with slight modifications, our ADP approach
is applicable to any self-triggered sampling policy (e.g., [1],
[2], and [6]). Essentially, self-triggered sampling policies
output maximal allowable intersampling intervals τmax

i ’s that
provably yield stable closed-loop system (1) and (2). Starting
from these τmax

i ’s, the work presented herein finds

τ∗i ∈ [0, τmax
i], i ∈ N0 (7)

that minimize (5). Because we know the upper bounds
τmax
i ’s of stabilizing sampling policies, τ∗i ’s obtained in

this paper provably stabilize the plant. A comprehensive
treatment of the problem whether ADP solutions of optimal
problems yield stability can be found in [17].

880

B. Dynamic Programming

Notice that the cost function (5) has the standard DP form.
Let us now introduce a state transition function f that maps
x(ti−1), u(ti−1) and ω̂p(ti−1) to x(ti) given some eω over
[ti−1, ti], i.e.,

x(ti) = f(x(ti−1), u(ti−1), τi−1, ω̂p(ti−1), eω). (8)

Due to intermittent feedback and presence of nonlinearities
in the plant and controller, the state transition function over
τi’s, in general, cannot be given in a closed form with,
for example, a difference equation [18]. This is a typical
impediment one faces when analyzing nonlinear systems
under intermittent feedback. Therefore, in general, the state
transition function (8) needs to be simulated using (1), (2),
ŷ(ti−1), ω̂p(ti−1) and eω over time horizon τi−1.

Next, let us assume that eω is a stationary stochastic
process. Consequently, since we consider the infinite horizon
problem (5) and a time-invariant control system (1) and (2),
τi is not a function of ti. Hence, we simply write τ instead
of τi in the rest of the paper. Solving the DP problem of
minimizing (5) backwards through time is combinatorially
impossible since the state space x in (5) is uncountable.
Therefore, we write the stochastic control problem of min-
imizing (5) over τ in its equivalent form known as the
Bellman equation

V ∗(z) = inf
τ∈[0,τmax]

(
l(z, u, τ)+

+ γ E
eω
{V ∗(f(z, u, τ, ω̂p, eω))}

)
(9)

where V ∗(z) is called the optimal value function (or optimal
cost-to-go function), and represents the cost incurred by an
optimal policy τ∗ when the initial condition in (5) is z.
It is well known that V ∗ is the unique fixed point of (9).
Therefore, the problem of minimizing (5) boils down to
finding V ∗ in (9).

For notational convenience, we introduce the Bellman
operator M as

Mg = (Mg)(z) = inf
τ∈[0,τmax]

(
l(z, u, τ)+

+ γ E
eω
{g(f(z, u, τ, ω̂p, eω))}

)
(10)

for any g : Rnx → R. Since γ ∈ (0, 1), it can be shown that
M is a contraction, i.e.,

‖Mu−Mv‖s ≤ γ‖u− v‖s (11)

where ‖v‖s = supz∈Rnx v(z). The set B of all bounded,
real valued functions with the norm ‖ · ‖s is a Banach space.
Therefore, for each initial V 0 ∈ B, the sequence of value
functions V n+1 =MV n =Mn+1V 0 converges to V ∗.

Two remarks are in order. First, it can be shown that the
problem of finding an optimal τ∗ for each state in (9) is
non-convex. However, since τ is confined to a rather small
compact set [0, τmax], we utilize gradient search methods
with constraints from different initial points in order to obtain
τ∗. Second, the conditional expectation E

eω
in (9) can be

obtained in a closed form only for special cases. Otherwise,
it can be calculated numerically by replacing the integral with
a sum using a quadrature approximation. In Section IV, we
use the Simpson formula [19].

Lastly, due to the “curses of dimensionality”, solving (9)
for V ∗(z) or iterating an initial V 0 is deemed intractable
for most of the problems of interest; hence, we employ
ADP in the next subsection where our goal is to find an
approximation V̂ ∗ of V ∗.

