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Abstract— This paper presents an approach for optimizing
paths online for a pursuit-evasion problem where an agent
must visit several target positions within a region of interest
while simultaneously avoiding one or more actively-pursuing
adversaries. This is relevant to applications such as robotic path
planning, mobile-sensor applications, and path exposure. The
methodology described utilizes cell decomposition to construct a
modified decision tree to achieve the objective of minimizing the
risk of being caught by an adversary and maximizing a reward
associated with visiting the target locations. By computing
paths online, the algorithm can quickly adapt to unexpected
movements by the adversaries or dynamic environments. The
approach is illustrated through a modified version of the
video game Ms. Pac-Man which is shown to be a benchmark
example of the pursuit-evasion problem. The results show that
the approach presented in this paper runs in real-time and
outperforms several other methods as well as most human
players.

I. INTRODUCTION

Although simple in appearance and gameplay, the sin-
gle player video game Ms. Pac-Man offers a challenging
representation of a pursuit-evasion problem that requires
extended foresight, quick decisions and a high degree of
adaptability. As explained in [1], games often present ex-
cellent benchmarks for testing intelligent algorithms because
they have simple rules and objectives but offer challenging
environments and tasks. The pursuit-evasion family of games
describes a predator and prey scenario where the objective
of one group is to evade a second group in the environment
which has the goal of tracking and catching the first group.
This type of game is analogous to several real-world appli-
cations such as robotic path planning [2], [3], mobile-sensor
applications [4], and path exposure [5], [6].

In Ms. Pac-Man, the player assumes the role of the evader
and must navigate a maze to visit several target locations
(”dots”) while avoiding a team of pursuing adversaries with
individualized strategies. There is a pre-determined pattern
of dots scattered in each maze which Ms. Pac-Man must eat,
and when all of the dots have been eaten, the player advances
to the next level which involves a more difficult maze, a new
set of dots, and faster adversaries. A screenshot of the game’s
first maze is shown in Figure 1.
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The methodology presented in this paper gives an ap-
proach for determining optimal paths online for an evader in
a pursuit-evasion problem where an agent must balance the
tasks of avoiding a group of pursuers while visiting several
target locations within a region of interest. Cell decomposi-
tion is used to transform the space in the environment where
the agent is allowed to travel into a finite set of convex
cells. The decomposition is used to construct a modified
decision tree and achieve the objective of minimizing the risk
of being caught by an adversary and maximizing a reward
associated with visiting the target locations. The approach is
illustrated through a modified version of the video game Ms.
Pac-Man, which is shown to be a benchmark example of the
pursuit-evasion problem. The results show that the approach
presented in this paper outperforms several other methods as
well as most human players.

Fig. 1. Screenshot of Level 1 game maze.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The path planning problem considered in this paper is to
find the optimal paths of a single mobile agent with position
or state, xp, that travels in a two-dimensional Euclidian
workspace denoted by W ⊂ �2. The agent must navigate
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through the workspace and collect a set of distributed objects
or visit several points of interest within W while simul-
taneously avoiding collisions with a group of N actively-
pursuing adversaries with states denoted by xI

G where I
corresponds to an adversary’s index, and a collision is defined
as any instant where xp = xI

G for all I . The optimal paths
are then those that minimize the risk of encountering an
adversary while maximizing the number of goal positions
achieved. The workspace geometry and the positions of the
points of interest or distributed objects are assumed to be
known a priori, and the approach can be extended to higher-
dimensional workspaces. The behaviors or control laws of the
adversaries are also assumed to be known, and their positions
are assumed to be observable in real-time.

This problem can be put in the context of a benchmark
problem taken from the video game Ms. Pac-Man, for which
the details are provided in Section I. The agent’s (Pac-Man’s)
state and control are represented by the vectors,

xp =
[
xpx

xpy

]T
(1)

up =
[
upx

upy

]T
(2)

where xpx and xpy are Pac-Man’s x and y coordinates in
pixels, and Pac-Man’s controls, upx and upy , signify the
attempted movement in the x and y directions, respectively.
The adversaries’ (ghosts’) states and controls, xI

