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Abstract

This paper presents a novel information value function thatcan be used in online
sensor planning to monitor a spatial phenomenon in which thespatial phenomenon
is modeled by nonparametric Gaussian processes. The information value function
is derived from the Kullback-Leibler (KL) divergence and represents the informa-
tion value brought by sensor decision. The sensor decision at every time step is to
select the sensing location that maximizes the informationvalue function associ-
ated with the measurement taken. Gaussian processes (GPs) are employed to ob-
tain the posterior distribution of the spatial phenomenon given a number of sensor
measurements, because GPs have sufficient flexibilities to adopt the complexity
from data. Furthermore, a greedy algorithm is designed based on the information
value function. By comparing the greedy algorithm with the random algorithm, it
is shown that the error decreases faster defined as the difference between the es-
timated posterior distribution and the true distribution of the spatial phenomenon
via the greedy algorithm.

1 Introduction

The problem of monitoring spatial phenomena [1] with littleor no prior information is relevant to
a variety of applications,including monitoring the atmospheric temperature for the conterminous
United States [2]. In this context, sensor planning can be viewed as a decision making problem
in which the sensor is an information-gathering agent that decides its measurement sequence in
order to optimize the sensing performance over time. Sensorplanning algorithms require a closed
form representation of the sensing performance as a function of the measurement sequence and the
spatial phenomenon distribution. In this paper, we show that under proper assumptions, monitoring
a spatial phenomenon can be reduced to the problem of estimating a probability density function
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(PDF) representation of the spatial phenomenon given partial or imperfect sensor measurements [3].
Then, the sensing performance can be expressed by certain metrics of the PDF representing the
spatial phenomenon, such as the information entropy.

Information value functions have been used to quantify the amount of information associated with
random variables such as the values of the spatial phenomenon at a set of targets, and to control or
manage sensor measurements to minimize the uncertainty of the spatial phenomenon [4,5]. Comput-
ing information value functions for one or more random variables requires knowledge of the random
variables’ joint probability mass (or density) functions.Therefore, in order to derive an information
value function associated with a measurement sequence, thecorresponding posterior distribution
(also known as the posterior belief) of the spatial phenomenon given the measurement sequence
is derived and utilized. A general approach was recently presented by the authors for estimating
theexpectedinformation value of future sensor measurements in target classification problems [6].
This paper extends the approach in [6] to monitoring spatialphenomena modeled by GPs. In [6],
the target classification problem has a discrete classification space with a limited size, while the spa-
tial phenomenon in this paper is defined in a continuous domain. Therefore, if the same technique
in [6] was applied to monitoring the spatial phenomenon, discretization of the continuous domain
would result in algorithms with a high computational complexity. Gaussian processes are adopted
in this paper to model the spatial phenomenon and to resolve the problem raised by the continuous
domain, since GPs can simplify the estimation of the spatialphenomenon to closed form functions
given noisy measurements. Then, the KL-divergence can be utilized to derive the information value
function, which generates the optimal sensor action given previous measurements. The advantage
of the proposed approach includes that the information theoretic function can be evaluated at any set
of points within the function domain without discretization.

The paper is organized as follows. The problem is formulatedin Section 2. Section 3 gives the
background knowledge of Gaussian processes. The methodology is given and analyzed in Section
4. The simulation results are presented in Section 5. At last, the conclusions are drawn in Section 6.

2 Problem Formulation

The sensor planning problem considered in this paper involves managing a measurement sequence of
a sensor for the purpose of monitoring a time-invariant spatial phenomenonf in a finite-size region
of interest (RoI),A ⊂ R

2. We assume that the RoI is a connected subspace of two-dimensional
Euclidean space, that is,A cannot be divided into two disjoint nonempty closed sets. A set of
targets is distributed within the RoI, and is organized in the set,

V = {αi|i = 1, · · · , Nv}, αi ∈ A, (1)

where the targets inV represent points inA of higher interest than points everywhere inA\V . The
’\’ denotes the complementary set. By comparing the posteriordistribution of the targets inV given
the measurement sequence and the true values of the spatial phenomenonf at V , we can evaluate
the performance of the sensor planning strategy. Notice that the setV is not necessary stationary
over time, i.e., at each time step, users can specify different targets due to the change of external
environment or the interest. Additionally, the size ofV can vary over time.

The spatial phenomenonf is modeled as a Gaussian process, and the GP is updated given the
measurements obtained by the sensor online. At each time step, the sensor takes a measurement
of f at x, wherex is selected fromNs accessible sensing locations scattered in the RoI, that is,
S = {si|i = 1, · · · , Ns} ⊂ A. The set of accessible sensing positions,S, are knowna priori,
however, no restrictions on its distribution need to be made. The size of the set of accessible sensing
positions,Ns, is limited due to the low control accuracy of the sensor actuator, for example, the
sensor can only receive signals from certain directions. Fig. 1 illustrates an example of a RoI with
an irregular shape, populated with a set of targets and a set of accessible sensing positions. Notice
that the locations in the setV do not have to be selected from the setS.

