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Abstract

This paper presents a decentralized kernel density estimation (KDE) technique
for computing the actual positional density of the robots in a distributed network,
which constitutes the feedback in the robot’s control law. The goal of the feedback
control law is to plan the paths of a distributed robot network in order to follow
a known, optimal time-varying robot distribution or probability density function
(PDF). Thus, knowledge of the actual positional density of the robots is needed
to compute the robot feedback control law, such that the optimal PDF is achieved
over time by the network. The optimal PDF is computed using a distributed op-
timal control (DOC) approach that guarantees the robots avoid collisions with
obstacles, while minimizing the energy required to meet a goal distribution. This
novel approach generates a potential function, and corresponding control law, for
each robot through the decentralized computation of the robots’ probability den-
sity function (PDF) obtained from the individual states of the robots. The method-
ology is demonstrated through a numerical simulation of a large distributed net-
work of robots navigating an obstacle-populated region of interest.

1 Introduction

Distributed robot path planning has a broad range of applications from sensor networks [1, 2] to
animal behavior [3]. These systems typically involve many cooperative robots that are each governed
by a small system of ordinary differential equations (ODEs), referred to as microscopic dynamics.
On large spatial and temporal scales, the interaction and collaboration between the robots give rise
to a macroscopic behavior that can then be described by a restriction operator, such as an evolving
(time-varying) probability density function (PDF) of the (microscopic) robots’ states, and/or its first
moments of the PDF. The evolution of the time-varying PDF can often be modeled as a system
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of partial differential equations (PDEs), and the PDF can be optimized subject to the microscopic
dynamics through the distributed optimal control problem presented by the authors in [2]. In this
paper, the optimal, time-varying PDF is modeled as a time-varying mixture of Gaussians, and is
assumed given.

The microscopic control law of each robot can then be derived from the optimal time-varying PDF,
and from the actual robot PDF, using a potential field approach that pushes the robots toward an at-
tractive potential computed from the difference between the two PDFs [1]. While the computational
complexity of the DOC approach for computing the optimal PDF has been shown to be far reduced
compared to classical optimal control [2], the calculation of the actual robot PDF requires knowledge
of all individual robot states, and, thus, in principle, tends to be expensive and centralized.

This paper presents a novel approach based on decentralized kernel density estimation (KDE) for
estimating the actual distribution (PDF) of the robot states in a decentralized fashion, through the
nonparametric technique for estimating distributions from empirical data [4]. In the decentralized
KDE algorithm, the robots use an information spreading protocol to exchange state information
with their neighbors, and then perform local kernel density estimations. The density estimations
calculated locally are asymptotically consistant with the solutions obtained using centralized kernel
density estimation [5].

Several distributed parametric techniques also exist for estimating a distribution from a data set,
where the unknown density is represented by a mixture of Gaussians, and the parameters are de-
termined by an expectation maximization (EM) algorithm [6, 7]. However, these methods typically
exhibit large inaccuracies on small data sets, often getting stuck in local maxima, and are sensitive
to the initial parameter choices. The distributed KDE approach does not suffer from any of these
downfalls, and is, therefore, considered to be the best choice for the DOC problem. The approach,
presented in Sections 2-3, is demonstrated on a distributed path-planning problem involving a large
network of robots in Section 4.

2 Probability Density Function Approach to Robot Path Planning

Potential field is a well-known approach to robot motion planning that treats the robot as a par-
ticle under the influence of an artificial potential field or function, U , that captures the geometric
characteristics of an obstacle-populated workspace, and a goal configuration. In this paper, we
assume that the workspace is a two-dimensional rectangular region of interest (ROI), denoted by
W = [0, L] × [0, L] ⊂ ℜ2. Typically, the potential function is the sum of an attractive potential
Uatt that “pulls” the robot toward the goal configuration xf , and a repulsive potential Urep that
“pushes” the robot away from the obstacles [8]. After U is defined, the method is implemented by
discretizing the robot workspace W , and by evaluating the potential function for all discrete values
of x in W , using a finite resolution grid [9].