G and uI
G,

are defined in an identical manner. The workspace is defined
as a maze encountered in the game, as shown in Figure 1.
Let W have an inertial frame of reference, FW , such that
all possible xy-coordinates are in the positive orthant and are
always greater than zero. The geometries of Pac-Man and the
ghosts can be thought of as rectangular in shape such that
their widths only allow for bidirectional movement along a
straight path length. Therefore, each point within the maze
has a set of admissible actions, U [x(tk)] ⊂ U where

U = {a1, a2, a3, a4} ≡
{[

0
1

]
,

[−1
0

]
,

[
0
−1

]
,

[
1
0

]}
(3)

is the space of all possible actions or control values for both
Pac-Man and the ghosts, and tk is a discretized instant in time
such that ti ≤ tk ≤ tf . According to the coordinate frame
convention, ux = +1 denotes motion to the right, ux = −1
represents motion to the left, uy = +1 corresponds to upward
motion, and uy = −1 coincides with downward motion.

In the game, the player’s goal is to achieve the highest
possible score by eating various objects. However, contrary to
the game, the objective of the problem presented in this paper
is solely to avoid the ghosts and collect all of the dots within
W . Therefore the agent performance is based on the number
of dots collected (up to a maximum of the number initially
present in the maze) without being caught by a ghost. To
make the evasion more difficult for the agent, this paper also
neglects the effects of the ”power pill” bonuses seen in the
game, which temporarily cause the ghosts to retreat and allow
Pac-Man to send the ghosts back to their starting locations by
eating them. In addition, the ghosts are not slowed when they
travel through a ”tunnel” which is a wrap-around path that

allows characters to quickly move to the opposite side of the
maze. This and the other bonus features are not included in
the described simulations or performance metrics. However
as will be shown in a separate paper, the approach presented
can be extended to allow additions that give the agent the
capabilities to temporarily assume the role of a pursuer when
necessary, as is required to achieve high scores within the
game.

The method for computing the optimal paths is based
on the cell decomposition and connectivity tree approach
described in Section V.

III. MODELING OF ADVERSARY BEHAVIOR

Let IG = {I|I = r, p, b, o} denote the ghosts’ index
set where r, p, b and o represent each of the four ghosts
in the game. While in active pursuit, each of the ghosts
chases Pac-Man in an individualized manner by utilizing
different rules for choosing a set of target locations, denoted
by xI

T , which guide their decisions. The positions of the
targets are functions of time and Pac-Man’s state where Pac-
Man’s position and control are represented by (1) and (2).
The ghosts then share an identical algorithm for moving to
their separate targets. The laws employed for determining the
ghosts’ targets are as follows:

For the red ghost, I = r, the target is assigned as the
location of Pac-Man. This causes the red ghost to often chase
the player from behind.

xr
T (tk) = xp(tk) (4)

For the pink ghost, I = p, the target is set as the position
slightly in front of Pac-Man, and the resulting behavior is an
adversary that tries to attack from the front.

xp
T (tk) = xp(tk) +Aid for up(tk) = ai (5)

where d =
[
32 32

]T
in units of pixels and,

A1 =

[−1 0
0 1

]
, A2 =

[−1 0
0 0

]
, (6)

A3 =

[
0 0
0 −1

]
, A4 =

[
1 0
0 0

]
.

For the light blue ghost, I = b, the target is a reflection of
the red ghost’s position about the pink ghost’s target. This
causes the light blue ghost to seem like it attempts to guess
Pac-Man’s future paths.

xb
T (tk) = [2 · xR(tk)− xr

G(tk)] (7)

where the reflection point, xR(tk) is,

xR(tk) = xp(tk) +Aie, e =
[
16 16

]T
(8)

For the orange ghost, I = o, the target is set as the bottom
left corner of the maze if Pac-Man is within a defined radius
of the ghost. However, if Pac-Man is outside of that radius,
the target becomes the location of Pac-Man itself, which is
identical to the red ghost’s strategy. The orange ghost is the
least threatening, as it often keeps its distance from Pac-Man,
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but its seemingly unpredictable behavior sometimes causes
it to collide with the player’s path unexpectedly.

xo
T (tk) =

{
xB for

∥∥xo
G(tk)− xp(tk)

∥∥ ≤ c
xp(tk) for

∥∥xo
G(tk)− xp(tk)

∥∥ > c

}
∀k (9)

where c = 80 pixels and xB denotes the position vector of
the bottom left corner of the game maze.