At thekth time step, the sensor takes one measurement at one location yk ∈ S and returns a noisy
measurement,zk, which is modeled as

zk = f0(yk) + ε, (2)

whereyk is thekth sensing location chosen by the algorithm introduced in Section 4, f0(yk) is
the true value of the spatial phenomenon atyk, ε is an additive, zero-mean Gaussian noise, which
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Figure 1: Example of RoI,A, showing the conterminous Unites States, over which the temperature
data analyzed in this paper is defined. A set of targets,V of sizeNv = 61 is denoted by black circles.
A set of accessible sensing positions,S, of sizeNs = 60 is denoted by red crosses. The intersection
of the set of targets and the set of accessible sensing positions,I, is denoted by a cross in the circle.

is fully specified by its standard deviationσ. After the sensor takes its measurement at thekth
time step, the posterior distribution̂f(x|Yk,Zk) of the spatial phenomenaf is updated, where
Yk = {y1, . . . ,yk} denotes the set of chosen sensing locations, andZk = {z1, . . . , zk} denotes the
set of taken measurements. Then the sensor planning problemcan be stated as Problem 2.1.

Problem 2.1 Find y1, y2, · · · to minimize
∑

xi∈V

(f0(xi)− f̂(xi|Yk,Zk))
2. (3)

subject to the sensor model (2)

In the Section 4, the information value function based on theKL-divergence is developed to choose
the measurement sequencey1, y2, · · · .

3 Background on Gaussian Processes

A Gaussian process is a nonparametric Bayesian model, and isa distribution defined over functions,
f(x), wheref(x) is a function mapping the input spaceΩx toR,

f(x) : Ωx → R, x ∈ Ωx. (4)

Definition 3.1 A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

For a rigorous definition and a comprehensive review of Gaussian processes, the reader is referred
to [7].

Gaussian processes are widely used to model spatial phenomena due to its ability to deal with large
data set and to recruit more parameters as the size of the datagrows [8]. Furthermore, GPs return
the posterior estimation of spatial phenomena in closed form, which reduces the computational
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complexity in a number of applications. A GP is completely specified by its mean functionm(x)
and covariance functionk(x1,x2), such that

m(x) = E[f(x)],

k(x1,x2) = E[(f(x1)−m(x1))(f(x2)−m(x2))],
(5)

whereE[·] denotes the expectation. As a consequence, A Gaussian process can be written as

f(x) ∼ GP(m(x), k(x1,x2)). (6)

If we are interested in the function at certain pointsX = {x1, . . . ,xr}, we can usef(X) to denote
ther-dimensional vector of function values,

f(X) = [f(x1) · · · f(xn)]
T . (7)

Similarly, the vector of mean functions is

m(X) = [m(x1) · · · m(xn)]
T , (8)

and the covariance matrixK(X,Y) is

Kij = k(xi,yj), xi ∈ X,yj ∈ Y. (9)

It follows that the distribution off is

f(X) ∼ N (m(X),K[X,X]) , (10)

whereN (µ,Σ) denotes the multivariate Gaussian distribution with meanµ and covarianceΣ.

The Gaussian process is powerful in predicting the posterior distribution of a spatial phenomenon.
For example, given the set ofk observationsZk at locationsYk and the sensor model in (2), the
posterior distribution of the function̂f at any set of targets in the RoI can be derived from this
relation

[

Zk

f̂ (X)

]

∼ N
([

m(Yk)
m(X)

]

,

[

K(Yk,Yk) + σ2I K(Yk,X)
K(X,Yk) K(X,X)

])

. (11)

From the conditional distribution of multivariate Gaussian distributions [9], the posterior mean and
covariance of̂f(X) are

µk = m(X) +K(X,Yk)[K(Yk,Yk) + σ2I]−1(Zk −m(Yk)),

Σk = K(X,X)−K(X,Yk)[K(Yk,Yk) + σ2I]−1K(Yk,X).
(12)

Depending on (12), an information value function is developed in the following section, and can be
evaluated analytically without integrating numerically over the possible measurements.

4 Information Value Function

In this section, an information value function is developedbased on KL divergence to evaluate the
expected discrimination gain (EDG) [6,10] by a sensing action, i.e., measuring the value off at one
location fromS. The information value of measuringf atyk is

ϕ̂D(V ; zk|yk,Yk−1,Zk−1) =
∫

D
(

f
(

V|Yk−1,Zk−1,xk, zk)
)

|| f
(

V|Yk−1,Zk−1

)

)

f(zk|Yk−1,Zk−1,xk)dzk,
(13)

whereD(·||·) denotes the Kullback-Leibler divergence [11],

D(P ||Q) = −
∫

log
dQ

dP
dP. (14)

Since the prior and posterior distributions off are both multivariate Gaussian distributions, the
computation of̂ϕD(V ; zk|yk,Yk−1,Zk−1) can be simplified, such that,

ϕ̂D(V ; zk|yk,Yk−1,Zk−1) =
∫ ∞

−∞

1

2
(tr(Σ−1

k−1
Σk)− ln(

det(Σk)

det(Σk−1)
)−Nv + (µk − µk−1)

