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Abstract—We propose a novel method to generate underwater
object imagery that is acoustically compliant with that generated
by side-scan sonar using the Unreal Engine. We describe the
process to develop, tune, and generate imagery to provide repre-
sentative images for use in training automated target recognition
(ATR) and machine learning algorithms. The methods provide
visual approximations for acoustic effects such as back-scatter
noise and acoustic shadow, while allowing fast rendering with
C++ actor in UE for maximizing the size of potential ATR
training datasets. Additionally, we provide analysis of its utility
as a replacement for actual sonar imagery or physics-based sonar
data.

Index Terms—Automated Target Recognition, sonar, machine
learning, simulation.

I. INTRODUCTION

The limited communication environment within the under-
sea domain has necessitated the use of autonomy and auto-
mated target recognition (ATR) in order to allow unmanned
vehicles to make actionable decisions without an operator
in-the-loop [1]–[3]. The underwater environmental properties
make acoustic sensors become the most significant sensing
tool for developing autonomous systems as shown in vehicle
coordination [4] and underwater SLAM [5]. However, the
same inhospitable environment makes the collection of large
data sets for use in machine learning algorithms to properly
train machine learning-based algorithms difficult. As such,
significant interest has been in the generation of acoustically
accurate data for use in training autonomous systems operating
based on side-scan sonar images [6]–[9].

One method to generate simulated data is the use of physics-
based modeling of the acoustics in order to simulate the
sound propagation and raw sonar data collection [10], [11].
While this has the benefit of capturing low-level nuances of
the sonar data for generation of sonar imagery, the models
are typically complex and computationally expensive. An
alternative approach is to approximate the imagery that would
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Fig. 1: Illustration of process flow for physics-based vs. image-
based sonar simulation.

be generated by sonar beam-forming to directly generate
synthetic sonar data [12]–[14]. Figure 1 shows a simplified
process flow diagram to illustrate the differences between these
two approaches. These existing image-based sonar simulations
are easily integrated to computer graphics tool, and this
integration allows the simulator to have complicated object
geometry more easily. To our best knowledge, however, exist-
ing image-based sonar simulations lacks details in modeling
the environment, specifically the seabed characteristics. This
limitation may become a bottleneck in utilizing simulated

 
 
978-1-6654-6809-1/22/$31.00 ©2022 IEEE

O
C

EA
N

S 
20

22
, H

am
pt

on
 R

oa
ds

 | 
97

8-
1-

66
54

-6
80

9-
1/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

O
C

EA
N

S4
71

91
.2

02
2.

99
77

27
5

Authorized licensed use limited to: Cornell University Library. Downloaded on February 16,2024 at 21:06:51 UTC from IEEE Xplore.  Restrictions apply. 



images as training data because seabed condition is shown
to affect ATR performance [15].

We propose a novel method to the synthetic sonar generation
problem by using the Unreal Engine (UE) to approximate
sonar imagery in a large-scale complicated underwater envi-
ronment and including back-scatter noise and other acoustic
effects. We present our approach to properly tuning the UE set-
tings to provide the appropriate shadow effects often found in
side-scan sonar, our method to train against the simulated data,
and analysis of its performance in computational complexity
and transfer learning. One of the main contribution of our
simulation tool is to provide multiple seabed conditions, which
affect the performance in training ATR or ML algorithms.

Our paper is outlined as follows: Section II discusses
the state-of-the-art sonar simulation used in ATR from both
physics-based and image-based sonar simulation tools. We
then discuss the overall setup and architecture of our UE-based
simulation environment in Section III. Finally, we provide
analysis of the UE simulation tool in Section IV based on
the computation time of synthetic sonar image generation and
transfer learning performance of an ATR algorithm.

II. RELATED WORK

Early, simple simulation models have been developed to
implement sonar imaging patterns (highlights and shadows)
of simple object geometry [16]–[18]. For real-time simulated
sonar image generation, early work focuses on capturing the
highlight and shadow patterns of simple object geometry
without computing realistic sonar intensity values in the sim-
ulated sonar images [19], [20]. Sonar image simulators with
this simple model enables smooth integration of sonar sensor
modules into existing open-source robotics simulators, such as
Gazebo using ROS nodes [21], [22]. This feature also allows
easier adoption of additional modules for various underwater
robotics applications [23].