After the target positions are calculated, the ghosts all
utilize a common rule for moving towards their separate
targets:

ul
G(tk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ai = H{B}, for ai ∈ U l
G[x

l
G(tk)]

aj = H{C} ◦ sgn{D} for ai 	∈ U l
G[x

l
G(tk)],

aj ∈ U l
G[x

l
G(tk)]

ak = U l
G{1} for ai 	∈ U l

G[x
l
G(tk)],

aj 	∈ U l
G[x

l
G(tk)]

(10)
where ◦ denotes the Schur product, H{·} represents the
Heaviside function, and,

B =

[∣∣xI
Gx(tk)− xpx(tk)

∣∣ ∣∣xI
Gy(tk)− xpy(tk)

∣∣∣∣xI
Gy(tk)− xpy(tk)

∣∣ ∣∣xI
Gx(tk)− xpx(tk)

∣∣
]

(11)

C =

[∣∣xI
Gy(tk)− xpy(tk)

∣∣ ∣∣xI
Gx(tk)− xpx(tk)

∣∣∣∣xI
Gx(tk)− xpx(tk)

∣∣ ∣∣xI
Gy(tk)− xpy(tk)

∣∣
]

(12)

D =

[∣∣xpx(tk)− xI
Gx(tk)

∣∣∣∣xpy(tk)− xI
Gy(tk)

∣∣
]

(13)

Since it can be seen in (10) that the ghosts will not choose
an action opposite to their current action, they will not reverse
direction on a path and will only effectively make decisions
when they encounter intersections where there are three or
more directions in which they can move.

IV. NUMERICAL VERIFICATION OF MODEL

By recording the position of Pac-Man and the ghosts dur-
ing gameplay on an emulated Ms. Pac-Man game found at [7]
with a simple screen-capture program, it is possible to verify
the models of the ghosts’ behaviors by comparing these
positions with those generated by the equations described
above. This is done by setting the initial positions of Pac-
Man and the ghosts in a simulated game to the positions
recorded at some arbitrary instant during the real game. The
simulated game is then run for a period of time, and the
resulting trajectories of the ghosts are compared to those
observed from the real game. An example of the comparison
is shown in Figure 2.

It can be seen that the simulated ghosts behave very
similarly to the ones in the real game. When the initial state
of the simulated game was set to match the real game’s state
at an arbitrary instant, the decisions chosen and the resulting
paths were almost always identical. The small number of
errors that are present are predicted to be caused by slight
imprecisions in the screen-capture approach when extracting
the game state. These is due to the inability to know the exact
positions referenced by the game compared to the character
images it displays. Figure 3 shows how the path comparison
of the light blue ghosts from Figure 2.c appears with respect

(a)

(b)

(c)

(d)

Fig. 2. Comparisons between the ghosts’ paths in the Ms. Pacman game
and using the derived model (a) Red ghost, (b) Pink ghost, (c) Light blue
ghost, (d) Orange ghost
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to time, and it can be seen that there is a small amount of
error present. To calculate a numerical approximation of the
model’s accuracy, the simulated game was given an initial
state from the real game and run until a ghost’s decision from
the simulated game differed from the corresponding ghost in
the real game. The number of correct decisions was counted,
and the process was repeated several times. After 10 runs,
the model of the ghost behaviors correctly evaluated 818
decisions out of a total of 829. Therefore, the approximate
accuracy of the model is 98.7%.

Fig. 3. Comparison between the light blue ghosts’ paths in the Ms. Pacman
game and using the derived model

V. METHODOLOGY

The methodology presented in this paper can be sum-
marized as follows. The workspace W is decomposed into
rectangloids using a line-sweeping approach. From the de-
composition, a connectivitiy tree, T , is formed using the
adjacency relationships between cells and the agent cell
position, κp. Each branch in the connectivity tree represents
a path extending from κp. The instaneous optimal path
is chosen by selecting the branch that maximizes a given
objective function.

A. Cell Decomposition and Connectivity Tree

Cell decomposition is a well-known robotic path planning
method used for obstacle avoidance [8], [9]. The approach
decomposes a workspace into a finite set of non-overlapping
convex polygons, known as cells, such that each cell rep-
resents a subset of the workspace in which the agents
and adversaries can move freely without colliding with an
obstacle. In classical cell decomposition, this can be obtained
by using a line-sweeping algorithm and constructing a one-
dimensional representation of the free-space geometry known
as a connectivity graph.