In [1], the authors presented a potential field approach for planning the paths of n cooperative sen-
sors, such that they follow (or are “pulled” toward) a time-varying probability density function
(PDF), comprised of a mixture of Gaussians. This PDF-based approach differs from potential field
methods previously presented in the literature in that it is based on the joint PDF of the state of
multiple robotic sensors, it is time-varying, and avoids collisions between sensors and multiple ob-
stacles while minimizing the power consumption. Consider the problem of planning the paths of
a network of N robots in W , where each robot can be described by a small number of ordinary
differential equations (ODEs), referred to as microscopic dynamics, which, in this paper, are given
by the unicycle model

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi (1)

The microscopic ith robot configuration, qi = [xi yi θi]
T , consists of the xy-coordinates, xi and

yi, and of its heading angle, θi, where i = 1, ..., N . The microscopic control vector, ui = [vi ωi]
T ,

consists of the linear velocity, vi, and the angular velocity, ωi. Then, at any time tk an artificial force
F(qi) ∝ −∇U(qi, tk), proportional to the negative gradient of the artificial potential, is applied to
the robot in order to follow the steepest-descent direction of U .

The interactions of the N robots give rise to a macroscopic coherent behavior with coarse dynamics
that can be modeled by partial differential equations (PDEs) [2]. Using a restriction operator that
maps the microscopic states to the macroscopic description, as described in [10]. In this paper, it is
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assumed that the macroscopic description of the robot network is a time-varying PDF, denoted by
℘[xi, t], such that the probability of the ith robot being in state xi at time t is given by ℘[xi, t]. In
other words, ℘ represents the robot density over the ROI, W . In many sensor and unmanned vehicle
applications, the macroscopic network performance can be shown to be a function of the restriction
operator, or robot distribution, and controls, and, thus, can be expressed as an integral function of
℘ and ui [2]. Then, the optimal robot PDF, ℘∗, and control laws, u∗

i , can be determined using the
distributed optimal control (DOC) method described in [2].

The attractive potential of each robot can then be defined based on the optimal PDF, ℘∗(xi, tk),
which represents the goal density of the robots. Where, when integrated over a region R ⊂ W , ℘∗

provides the probability that the ith robot is located in R at tk, i.e., the probability mass, Pr(xi ∈
R, tk) =

∫
R ℘∗(xi, tk)dx. Since ℘∗ represents the goal joint PDF for the N robots, the effect of

a robot moving to a state xi should downgrade the probability mass, such that the probability that
another robot in the network takes the same state value is decreased. In principle, each robot i can
construct a feedback control law from the artificial force, using its knowledge of the optimal robot
distribution ℘∗, and the actual robot distribution in W as follows. Let the attractive potential for
the ith robot be defined as the difference between the actual agent distribution yi as seen by the ith

robot, and the time-shifted optimal distribution

U i
att[xi(t), t] = yi[xi(t), t]− ℘∗[xi(t+ td), t+ td] (2)

Where, td is a time-shift parameter that allows the control law to look ahead in time to the optimal
distribution, preventing the robots from lagging behind.

The potential function for robot i can then be defined as the sum,

Ui(xi, t) = waU
i
att(xi, t) + wrU

i
rep(xi, t) (3)

where, U i
rep is a repulsive potential constructed based on the obstacles in the ROI [1], and wa and

wr are user-defined weighting coefficients. The control law for each unicycle robot (1) is obtained
from the negative gradient of the potential function in (3)

ui = [vc Q(θ̂i,−∇Ui)]
T (4)

Where, the minimum difference between the desired heading angle Θ(−∇Ui) and the ith robot’s
actual heading angle θ̂i is,

Q(·) = {a(θ̂i)− a[Θ(−∇Ui)]}sgn{a[Θ(−∇Ui)]− a((̂θ)i)}, (5)

and where sgn(·) is the sign function, a(·) is an angle wrapping function, and vc is the robot vehicle’s
speed, which is set equal to a constant for simplicity [11].