However, such simplistic tools often fail to properly account
for complicated acoustic effects found in the beamformed
imagery such as noise and sonar nadir components. In order
to obtain more realistic sonar images, high-fidelity physics-
based simulators have been developed [10]. One of the earliest
of these examples is the Shallow Water Acoustics Toolset for
a Personal Computer (PC-SWAT) [11]. This work leverages
a high frequency sonar performance prediction model of the
shallow water and very shallow water environment to develop
the necessary beamforming to then create simulated acoustic
images.

More recently, work has been developed to model more
complicated object geometry and leverage computer graphic
tools that implement the ray-tracing for sonar simulation. This
approach allows the simulation to model more complicated
scenes [24]. However, the ray-tracing model has limitations
in implementing accurate acoustic propagation and relevant
acoustic noise. These shortcomings have been sought to be
overcome by recent work by Woods [13]. However, physics-
based sonar image simulators require high computational
complexity. Although there has been research on overcoming

Fig. 2: A screenshot of the presented UE simulation tool.
The simulation environment includes rocky seabed and objects
such as small debris and an airplane. The white solid line with
spherical points is the path of the camera actor, whose pose is
denoted using blue-green-red axis. The image that the camera
actor renders is shown in the lower-right side of the Viewport
screenshot.

this high computational complexity using tube-tracing [14]
and GPU-based computation [12], this limitation can still
affect automatic target recognition performance because it is
expensive to generate a large training data set.

Moreover, existing sonar imaging simulators do not explic-
itly consider seabed conditions to the best of our knowledge.
Automatic target recognition algorithms are trained by learning
the highlight-shadow patterns of the sonar images of an object.
However, in real applications, highlight-shadow patterns vary
significantly depending on seabed conditions, such as sand
ripples, rocky seabed, and muddy seabed. For example, when
an object lies in an area with sand ripples, the highlight-
shadow patterns can be less visible and more complicated to
interpret due to the shadow of sand ripples. Therefore, seabed
conditions must be considered in the sonar image simulations
to incorporate environmental factors that affect underwater
perception performance in a real-world setting.

Our work seeks to bridge the gap between the speed and
utility of image-based sonar simulation tools found in the
first generation of attempts to simulate sonar imagery, with
the realism and anticipated performance of physics-based
simulation tools. Additionally, by leveraging the open-source
UE toolset as a baseline, we allow for the ocean community
to augment and improve our baseline toolset in the future.

III. UNREAL ENGINE SIMULATION

We will now provide an overview of our UE simulation
framework developed for sonar simulation. We first discuss
general environmental setup of the UE environment to ap-
proximate seafloor characteristics and geometry. We then turn
to the rendering settings we have found to be most favorable
for sonar simulation. Following the rendering, we discuss our
addition of noise that approximates that found in acoustic
effects such as back-scatter that allows the images to appear
similar to those found in actual sonar data.
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A. UE Simulation Environment Setup

The UE sonar image simulation tool consists of three major
components: a map, objects, and camera and lights setting
(Figure 2). A map represents the large underwater environment
or the scene that includes underwater objects. The objects
inside our simulation tool refer to the targets of interest that
need to be detected and identified by ATR or ML algorithms.
A camera actor is placed inside the map considering the sonar
field-of-view (FOV) to render synthetic sonar images. The
lights are set up such that the shadow direction aligns with
the camera frame in order to simulate acoustic shadows. The
intensity of lighting is manually tuned such that the overall
intensity distribution inside the rendered synthetic image can
capture acoustic highlight-shadow patterns depending on the
texture and materials of objects and the seabed. Thus, lights
and camera actor are set up dependently.

