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Much of our real-life decision making is bounded by uncertain information, limitations in cognitive
resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these
limitations through satisficing, fast but “good-enough” heuristic decision making that prioritizes some
sources of information (cues) while ignoring others. However, the decision-making strategies we adopt
under uncertainty and time pressure, for example during emergencies that demand split-second choices,
are presently unknown. To characterize these decision strategies quantitatively, the present study
examined how people solve a novel multicue probabilistic classification task under varying time pressure,
by tracking shifts in decision strategies using variational Bayesian inference. We found that under low
time pressure, participants correctly weighted and integrated all available cues to arrive at near-optimal
decisions. With increasingly demanding, subsecond time pressures, however, participants systematically
discounted a subset of the cue information by dropping the least informative cue(s) from their decision
making process. Thus, the human cognitive apparatus copes with uncertainty and severe time pressure by
adopting a “drop-the-worst” cue decision making strategy that minimizes cognitive time and effort
investment while preserving the consideration of the most diagnostic cue information, thus maintaining
“good-enough” accuracy. This advance in our understanding of satisficing strategies could form the basis

of predicting human choices in high time pressure scenarios.

Keywords: decision making, satisficing, bounded rationality, cue integration, time pressure

The study of rational decision-making has traditionally focused
on decision strategies that maximize utility, referred to as substan-
tive (or unbounded) rationality (Simon, 1955, 1990). These strat-
egies involve exhaustive computations based on perfect knowl-
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edge of decision-relevant information, possible choices, and their
outcome probabilities and consequences. In the real (large) world,
however, rationality is usually bounded by incomplete knowledge
of the decision-relevant information and limitations placed upon
cognitive resources and available computation time, rendering
optimal decision-making nearly impossible (Simon, 1955, 1956,
1990). Humans are thought to overcome these limitations via
satisficing, the use of heuristic strategies that simplify decision-
making problems by prioritizing some sources of information
while ignoring others (Simon, 1955, 1956, 1990; see Gigerenzer &
Gaissmaier, 2011 for a review). This approach leads to solutions
that are not precisely optimal but suffice to satisfy some specified
criterion level, thereby facilitating fast and “good-enough”
decision-making. Even though this type of bounded decision-
making likely underpins most decisions we make in everyday life,
the manner in which satisficing is triggered and accomplished
remains poorly understood. Here, we characterize some of the
principles that govern satisficing decision-making due to uncertain
information and high time pressure, by combining a novel proba-
bilistic classification task with recently developed Bayesian strat-
egy analysis techniques.

The most basic heuristic shortcut to decision making is memory:
When faced with familiar decision problems or choices, people
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often make memory-based decisions using strategies such as the
recognition heuristic (Goldstein & Gigerenzer, 2002; see also
Newell & Shanks, 2004; Pachur, Todd, Gigerenzer, Schooler, &
Goldstein, 2011; Pohl, 2006), the fluency heuristic (Jacoby &
Brooks, 1984; Schooler & Hertwig, 2005; Whittlesea, 1993), and
the exemplar-based approach (Juslin, Olsson, & Olsson, 2003;
Juslin & Persson, 2002; Nosofsky & Palmeri, 1997). By contrast,
when dealing with unfamiliar situations, people appear to take into
account the informational structure of the decision problem, such
as the relative values and intercorrelations between different
sources of information and the cost of acquiring new information,
in adopting decision heuristics (Broder, 2000, 2003; Dieckmann &
Rieskamp, 2007; Newell & Shanks, 2003; Rieskamp & Otto,
2006). For example, one way to simplify a decision problem is to
evaluate one piece of information (i.e., one cue) at a time, starting
from what is considered the most important to less important cues,
based on a subjective rank order. In case of a binary choice
problem, one well-known lexicographic strategy is the “take-the-
best” heuristic, which sequentially searches through cues in de-
scending order of their assumed values and stops upon finding the
first (highest-ranked) cue that discriminates between the two al-
ternatives (Gigerenzer & Goldstein, 1996). A choice is made
without further evaluating less valuable available cues, thereby
simplifying the decision problem. Therefore, in contrast to com-
pensatory strategies that weight and integrate all decision-relevant
information, take-the-best is noncompensatory because a deter-
ministic cue cannot be outweighed by any combination of less
valuable cues (Gigerenzer & Goldstein, 1996).