C. Approximate Dynamic Programming

Among a number of methods in ADP, we choose the Value
Iteration (VI) method for its simplicity and a wide spectrum
of applications. Notice that B is an infinite dimensional
vector space, meaning that it takes infinitely many parameters
to describe V ∗. Therefore, one introduces an approximate
value function V̂ i of V i where i ∈ N0. Approximate value
functions V̂ i, i ∈ N0, can be represented in finite parameter
approximation architectures such as neural networks (NNs).
Note that it is not possible to obtain true value functions V i’s
but only their approximations; hence, we write V̂ i instead of
V i. Basically, VI performs

V̂ i+1 =MV̂ i, i ∈ N0 (12)

until

‖V̂ i+1 − V̂ i‖s < ε (13)

where ε > 0.
In order to calculate V̂ i+1 in (12), we need to apply

(10) over all z ∈ Rnx . Obviously, this is computationally
impossible since Rnx contains uncountably many points.
Therefore, many ADP approaches focus on a compact subset
Cx ⊂ Rnx , choose a finite set of points X ⊂ Cx, and
calculate V̂ i+1 only for the points in X . Afterwards, the
values of V̂ i+1 for Cx \ X are obtained via some kind of
interpolation/generalization.

D. Approximation Architecture

The problem of choosing an approximation architecture
that fits V̂ i+1 to V̂ i+1(X) and, at the same time, is able to
interpolate/generalize for V̂ i+1(Cx \X) appears to be crucial
in order for ADP to converge. It is considered that ADP
in not converging when either the stopping criterion (13) is
never reached (refer to [20] and [21]) or V̂ ∗ is not an accurate
approximation of V ∗ [22]. The latter criterion is concerned
with suboptimality of the obtained solution. In this paper,
we focus on the former deferring suboptimality analyses for
future work.

The key property that has to be preserved by an approxi-
mation architecture is the contraction property (11) (refer to
[20], [21] and [23]). In [20], the author classifies function
approximators as expansion or contraction approximators.
Expansion approximators, such as linear regressors and NNs,
exaggerate changes on Cx\X . Contraction approximators (or
local averagers), such as k-nearest-neighbor, linear interpola-
tion, grid methods and other state aggregations methods, con-
servatively respond to changes in X . Therefore, on the one

881

hand, a VI that includes a contraction approximator always
converges, in the sense of (13), to the fixed point determined
by the approximator, say V̂ ∗ca. However, not much can be said
about the value ‖V ∗ − V̂ ∗ca‖s (see [20] and [21]). On the
other hand, a VI that includes an expansion approximator
might diverge [21]. However, NNs are still a widely used
approximation architecture due to their notable successes
(for example, [24], [25], and [26]), adaptive architectures
[27], performance guarantees under certain assumptions [23],
and inventions of novel NN architectures. These novel NN
architectures are also called nonparametric approximation
[23] and they adapt to the training data. Examples are kernel-
based NNs (refer to [28] and [29]) and recurrent NNs (refer
to [30] and [29]).

A goal of this paper is not to advocate certain architec-
tures. Instead, based on our experience and the references
above, we define properties that successful approximation
architectures possess (e.g., contraction approximators and
kernel-based NNs). Based on the specifics of the problem (di-
mensionality of the problem, availability and density of data,
available processing power, memory requirements, etc.), one
should choose a suitable architecture.

Desired Properties: Assume that V ∗(x) is a smooth
function on Cx, and choose a smooth function approximator.
At the ith step, where i ∈ N0, randomly pick any x′ ∈ Cx,
calculate (MV̂ i)(x′), and fit V̂ i(x′) to (MV̂ i)(x′) obtaining
V̂ i+1. We are seeking an approximation architecture that
satisfies the following properties

(i) V̂ i+1(x′) = (MV̂ i)(x′);
(ii) supp(V̂ i+1 − V̂ i) = Ci, where supp(f) = {x : f(x) 6=

0} is the support of a function f , and Ci ⊂ Cx is a
convex and compact neighborhood of x; and