TΣ−1

k−1
(µk − µk−1))N (µzk , σzk)dzk,

(15)

4



wheredet(·) denotes the determinant of a matrix,µzk is the posterior mean ofzk givenYk−1, Zk−1

andyk,

µzk = m(yk) +K(yk,Yk−1)[K(Yk−1,Yk−1) + σ2I]−1(Zk−1 −m(Yk−1)), (16)

andσzk is the posterior standard variance ofzk,

σzk = k(yk,yk)−K(yk,Yk−1)[K(Yk−1,Yk−1) + σ2I]−1K(Yk−1,yk). (17)

It follows that

ϕ̂D(V ; zk|yk,Yk−1,Zk−1) =
1

4
dσ3

zk

√
π +

1

2
σzk

√
π
(

tr(Σ−1

k−1
Σk)− ln(

det(Σk)

det(Σk−1)
)−Nv

+VT
1
MT

1
Σ−1

k−1
(M1V1 − 2M2V2) +VT

2
MT

2
Σ−1

k−1
M2V2

)

,

(18)
where

M1 = K(V ,Yk−1)(K(Yk−1,Yk−1) + σ2I)−1

M2 = K(V ,Yk)(K(Yk,Yk) + σ2I)−1

V1 = Zk−1 −m(Yk−1)

V2 = [(Zk−1 −m(Yk−1))
T µzk −m(yk)]

T ,

(19)

tr(·) denotes the trace of a matrix, and the constantd is the last component of matrixMT
2
Σ−1

k−1
M2.

After the information value is calculated for each sensing locationx ∈ S, the spatial phenomenon at
the location with the highest information value is measured. Thereafter, the estimation of the spatial
phenomenon̂f(x|Yk,Zk) is calculated given the new measurement{zk, yk}, and previous estima-
tion f̂(x|Yk−1,Zk−1). Since the measurement sequence is decided one at a time, thealgorithm is
a greedy algorithm and is summarized in Fig. 2.

Input: functions:m, K(·, ·); sets:S, V ; scalars: maximum number of observations,Nf

Output: sensing location sequenceYNf

begin
YNf

← ∅;
for k = 1 : Nf

yk = argmax
yk∈S

ϕ̂D(V ; zk|yk,Yk−1,Zk−1)

Y[k] = yk

zk = f0(yk) + ε
Z[k] = zk

endfor
return Y

end

Figure 2: The greedy algorithm based on the information value function

5 Numerical Simulations and Results

To determine the effectiveness of the proposed methodologies, simulations are run in the scenario
of estimating the maximum temperature over conterminous United States territory in August 1997.
The corresponding true temperature data (latitude resolution: 0.0417 Decimal degrees,longitude
resolution: 0.04167 Decimal degrees), is provided by [2], and is illustrated in Fig. 1. In each
simulation,61 locations of interest and60 sensing locations are randomly populated in the RoI
(conterminous United States territory), such that the intersection setI = S ∩ V 6= ∅. The noise in
(2) is modeled using a standard deviationσ = 1.0[◦C]. At thekth time step, the posterior distribution
f̂(x|Yk,Zk) is obtained. To evaluate the performance of the measurementsequence, two criteria
are assessed. One of the criteria is the estimating errorǭ,

ǭ(φ̂D) =
1

Nv

‖µk − g(V)‖, (20)
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whereg(V) denotes the true value of temperature atV , and it is obtained by searching the data with
the latitude and longitudex ∈ V . The estimating error is averaged by the number of targets because
when dealing with varying targets, the size of the set of targets should not affect the performance.
The second criterion is the estimating varianceσ̄, given by

σ̄(φ̂D) =
1

Nv

tr(Σk), (21)

The estimating error and variance ofV andI are illustrated separatively in Fig. 3(a) and Fig. 3(b).
The performance of the proposed methodology is compared to arandom strategy (RS). At thekth
step, the RS algorithm randomly selectsYk ∈ S with an uniform probability1/NS . The estimating
error and variance by RS are separately denoted asǭ(RS) andσ̄(φ̂D), and are included in Fig. 3(a)
and Fig. 3(b).

As seen in the plot, at the beginning of the simulation, the initial estimations of the temperatures at
I vary greatly with the actual temperatures. Both the greedy method based on the information value
function and the RS method result in decreasingǭ andσ̄. However, the information function based on
KL divergence outperforms the random algorithm in that it leads to the fastest and, overall, greatest
decrease in̄ǫ and σ̄. The simulations for this scenario, although simple, exhibit the effectiveness
of the information function based on KL divergence in estimating a spatial phenomena, such as the
temperature over an area.
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(a) Estimation error and variance onV
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(b) Estimation error and variance onI

6 Conclusions and Future Works

An approach is presented for estimating the information value of future sensor measurements in
monitoring spatial phenomena. The approach derives expected information value functions from
probabilistic models of the sensors and the Gaussian Process model of spatial phenomena, condi-
tioned on prior information. The theoretic function is derived and implemented to select the mea-
surement sequence. In the future, more information functions will be developed and their perfor-
mances will be compared, and other nonparametric models, such as Dirichlet processes (DPs), will
be investigated.
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