In order to utilize this approach for a decentralized network of robots, the actual robot density yi
must be approximated locally by the ith robot, without requiring direct communication with all
other (N − 1) robots in the network. This can be achieved through a decentralized adaptation of
the nonparametric technique known as kernel density estimation (KDE). In KDE, each node of a
decentralized network repeatedly exchanges data with its neighbors through information spreading,
and then performs a local KDE calculation. Through this process, each local estimate separately
converges asymptotically to the distribution one would obtain using the centralized KDE method.
Other decentralized techniques have been presented for estimating a distribution from a data set
which use distributed expectation maximization (EM) algorithms, but they suffer from several dis-
advantages such as poor performance with small data sets, sensitivity to initial parameter choices,
and the potential to get trapped in local maxima. Whereas, the distributed KDE approach presented
in the next section does not suffer from any of these limitations.

3 Decentralized Kernel Density Estimation for Distributed Robot Path
Planning

Kernel density estimation is a well-known non-parametric approach for estimating the probability
density function (PDF) from which a set of independent and indentically distributed data samples
were taken. Given a data set yj , j = 1, ..., Ny,yj ∈ ℜd that is assumed to be from some unknown
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PDF f , the kernel density estimation takes the form [4],

f̂ =

Ny∑
j=1

wjKHj (y − yj) (6)

where wj , j = 1, ..., Ny is the weighting coefficients satisfying the condition
∑Ny

j=1 wj = 1, and the
jth kernel centered at yj is defined as,

KHj (y − yj) = |Hj |−
1
2K(H

− 1
2

j (y − yj)) (7)

The kernel function K is a user-defined d-variate non-negative symmetric real-value function [4].
The band-width matrix Hj is a parameter that controls the smoothing of the KDE algorithm, and it
must be positive definite and symmetric. With appropriate parameter choices, KDE has been shown
to be an effective method for estimating the underlying PDF and often only requires a few samples to
give adequate results [4]. However the general KDE algorithm described above requires centralized
processing due to the summation, which might not be feasible in a distributed robot network.

Alternatively, a distributed KDE algorithm based on information spreading can be used that does not
require centralized processing and is asymptotically consistent with the centralized version in cases
where the network is fully connected [5]. The primary difference is that the distributed KDE algo-
rithm uses an information sharing protocol to incrementally exchange kernel information between
sensors until a complete and accurate approximation of the global KDE is achieved by each robot.
It has been shown in [12] that as long as the network is fully connected, the connectivity structure
will only affect the convergence speed and will not worsen the estimation accuracy. Therefore, KDE
can be performed in a distributed manner with accuracies that are nearly identical to the centralized
method and with the only requirement being the full connectivity of the network.

Each robot maintains a local estimation of the robot distribution, governed by a stored kernel set
Si = {<wi,k,xi,k,Hi,k>, k = 1, ..., Ni}, where xi,k denotes the position of robot k perceived by
the ith robot, Ni is the number of kernels stored by robot i, and Hi,k and wi,k are the bandwidth
matrix and weighting coefficient of the kth kernel stored by robot i. At time t0, the kernel set of
each robot only contains the kernel generated using its own position. The robots also maintain a
neighbor set, where the ith robot’s neighbors are defined as any robots located within the distance
of a communication radius r. Then through an information spreading process, the robots choose a
random neighbor and compare their kernel sets with one another. If a robot sees that its neighbor has
newer or previously unknown kernel information, they will save the information to their own stored
kernel set. Then a new random neighbor will be chosen, and the process repeats.