The workspace of Ms. Pac-Man, W , is decomposed as
shown in Figure 4 using an approach that has an added
property compared to classical decomposition. Namely, a
unique set of admissible actions from (3) is associated with
each cell, and Pac-Man and the ghosts can perform those
actions anywhere inside the cell. Let κj denote a cell in

the decomposition, and Iκ represent the index set of all
cells in the decomposition of W , and in the corresponding
connectivity graph denoted by G and illustrated in Figure 5.

Fig. 4. Cell decomposition of the Level 1 maze

Fig. 5. Connectivity tree of the cell decomposition

Definition 5.1: A connectivity graph, G, is a non-directed
graph where the nodes represent rectangloid cells in the cell
decomposition, and two nodes κi and κj in G are connected
by an arc (κi, κj) if and only if the corresponding cells are
adjacent in the decomposition.

Several methods can be used to search G for sequences
of adjacent cells, connecting possible paths for Pac-Man
within the maze. Based on a maximum feasible distance,
the connectivity graph can be pruned and transformed into
a decision tree, which is a graphical representation of all
possible paths from κp. After visiting a cell, Pac-Man can
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only move to an adjacent cell, creating a causal process that
can be represented as follows:

Definition 5.2: The connectivity tree T associated with G
and the agent’s cell position, κp, is a tree graph with κp as
the root and branches with length L. The nodes represent
cells where travel is possible, and a branch represents a non-
reversing path extending from κp.

Based on the cell properties, it can be seen that a unique
action value is attached to each arc in T . Therefore, the set
of admissible actions is a function of xp and of up(tk − 1),
and is denoted by Up[xp(tk)] ⊂ U . Since the agent is not
allowed to immediately reverse direction in T , the set of
admissible actions is given by the complement of up(tk−1)
in the set of arcs attached to the cell occupied at time tk, in
G.

For the example workspace, W in Figure 4, the connec-
tivity tree is illustrated in Figure 5. Since the size of tree
used in this paper is very large, only the first few layers
of the tree are shown, where layers are defined by their
adjacency position relative to the initial cell. For the example
problem, the connectivity tree is limited to prohibit decisions
involving reversals in the middle of a cell or actions resulting
in no movement. However, these capabilities can be added by
incorporating tree reflections or additional repeating nodes.

B. Optimal Agent Strategy

Based on the above problem formulation, it is possible to
define and compute Pac-Man’s instantaneous reward, L, for
every cell κj ∈ G, over time. The instantaneous reward is
defined as the tradeoff between the value and risk associated
with visiting a cell κj ∈ G, that is,

L[xp(tk), up(tk)] ≡ wV V [xp(tk), up(tk)] (14)
+ wRR[xp(tk), up(tk)]

where wV and wR are user-defined weights, and
V [xp(tk), up(tk)] is the number of dots in the corresponding
cell at the time Pac-Man would visit that cell. Note that the
reward for a corresponding cell would change once Pac-Man
travels through it. The risk is defined as,

R[xp(tk), up(tk)] =
∑
�∈IG

[|xp(tk)− x�
G| − ρ0]

2 (15)

where | · | is the Manhattan distance and ρ0 is a user-defined
parameter, such that when [xp(tk)− x�

G(tk)] → ρ0, R → 0.
The ghost states at the time corresponding to the layer of the
tree are evaluated using the validated equations from Section
III.

We seek an optimal strategy σ∗ defined as a sequence of
functions,

σ∗ = ci, ..., cF (16)

where each function ck maps the state xp into an admissible
decision,

up(tk) = ck[xp(tk)], fork = i, ..., F (17)

and maximizes the cost-to-go,

Ji,F [xp(ti)] ≡
F∑

k=i

αkL[xp(tk), up(tk)] (18)

from the present time, ti, up to the final time, tF , over the
finite horizon [ti, tF ], where L[·] is defined in (14) and αk is
a discount factor that is defined as an exponential function
of k, such that future rewards are discounted compared to
immediate ones.