(iii) for any c ∈ ∂Ci, where ∂Ci denotes the boundary of
Ci, the following holds

V̂ i+1[S] ⊆ [V̂ i+1(c), V̂ i+1(x′)], (14)

where V̂ i+1[S] is the image of the segment S connect-
ing x′ and c,

in order to have ‖V i+1 − V i‖s → 0 as i→∞.
Remark 1: Let us consider two value functions ûi and

v̂i in the ith step, and apply M at a randomly chosen
x′i. Due to (11), we have ‖(Mûi)(x′i) − (Mv̂i)(x′i)‖ ≤
γ‖ûi(x′i) − v̂i(x′i)‖. From property (i), we conclude that
‖ûi+1(x′i) − v̂i+1(x′i)‖ ≤ γ‖ûi(x′i) − v̂i(x′i)‖. Since the
approximator is smooth, we know that there exists a neigh-
borhood C′i ⊆ Ci of x′i such that supx∈C′i ‖û

i+1(x) −
v̂i+1(x)‖ ≤ supx∈C′i ‖û

i(x) − v̂i(x)‖. This means that the
nonexpansion property required in [20] is obtained locally
around x′i. The nonexpansion property from [20] is (11)
when γ is replaced with 1. Finally, property (iii) eliminates
counterexamples in which the Lebesgue measures of C′i,
i ∈ N0, tend to zero. Consequently, generalization of the
approximation architecture is ensured.

Remark 2: Property (i) is the accuracy requirement in
order to preserve (11). Property (ii) is the “local property”
found in [20], [21] and [27]. This local property is built in the

activation functions of the kernel-based NNs. Property (iii)
is used to ensure that C′i’s are not merely x′i’s. In addition,
property (iii) curbs expansiveness on Ci \ C′i.

Remark 3: Notice that Desired Properties imply online
learning of NNs [29]. The motivation behind this choice lies
in the fact that it is straightforward to check properties (i),
(ii) and (iii) in online learning. Moreover, since we randomly
pick points x′i ∈ Cx in each step, we do not have to specify
X . By choosing random x′i’s, we also avoid the problem of
exploration vs. exploitation [13]. On the other side, when
using batch learning, properties (i), (ii) and (iii) cannot be
guaranteed since NNs are expansion approximators. In fact,
not until we switched to online learning in the example
from Section IV, convergence was obtained. An extension
of Desired Properties for batch learning and the problem of
choosing X are left for the future work.

Remark 4: As the stopping criterion we use the following:
when ‖V̂ i+1 − V̂ i‖s < ε for N ∈ N consecutive steps, the
value iteration method has converged.

E. Partially Observable States

Notice that the approximate value function V̂ (x) is a
function of state x. Up to this point we did not take into
account that x is not available due to Assumptions 1 and 2. In
other words, we are solving the DP problem (5) with partially
observable states. More details about strategies for solving
DP problems with partially observable states are found in
Chapter 5 of [11].

Let us assume that the controller can access its state xc.
Consequently, the controller can calculate u at any given
time. However, the controller does not have access to the
state of the plant xp but merely to ω̂p and ŷ. We circumvent
this problem by introducing a particle filter that provides
estimates x̂p of the actual state xp.

More precisely, we model the closed-loop system (1) and
(2) as

xp(ti) = fdp (xp(ti−1), u(ti−1), τi−1, ω̂p(ti−1), eω),

ŷ(ti) = g(xp(ti), ν), (15)

where fdp represents a discrete transition function of the
plant obtained in similar fashion as (8), and statistics of the
process noise eω and measurement noise ν are known and
time invariant. Based on (15), we build a particle filter that
extracts x̂p from ω̂p and ŷ and feeds the controller. Details of
our particle filter implementation under intermittent feedback
can be found in [31] and [32].