Our simulation tool allows for three seabed types, sand
ripples, mud, and rocks, for synthetic sonar image generation
(Figure 3). Each seabed texture is created inside the UE
editor using the Sculpt mode, which allows users to customize
the landscape in large scale. Users can also create a more
realistic seabed environment by including various seabed types
in one map using the Sculpt mode. Moreover, UE Marketplace
provides various environments created by other artists such
that users can adopt and customize the landscape using the
landscape tools. The seabed maps introduced in this paper are
adopted and modified from the Marketplace asset in [25]. In
UE editor, each map with a seabed texture is saved as a level
inside a UE Project. For the purpose of automatic and fast
synthetic sonar image generation, three different levels were
created such that each map includes one seabed type.

Our simulation tool can include various objects either by
importing 3D geometry and animation data in various format,
such as Filmbox (FBX) and Object (OBJ) file format, or by
directly creating an object inside the UE editor. While objects
with complicated geometry, such as airplane or shipwreck, can
be imported into our simulation, we use the simple objects
provided in UE editor for the ATR purpose. These objects
can also be customized by setting scales, aspect ratios, and
rotations. Another advantage of our simulation tool is that
the simulation does not require additional texture file for
rendering. The UE editor sets a white color texture on the
object by default. We keep this default texture in order to
generate highlight patterns in synthetic sonar images. In this
paper, we present four different object geometries: block, cone,
sphere, cylinder (Figure 4).

Our simulation generates synthetic sonar images by setting
the lights and camera actor to mimic the acoustic highlight-
shadow patterns. Specifically, the camera is set to face down-
wards and include the object of interest inside the FOV. While
other customized light settings are possible in UE editor,
our simulation tool uses optional Sky Light to illuminate the
detailed seabed texture and Directional Light to simulate the
acoustic shadows. The Directional Lights are set considering
the orientation of the vehicle equipped with sonar sensors.

(a)

(b)

(c)

Fig. 3: UE Viewport screenshots of different seafloor condi-
tions in our simulator: (a) sand ripples, (b) muddy and (c)
rocky seabeds.

Fig. 4: The objects in cube, cylinder, cone, and sphere ge-
ometry are placed in a map consisting of different seabed
conditions. The image that the camera actor in our simulator
renders is shown on the lower-right side.
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Fig. 5: A schematic diagram of the camera and lights setting
for synthetic sonar image generator constructed in Unreal
Engine simulation. T denotes the geometry of an object of
interest.

TABLE I: Unreal Engine environment settings. The angle of
the Directional Light is measured with respect to the sea floor.

Parameters Values

Camera

Projection Type Perspective
Field of View 120◦

Image Size 2048× 2048
Capture Source Final Color (LDR) in RGB

Directional Light
Angle 6◦

Intensity 30 lux
Light Color R 255, G 255, B 255

Target Material Material 85

Figure 5 shows a schematic diagram of this camera and
Directional Light setting. Detailed UE settings can be found
in Table I.

B. Rendering in UE using C++ Actor

Once the UE simulation environment is set up, our sonar
simulator generates synthetic images using the rendering en-
gine in UE. UE rendering engine has ray-tracing option, how-
ever, our simulator does not use the ray-tracing model because
we can still obtain a good quality of synthetic images given the
high signal to noise ratio (SNR) of general sonar images. This
rendering system allows us to reduce the computation time to
render a large amount of images with reasonable quality for the
ATR training purpose. When we generate training sonar image
datasets, it is important to generate multiple images in different
seabed conditions and from different sensor configurations,
such as aspect angles and distance from the object [26].
Therefore, our simulation generates synthetic sonar images by
moving and rotating the camera and light setting.

In order to automate this process of generating training
dataset for ATR or ML algorithms, our simulator uses C++
actor in UE. During the depiction of each target, our simulator
spawns a 3D model of the specific target on the seabed in a
map and under the camera actor using the given target fea-
tures, target rotations, and pre-constructed 3D prototypes. Our
simulator outputs synthetic sonar images by rendering optical
images of the target from the camera actor in the presence

Fig. 6: An example of an output image from UE rendering
system by setting a camera and a Directional Light as shown
in Figure 5.

of directional light. With C++ actor in UE, our simulator can
automatically generate a large set of synthetic sonar images for
any target from any angles. It is also easy to generate synthetic
sonar images for targets in different environmental condition
by changing the map representing different seabed conditions.
Figure 6 show an example of unprocessed image (i.e., rendered
image from the UE rendering engine) of a cylindrical target
on a muddy seabed.