Since the connectivity tree effectively amounts to a deci-
sion tree, as the tree is grown and the instantaneous rewards
are computed and attached to each node, along with L, the
cumulative cost,

Ji,k[xp(ti)] ≡
k∑

j=i

αjL[xp(tj), up(tj)] (19)

= Ji,k−1[xp(ti)] + αkL[xp(tk), up(tk)]

can also be computed for each node at each time step, tk in
T iteratively over time, where it can be seen from Figure
5 that each node in the time step tk denotes one of the
possible values of Pac-Man’s state xp(tk), and each outgoing
arc denotes one of the possible values of Pac-Man’s control
up(tk). Therefore, by the time the tree is completed, the cost-
to-go, Ji,F for each branch (i.e. each possible sequence of
state and decision values) will be attached to the leaf of the
branch (i.e. the last node, at tF ) and, thus, the optimal branch
can be determined simply by picking the largest value or Ji,f ,
namely Ji,F ∗. The optimal branch will then determine the
optimal strategy σ∗ which will consist of the sequence of
arcs in the optimal branch.

VI. RESULTS

To quantify the algorithm’s performance under the desired
conditions, an accurate simulation of the game was created
in C# based on the verfied equations in Section III, the
maze map from the first level, and a knowledge of the game
mechanics. The simulation differs slightly from the real game
in that some features were removed to focus on the objectives
discussed and to make them more difficult for the agent.
These include power pill bonuses which temporarily cause
the ghosts to retreat and allow Pac-Man to send the ghosts
back to their starting locations by eating them, and the slower
movement the ghosts experience when traveling through a
”tunnel”, which is a wrap-around path that allows characters
to quickly move to the opposite side of the maze. In addition,
the ghosts’ speeds have been altered manually to be faster
than in the game. The objective for the agent is simply to
eat as many dots as possible (up to the maximum number of
220 initially present in the maze) before being caught by a
ghost.

The approach described in Section V has been imple-
mented using a connectivity tree branch length of 15 cells.
The simulation was run 20 times for each of four ghost
speed configurations: 90%, 95%, 100% and 105% of Pac-
Man’s speed. In the game, the ghosts’ speeds on the first and
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fifth level were measured to be approximately 93% and 96%
of Pac-Man’s speed, respectively [7]. The results from the
simulations and a comparison with novice human players are
shown in Table I. Screenshots from the simulation’s graphical
output is displayed in Figure 6.

TABLE I
PERFORMANCE OF ARTIFICIAL AND HUMAN PAC-MAN PLAYERS OVER

20 PARTIAL GAME SIMULATIONS

Cell Decomposition Approach
Ghost speed % Mazes cleared Average dots eaten

90% 19 217
95% 19 216
100% 14 204
105% 3 148

Human Players
Ghost speed % Mazes cleared Average dots eaten

90% 7 171
95% 4 161
100% 1 105
105% 0 88

The agent performed the evasion and collection objectives
well and was able to clear the maze on 95% of its attempts
for conditions similar to the real game and 15% of its tries
for ghost speeds much faster than the game. The algorithm
also runs faster than what is needed for real-time gameplay,
so the presented approach can interact with the actual Ms.
Pac-man game if a method for inputting the game states is
added.

This level of success is greater than what has been accom-
plished with automated players that are not hand-coded [10]–
[13], and the results would be very difficult for most human
players to match. However, the approach has flaws that make
it weaker than the average human player in some situations.
For example, the method does not allow Pac-Man to reverse
direction in the middle of a cell or to stop moving. Many
of its failures occured when the agent moved itself from a
safe situation into dangerous one because it did not have
the capability to evaluate other options. However, additions
can be made to the connectivity tree (e.g. tree reflections
or repeated nodes) that would effectively fix most of the
shortfalls.

VII. CONCLUSIONS

This paper presents a methodology for optimizing paths
online for a pursuit-evasion problem where an agent must
visit several target positions within a region of interest
while simultaneously avoiding one or more actively-pursuing
adversaries. The methodology described utilizes cell decom-
position to construct a modified decision tree to achieve
the objective of minimizing the risk of being caught by an
adversary and maximizing a reward associated with visiting
the target locations. The approach is illustrated through a
modified version of the video game Ms. Pac-Man which is
shown to be a benchmark example of the pursuit-evasion
problem. It was shown that the approach presented in this

(a)

(b)

(c)

(d)

Fig. 6. Screenshots from the simulation’s graphical output. The round
yellow character represents Pac-man, the squares are the ghosts of their
corresponding colors, and the small black squares are the dots that Pac-man
must collect.
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paper runs in real-time and outperforms several other meth-
ods as well as most human players.
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