We deal with partially observable states by first obtaining
V̂ ∗(x) for the case of perfect state information. Then, we
employ particle filtering and iterate V̂ ∗(x) using (12) to
obtain the approximation of V̂ ∗(x̂) for the case of partially
observable states. Basically, since V̂ ∗(x) is a close estimate
of V̂ ∗(x̂) when x̂ is a close estimate of x, we exploit V̂ ∗(x)
to fine tune V̂ ∗(x̂).

IV. CASE STUDY - TRAJECTORY TRACKING

In this section, we apply the optimal self-triggered sam-
pling policy to the trajectory tracking controller presented in

882

Fig. 2. Illustration of the trajectory tracking problem considered in this
paper.

[14]. In [14], a velocity-controlled unicycle robot R1 given
by

ẋR1 = vR1 cos θR1, ẏR1 = vR1 sin θR1, θ̇R1 = ωR1 (16)

tracks a trajectory generated by a virtual velocity-controlled
unicycle robot R2 with states (xR2, yR2, θR2), and linear and
angular velocities vR2 and ωR2, respectively. See Figure 2
for an illustration. The tracking error xp in the coordinate
frame {M} of robot R1 becomes

xp =

 cos θR1 sin θR1 0
− sin θR1 cos θR1 0

0 0 1

xR2 − xR1

yR2 − yR1

θR2 − θR1

 . (17)

Applying the following control law

vR1 = vR2 cosx3 + k1x1,

ωR1 = ωR2 + k2vR2
sinx3
x3

x2 + k3x3 (18)

where k1, k2 and k3 are positive control gains, Proposition
3.1 in [14] shows that the control law (18) makes the origin
xp = [0 0 0]T globally asymptotically stable provided that
vR2(t), ωR2(t) and their derivatives are bounded for all times
t and limt→∞ vR2(t) 6= 0 or limt→∞ ωR2(t) 6= 0.

Since the controller (18) is not a dynamic controller, we
have that x = xp. Next, for the sake of simplicity, we use
the following measurement model: ŷ(ti) = x(ti) + ν. The
external input is ωp = [vR2 ωR2]

T . When emulating noise
in (15), we use eω ∈ U([−0.3, 0.3] × [−0.3, 0.3]) and ν ∈
U([−0.15, 0.15]×[−0.15, 0.15]×[−0.15, 0.15]) where U(S)
denotes the uniform distribution over a compact set S.

The following coefficients were used in the cost function
(5): Q = 0.1I3, R = 0.1I2, S = 15 and γ = 0.96 where In
is the n×n identity matrix and n ∈ N. A remark is in order
regarding the choice of Q, R and S. On the one hand, as we
decrease S and keep Q and R fixed, the obtained sampling
policy τ approaches zero. On the other hand, as S becomes
greater, τ approaches τmax. The above choice of Q, R and
S yields τ ∈ [0.6τmax, 0.9τmax].

As the approximation architecture we choose a Multilayer
Perceptron (MLP) with 100 hidden neurons. In addition,
we confine x to the set Cx = [−100, 100]2 × [−30π, 30π].

−60
−40

−20
0

20
40

60

−60

−40

−20

0

20

40

60

140

150

160

170

180

190

200

210

220

estimate of x
1
 [m]

cost−to−go V parametrized with estimate of x
3
 = 0 [m]

estimate of x
2
 [m]

Fig. 3. Approximation V̂ ∗(x̂) of the optimal value function V ∗(x) for
ωp = (1, 1) depicted as a function of x̂1 ∈ [−70, 70] and x̂2 ∈ [−70, 70]
when x̂3 = 0.

Not until we used that many hidden neurons, properties (i),
(ii) and (iii) were satisfied on Cx. Even though activation
functions in MLPs are not locally responsive, we were able
to satisfy (i), (ii) and (iii). We presume the reason is low
dimensionality of the considered tracking problem. For high
dimensional problems, the kernel-based NNs appear to be
more suitable. In the stopping criterion from Remark 4 we
choose ε = 1 and N = 10, and obtain V̂ ∗(x) in about 300 to
400 steps depending on the initial V̂ 0(x) and ωp. Afterwards,
we obtain V̂ ∗(x̂) from V̂ ∗(x) using (12) and x̂ fed from the
particle filter. With ε = 1 and N = 10, it takes about 50
simulations for V̂ ∗(x̂) to converge starting from V̂ ∗(x). The
obtained approximation V̂ ∗(x̂) of V ∗(x) for ωp = (1, 1) is
illustrated in Figure 3.