C. Post-Processing and Acoustic Noise

The rendered images from the UE simulation are then post-
processed to convert the RGB images into the images with
intensity values and add acoustic noises. Specifically, our
simulation tool includes a separate MATLAB code that inputs
the rendered RGB images and then convert that image into
grayscale images. If a reference soanr images are provided,
a histogram matching step can adjust the intensity of the
sythentic to match the reference image. Different acoustic
noises are available in our simulation, including Gaussian
noise, speckle noise, and Poisson noise. This MATLAB code
represents this post-processed image using Copper colormap
array in MATLAB for the visualization purposes (Figure 7).

By having this post-processing independent from the UE
editor, the synthetic images generated from our simulation
tool can be easily tuned to different type of sonar sensors
by reflecting the sensor and noise properties without changing
the whole simulation environment in UE editor. Also, it can
be noted that the synthetic sonar images in this paper include
one target at the center of each image for the purpose of
training ATR algorithms. Note that our simulation tool can also
generate more realistic sonar images: for example, synthetic
side-scan sonar images can be generated by stitching two
images that are obtained in two different Directional Light
settings that are in opposite directions and adding the dead-
zone between the two images from port and starboard sides.
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Fig. 7: The post-processed synthetic sonar image of Figure 6,
which is rendered in UE. In this exsample, Gaussian white
noise with mean 0 and variance of 0.05 is used.

IV. RESULTS

The presented sonar image simulation tool is used to gen-
erate synthetic sonar images for training ATR algorithms, and
the transfer learning performance is evaluated by training an
ATR algorithm using the synthetic dataset and testing with
sonar images that are generated from a high-fidelity physics-
based simulator [11]. For the evaluation purpose, the simulator
is tuned to generate sonar images similar with the test dataset:
Figure 8 shows our synthetic sonar images, and Figure 9
shows the test images from [11]. The generated synthetic
sonar images are divided into training and test dataset, and
then the training image data are used to train the ATR
algorithm proposed in [27]. The trained ATR algorithm is first
evaluated with the test dataset consisting of our synthetic sonar
images. Then, we evaluate transfer learning performance on
a different sonar image dataset. We also evaluate and analyze
the computation time in each step for generating sonar images
using our simulator.

A. Transfer Learning Performance for ATR

For the purpose of evaluating transfer learning performance
in ATR problem, three target types are used: cylinder, cube,
and sphere. The object geometry is chosen based on the test
dataset in order to match the profile. Figure 8 shows the
synthetic images generated for training the ATR algorithm.
For training and testing purpose, total 650 synthetic sonar
images are generated for a cylinder object, 600 images are
generated for cube object, and 600 images are generated for
sphere objects. These images include objects in different as-
pect angles. After UE rendering system outputs RGB images,
we performed an additional histogram matching to the test
dataset such that our training data have similar sonar signal
intensity. Then, speckle noise with variance 0.1 is added to
each synthetic image.

A part of the generated synthetic sonar images are used
for training an ATR algorithm. We used the ATR algorithm
structure that is introduced in [27] and [28]. This ATR

(a)

(b)

(c)

(d)

Fig. 8: Synthetic sonar images generated from the presented
simulation tool for training an ATR algorithm. (a) and (b)
includes a cylinder object in different aspect angles, (c)
includes a cube object, and (d) includes a sphere object on
a sand ripples.

algorithm uses pre-train AlexNet to extract feature vectors
from sonar images, and an SVM algorithm is trained using
extracted features to perform classification. In order to match
the training data with the test dataset, a flat seabed with muddy
texture is used in image generation. A total of 80 images
are used for training in order to avoid over-fitting, and the
remaining synthetic images are used for testing. Specifically,
21 images of a cylinder object, 27 images of a cube object,
and 32 images of a sphere object are used for training the
ATR algorithm.