Laboratory studies that have documented participants’ sponta-
neous use of this cue-based satisficing strategy have typically
provided subjects with a set of cues of varying, explicitly known
values, and then assessed the manner in which subjects combine
the different cues as a function of satisficing pressures (e.g.,
redundant cue information, information costs; e.g., Broder, 2003;
Dieckmann & Rieskamp, 2007; Newell, Weston, & Shanks, 2003;
Payne, Bettman, & Johnson, 1988; Rieskamp, 2006; Rieskamp &
Otto, 2006). In addition, a majority of these studies adopted a serial
information search paradigm (Payne et al., 1988), which enables
easy tracking of choice patterns but also constrains behavior by
hindering quick comparisons of multiple pieces of information
(Glockner & Betsch, 2008). Studies that did not employ this type
of paradigm have instead often adopted an outcome-oriented ap-
proach, in which certain choices are mapped on to certain decision
models (e.g., Bergert & Nosofsky, 2007; Lee & Cummins, 2004).
This provides a convenient way to infer strategies but limits the
number of trial types that could be used as probes. Additionally, to
facilitate the learning of multiple cue values, many studies have
provided participants with trial-by-trial deterministic feedback in-
dicating whether they made a correct or incorrect judgment (e.g.,
Bergert & Nosofsky, 2007; Juslin et al., 2003; Lamberts, 1995;
Lee & Cummins, 2004; Pachur & Olsson, 2012; Rieskamp & Otto,
2006). While this work has produced valuable insights into adap-
tive shifts in decision strategies, it arguably falls short of simulat-
ing satisficing in the real world, where we are often exposed to
multiple sources of information simultaneously and must infer
their approximate values from experience. For example, in decid-
ing whether and when to merge into an exit lane on a busy
highway, we must estimate our own speed, the distance to the exit
ramp, and the relative distances and speeds of cars traveling in

front of us, behind us, and in the lane we would like to merge into,
as well as their drivers’ intentions (e.g., indicators). Estimates of
all of these cues are uncertain, and their relative importance for
avoiding an accident is inferred from previous experience entailing
probabilistic feedback (e.g., we do not get in an accident every
time we ignore the rear mirror).

The presence of time pressure is known to influence the decision
process (for an overview, see Svenson & Maule, 1993), fostering
the use of heuristics that can be applied quickly within a choice
deadline. Several studies have shown that, under time pressure,
people engage in a more selective information search (Bockenholt
& Kroeger, 1993; Lamberts, 1995; Maule, 1994; Payne et al.,
1988; Rieskamp & Hoffrage, 2008) and employ memory-based
heuristics when possible (Goldstein & Gigerenzer, 2002; Lam-
berts, 1995, 2000; Nosofsky & Palmeri, 1997; Pachur & Hertwig,
2006). In fact, under certain circumstances, decisions made under
high time constraints or limited cue exposure can even be found to
be more accurate compared to those made after a long deliberation
period (Ballew & Todorov, 2007; Wilson & Schooler, 1991),
suggesting that the use of fast heuristics can sometimes lead to
better choices (see also Gigerenzer & Gaissmaier, 2011). In the
perceptual decision-making literature, making choices under time
constraints often results in a speed—accuracy trade-off that is
characterized by a (conservative) shift of the decision or response
threshold (see, e.g., drift diffusion model, Ratcliff, 1978). It has
been shown that when making such judgments, well-trained hu-
man participants can adaptively adjust this threshold to maximize
reward rate (Balci et al., 2011; Simen et al., 2009) as well as
accuracy (Bogacz, Hu, Holmes, & Cohen, 2010), and optimally
integrate multiple pieces of information (Drugowitsch, DeAngelis,
Klier, Angelaki, & Pouget, 2014). However, prior studies con-
cerned with comparing cue-based decision strategies under differ-
ent time pressures have dealt exclusively with rather slow-paced
decision scenarios, where time pressure conditions could range
from 15-50 s (Bergert & Nosofsky, 2007; Payne et al., 1988;
Payne, Bettman, & Luce, 1996; Rieskamp & Hoffrage, 2008).
Other studies that required faster decisions (deadlines ranging
between 600 ms to 1,600 ms) either extensively trained subjects
with exemplars (Lamberts, 1995) or used choice problems that
elicited participants’ prior knowledge (Pachur & Hertwig, 2006),
both of which encourages the use of memory-based heuristics.
These circumstances, however, do not always approximate the
kind of time pressure often faced in everyday and high-stakes
decision-making, like in traffic, medical, or military scenarios,
where choices have to be made by actively integrating multiple
cues within a fraction of a second.