In the simulation included in this paper, we choose
k1 = 1.5, k2 = 1.2 and k3 = 1.1. Figure 4 is obtained
for the trajectory generated with ωp(t) = (1, 1)[0,1.83) +
(0.6, 0.15)[1.83,8.8) + (2, 2)[8.8,12] where tS is the indicator
function on a set S, i.e., tS = t when t ∈ S and zero
otherwise.

V. CONCLUSIONS

This paper investigates the problem of optimal input-
output-triggering for nonlinear systems. We replace the tra-
ditional periodic paradigm, where up-to-date information is
transmitted and control laws are executed in a periodic fash-
ion, with optimal intermittent feedback. In other words, we
develop a methodology that, based on the currently available
but outdated measurements of the outputs and external inputs
of a plant, provides time instants when to obtain new up-to-
date measurements and execute the control law such that a
given cost function is minimized. The optimization problem
is formulated as a DP problem, and ADP is employed
to solve it. In addition, because the investigated problems
contain partially observable states, our methodology includes

883

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

time[s]

no
rm

 o
f (

x,
e)

(a)

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time[s]

sa
m

pl
in

g
pe

rio
d

τ

(b)

2 2.5 3 3.5 4 4.5

0.024

0.026

0.028

0.03

0.032

0.034

0.036

time[s]

sa
m

pl
in

g
pe

rio
d

τ

(c)
Fig. 4. Illustration of the optimal input-output-triggering: (a) Norm of (x, e); (b) Values of sampling period τi between two consecutive transmissions.
Red stems indicate time instants when changes in ωp happen; and, (c) A detail from Figure 4(b).

Particle Filtering under intermittent feedback. Furthermore,
instead of advocating one approximation architecture over
another in ADP, we formulate properties that successful
approximation architectures satisfy. Finally, our approach is
successfully applied to a trajectory tracking controller for
velocity-controlled unicycles.

In the future, the main goal is to further investigate the
properties of successful approximation architectures. In ad-
dition, we plan to estimate how suboptimal the methodology
developed in this paper is.

REFERENCES

[1] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030 – 2042, September 2010.

[2] M. Lemmon, Event-triggered Feedback in Control, Estimation, and
Optimization, ser. Lecture Notes in Control and Information Sciences,
A. Bemporad, M. Heemels, and M. Johansson, Eds. Springer Verlag,
2010, vol. 405.

[3] H. Yu and P. Antsaklis, “Event-triggered real-time scheduling for
stabilization of passive and output feedback passive systems,” in
Proceedings of the American Control Conference, San Francisco, CA,
June-July 2011, pp. 1674 – 1679.

[4] P. Tallapragada and N. Chopra, “On event triggered trajectory tracking
for control affine nonlinear systems,” in Proceedings of the IEEE
Conference on Decision and Control, December 2011, pp. 5377–5382.

[5] D. Tolić and R. Fierro, “Stability of feedback linearization under
intermittent information: A target-pursuit case,” in American Control
Conf., San Francisco, CA, 2011, pp. 3184 – 3190.

[6] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic
networks for optimal deployment,” in American Control Conf., San
Francisco, CA, June-July 2011, pp. 1039–1044.

[7] S. Hirche, C. Chen, and M. Buss, “Performance oriented control
over networks switching controllers and switched time delay,” Asian
Journal of Control, vol. 10, no. 1, pp. 24–33, 2008.

[8] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems,” in
Conference on Decision and Control, 1999, pp. 3972–3977.

[9] S. C. Bengea and R. A. DeCarlo, “Optimal control of switching
systems,” Automatica, vol. 41, no. 1, pp. 11–27, 2005.