In order to test the transfer learning performance, high-
fidelity simulated sonar images from [11] are used as test
image data. One of the images is shown in Figure 9a. These
raw images are then segmented as shown in Figure 9b and
Figure 9c for testing the trained ATR algorithm. The test
dataset also includes sand ripples and flat seabed conditions.
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(a)

(b)

(c)

Fig. 9: An image from the test dataset generated from [11]:
(a) a side scan sonar image taken from the port side; (b) a
segmented sonar image that includes a block object and sand
ripples; (c) a segmented sonar image that includes a sphere
object and sand ripples.

All the objects inside the test dataset are in either cylinder,
cube, or sphere geometry.

Figure 10 is the confusion matrix of the ATR algorithm
that is trained using our synthetic sonar images and also
tested with the remaining synthetic sonar images. Figure 11
is the confusion matrix of the ATR algorithm that is trained
using our synthetic sonar images and tested with the sonar
images from high-fidelity physics-based simulator [11]. Each
category has around 40-60% accuracy. Due to the difference
between the statistics of the synthetic images and the real
sonar images, applying an ATR algorithm trained on the
synthetic sonar images directly to the real sonar images may
result in a non-satisfactory performance. We have tried to
solve this limitation by using more images for training and
using more expressive ATR models. Those solution approaches
make the ATR algorithm achieve excellent performance when
tested on the syntactic images, however, obtain much worse
performance on the high-fidelity physical-based sonar images.
This limitation is likely due to the ATR algorithm overfitting
to the characteristics that only exist on the synthetic images.

However, the ATR algorithm can later be fine-tuned by
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Fig. 10: Confusion matrix of the ATR algorithm that is trained
using synthetic images and tested with exclusive synthetic
images.
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Fig. 11: Confusion matrix of the ATR algorithm that is trained
using synthetic images and tested with sonar images generated
by [11].

using a small set of real sonar images. Using the synthetic
sonar images for pre-training the classifier can reduce the
number of labeled real sonar data required for training an ATR
algorithm. Moreover, recent work shows that with adversarial
training, a machine learning model can be used to refine the
simulated camera images [29]. We plan to further improve the
quality of our synthetic images by adding a generative model
based refiner that can reduce the difference between synthetic
and real sonar images.

B. Synthetic Sonar Image Generation and Computation Time

The presented sonar image simulation tool generates syn-
thetic sonar images in UE and post-processes the rendered
RGB images in MATLAB to tune the sonar image intensity
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histogram and add acoustic noises. One advantage of our
simulator is that the C++ actor in UE allows us to generate
training images in bulk automatically, considering different
sensor configuration and aspect angle. In this paper, we run
the simulator using Intel Core i7-5960X 3.00GHz 8 Cores
16 Logical cores and Nvidia TITAN Xp Graphics card. The
computation time for rendering each image in UE is 1.3747
sec, and the computation time to post-process each image in
MATLAB is 0.0691 sec.

V. CONCLUSION

This paper presents a novel underwater sonar imaging
simulation tool that generates synthetic sonar images with
various seabed conditions and realistic acoustic noise for
training ATR and ML algorithms. Various seabed conditions,
including sand ripples, mud, and rocks, are implemented in
the simulator using Unreal Engine. Sonar-looking highlight-
shadow patterns are generated by setting up lights and cameras
inside the editor. A large number of images are rendered
quickly using the rendering engine and C++ actor in UE.
The rendered images are then re-scaled and converted into
grayscale images, and artificial acoustic noises are added.
The simulator and images generated and used in this paper
are available in a public repository*. As a result, simulated
synthetic images are used to train underwater automatic target
recognition algorithms in this paper. The computation time for
image dataset generation and transfer learning performance of
the generated sonar images for ATR are evaluated. Future work
includes integration of more realistic noise that is dependent on
the seabed condition. Moreover, the C++ actor in our simulator
can be easily extended and integrated with underwater vehicle
simulators. This extension will allow for demonstration of a
wide range of robotics applications, for example, adaptive path
planning for ATR based on sonar sensor measurements.
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