In practice, the information communicated would include the sensors’ positions and kernel param-
eters to construct the kernels and the corresponding sensors’ indices and positional measurement
timestamps to enable the overwriting of old data. Note that for many homogeneous robot networks
(networks with identical sensors), the bandwidth matrices Hi,k and weighting parameters wi,k may
be defined to be consistant across the network, making their communication unnecessary and re-
ducing communication requirements. For simplicity, in this paper the bandwidth matrix is defined
as Hi,k = cI2∀i, k, where c is a constant and I2 is the two-dimensional identity matrix, and the
weighting parameters are calculated as wi,k = 1

Ni
∀i, k. Then the purpose of the communications

essentially becomes to give each robot full positional knowledge of all robots in the network.

Using their known sets of robot positions, each robot can then generate the corresponding ker-
nels and combine them to obtain a local estimation of the PDF. For simplicity, the standard two-
dimensional Gaussian kernel function is chosen in this paper and defined as,

K(x) =
1

2π
e−

1
2x

Tx (8)

which is used to construct the kernels as follows,

KHi,k
(x− xi) = |Hi,k|−

1
2K(H

− 1
2

i,k (x− xi)) (9)

Then the local estimation of the PDF can be calculated by each robot as,

f̂i =

Ni∑
k=1

wi,kKHi,k
(x− xi,k) (10)
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Once the ith robot has a local density estimation, the attractive potential (2) can be computed with
y ≈ f̂i, which leads to the generation of the potential function (3). Then the feedback control law is
constructed from the negative gradient of the potential function −∇Ui, as in (4). Therefore by using
the decentralized kernel density estimation approach, each robot in the network can derive its own
feedback control law without centralized network computations.

4 Simulations and Results

The path planning approach presented in the previous sections is demonstrated through an example
numerical simulation. Consider a network of N = 200 robots that are governed by the unicycle
dynamics in (1) and have communication radii r = 30 Km. The network is deployed in a rectangular
ROI denoted by A = [0, L1] × [0, L2], where L1, L2 = 160 Km, and is given the objective of
following an optimal time-varying robot distribution, avoiding obstacles, and minimizing energy
consumed. The robot network operates over the time interval t ∈ (t0, tf ], where t0 = 0 and
tf = 15 hr. The initial robot distribution ℘∗(t0) and geometric obstacles are shown in Figure 1, and
the initial robot states are sampled from ℘∗(t0). The optimal robot distribution ℘∗ is assumed to be
previously computed as a mixture of Gaussians via the DOC approach described in [2].

Figure 1: Initial robot distribution is plotted on the background, and the geometric obstacles are
plotted as solid black.

With ℘∗ known, the individual control policies can be computed by each robot based on the potential
function explained in Section 2 and its local estimation of the actual robot density obtained using the
decentralized KDE method from Section 3. The robot navigation is illustrated in Figure 2, where
both the optimal macroscopic distribution and the robot positions are plotted. It can be seen that the
sensors follow ℘∗ while also avoiding collisions with obstacles.

Since the DOC approach solves for the macroscopic time-varying robot distribution, instead of
individual robot trajectories, the methodology is scalable and is shown to handle a large number
of sensors. However, by using the decentralized kernel density estimation method, the network size
can be limited by the storage constraints of the distributed sensors or by slow communication speeds
across the network relative to the robot vehicle velocities.

5 Conclusions and Future Work

This paper presents a decentralized KDE approach that calculates the distribution of robot states in
a distributed network. The technique is applied to a potential field approach for planning the paths
of a distributed robot network with the objectives of matching a known time-varying optimal robot
distribution, avoiding collisions with obstacles, and minimizing energy consumed by controlling the
robots. The approach is illustrated through a numerical simulation of a large distributed network of
robots that must navigate within an obstacle-populated region of interest.
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(a) t = 0 hr (b) t = 5 hr

(c) t = 10 hr (d) t = 15 hr

Figure 2: Simulated network of N = 200 sensors navigating to follow an evolving optimal PDF
using distributed kernel density estimation and a potential field approach, where, the robot positions
are plotted as black/yellow circles, and obstacles are plotted in solid black.
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