[10] X. Xuping and P. Antsaklis, “Optimal control of switched systems
based on parameterization of the switching instants,” IEEE Trans. on
Automatic Control, vol. 49, no. 1, pp. 2–16, January 2004.

[11] D. P. Bertsekas, Dynamic Programming and optimal control, Vol. I,
3rd ed. Belmont, Massachusetts: Athena Scientific, 2005.

[12] ——, Dynamic Programming and optimal control, Vol. II, 3rd ed.
Belmont, Massachusetts: Athena Scientific, 2007.

[13] W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality, ser. Wiley Series in Probability and Statis-
tics. Hoboken, NJ: John Wiley and Sons, Inc., 2007.

[14] C. C. de Wit, H. Khennouf, C. Samson, and O. Sordalen, “Nonlinear
control design for mobile robots,” Recent Trends in Mobile Robots,
pp. 121–156, 1993.

[15] D. Tolić, R. Fierro, and R. G. Sanfelice, “Input-output-triggering in
nonlinear systems: A small gain theorem approach,” in preparation.

[16] D. Tolić, R. G. Sanfelice, and R. Fierro, “Self-triggering in nonlinear
systems: A small gain theorem approach,” in 20th Mediterranean
Conference on Control and Automation, July 2012, to appear.

[17] W. Zhang, “Controller synthesis for switched systems using approx-
imate dynamic programming,” Ph.D. dissertation, Purdue University,
Indiana, December 2009.

[18] D. Nešić, A. Teel, and P. Kokotović, “Sufficient conditions for stabi-
lization of sampled-data nonlinear systems via discrete-time approxi-
mations,” Sys. and Cont. Letters, vol. 38, no. 4-5, pp. 259–270, 1999.

[19] P. J. Davis and P. Rabinowitz, Methods of numerical integration,
2nd ed. Mineola, NY: Dover Publications, Inc., 2007.

[20] G. J. Gordon, Stable function approximation in dynamic programming,
School of Computer Science, Carnegie Mellon University, 1995,
technical report.

[21] J. M. Lee, N. S. Kaisare, and J. H. Lee, “Choice of approximator and
design of penalty function for an approximate dynamic programming
based control approach,” Journal of Process Control, vol. 16, no. 2,
pp. 135 – 156, February 2006.

[22] B. O’Donoghue, Y. Wang, and S. Boyd, “Min-max approximate
dynamic programming,” in IEEE Multi-Conference on Systems and
Control, Denver, CO, September 2011, pp. 424–431.

[23] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
ser. Automation and Control Engineering Series. CRC Press, 2010.

[24] A. Samuels, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, no. 3,
pp. 210–229, 1959.

[25] G. Tesauro, “Neurogammon: a neural network backgammon program,”
in IJNN Proceedings III, 1990, pp. 33–39.

[26] L. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3-4, pp.
293–322, 1992.

[27] P. Vamplew and R. Ollington, “Global versus local constructive func-
tion approximation for on-line reinforcement learning,” in Proceedings
of the 18th Australian Joint conference on Advances in Artificial
Intelligence, ser. AI’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 113–122.

[28] B. M. Bethke, “Kernel-based approximate dynamic programming
using bellman residual elimination,” Ph.D. dissertation, MIT, Mas-
sachusetts, February 2010.

[29] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Prentice
Hall, November 2008.

[30] I. Szita, “Rewarding excursions: Extending reinforcement learning
to complex domains,” Ph.D. dissertation, Eötvös Loránd University,
Budapest, Hungary, March 2007.

[31] D. Tolić and R. Fierro, “Adaptive sampling for tracking in pursuit-
evasion games,” in IEEE Multi-Conference on Systems and Control,
Denver, CO, September 2011, pp. 179 –184.

[32] ——, A Comparison of a Curve Fitting Tracking Filter and
Conventional Filters under Intermittent Information, Department
of Electrical and Computer Engineering, University of New
Mexico, October 2010, technical report. [Online]. Available:
http://hdl.handle.net/1928/11424

884