The goal of the present study, therefore, was to quantify the
adaptive use of satisficing heuristics in an environment that ap-
proximates both the uncertainty and high-paced nature of much
real-world decision making. To model real-life uncertainty, we
eschewed the use of explicit cue values and instead developed a
statistical learning task, inspired by the well-known “weather
prediction task” (Knowlton, Mangels, & Squire, 1996; Knowlton,
Squire, & Gluck, 1994) that has been widely used to study learning
and memory. In that task, participants are shown one, two, or three
cards from a set of four “cue cards” (containing sets of abstract
symbols), each of which predicts outcome of rain or sunshine with
a given probability that is initially unknown to the participants. On
each trial, participants are asked to predict the weather based on a
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specific combination of cards and receive feedback, which enables
them to gradually learn the probabilistic cue-outcome associations.
However, due to small number of possible combinations of cue
cards, the task is potentially susceptible to memorization of spe-
cific patterns that can discourage participants from actively com-
bining evidence in each experimental trial (Yang & Shadlen,
2007). To overcome this limitation, instead of using four cues
associated with fixed outcome probabilities, we presented two
compound stimuli consisting of combinations of four binary cues
on each trial (see Method section). Participants were asked to
predict the stimulus that was likely to “win” as quantified by the
combined weights of the cues that comprised the stimuli, which
had to be learned via probabilistic feedback throughout the exper-
iment. The large number of possible cue combinations (120 unique
trials) prevented participants from memorizing specific patterns of
stimuli-outcome combination, instead encouraging them to inte-
grate available information to solve the task, allowing us to track
and quantify participants’ use of cue information.

To gauge decision strategies under severe time constraints, we
imposed decision time pressures in the subsecond range. Specifi-
cally, we first report two experiments, involving two independent
cohorts of participants that each performed the same category
learning task using compound (or integrated) cues: following an
initial learning period, we assessed and compared decision making
between two postlearning task phases, one unpressured phase (2-s
response window), which was common to both experiments, and a
subsequent high time pressure phase, where the degree of time
pressure differed between the two groups of participants, ranging
from moderate (Experiment 1: 750-ms response window) to severe
(Experiment 2: 500-ms response window). We then employed
variational Bayesian inference and Bayesian model selection anal-
yses to infer the subjects’ decision strategies under the different
time pressure conditions. Participants may feasibly approach this
task in a number of different ways, including considering a random
subset of cues, using a subset of cues with strong cue weights,
using all the available cues, engaging in a take-the-best strategy,
and so forth. To explore a large space of plausible decision
strategies, we developed and contrasted 16 different plausible
strategy models, allowing us to systematically track how partici-
pants integrate available information under changing time pres-
sure. Then, to test generalizability of our findings, we conducted a
third experiment using noncompound cues with a 3 s unpressured
phase followed by a 750 ms time pressure phase. In sum, we used
a large set of abstract cue stimuli combined with probabilistic
feedback to infer how people learn to use multiple cues in the
presence of uncertainty and how this usage changes as a function
of high time pressure. The results establish that, under split-second
time pressure, humans satisfice decision making by strategically
discounting (or ignoring) the least informative cues.

Experiment 1: Satisficing Under Moderate Time
Pressure (750 ms)

Method

For all experiments, we have reported all measures, conditions,
data exclusions, and how we determined our sample sizes.

Participants. Forty-eight volunteers were recruited online
through a human intelligence task (HIT) via Amazon Mechanical
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Turk (MTurk). Assuming a medium-to-large effect size, we cal-
culated that 38 usable data sets would provide us with a power of
0.8 at a Type I error level of 0.01 (Cohen, 1992). We recruited 10
extra participants in anticipation that about 10% to 20% of respon-
dents would fail to meet performance criteria. All participants
provided informed consent in line with Duke University institu-
tional guidelines. To ensure high data quality, we followed
MTurk’s recommended inclusion criteria of only inviting partici-
pants who had previously completed =500 HITs with a HIT
approval rate of =90% to participate in the experiments. We did
not have any restrictions in age, demographics, or performance in
approving the HIT, but assignments with more than 75 invalid
trials (>10% of total number of trials) were rejected. Five partic-
ipants were excluded from further analysis due to chance-level
performance gauged by the percent optimal responses in the initial
480 trials prior to the time pressure phase (one-tailed binomial test,
p > .05), leaving 43 participants (mean age = 34.4 years, SD =
10.5, 21-66 years; 17 female, 26 male). Participants were com-
pensated with $5.00 upon completion of the experiment, which
lasted approximately 1 hr. In addition, a bonus payment of $5.00
was given to the participant who earned the highest point score.

Stimuli. The task stimuli consisted of compound cues, con-
structed using four different features (color, shape, contour, and
line orientation), which we refer to as cue dimensions (see Table
1). Each cue dimension was binary, comprising two subfeatures or
cue states. For instance, the cue dimension of color had the two
possible cue states of blue and red. Each cue state was associated
with a fixed predictive value (or “weight”) indicating the proba-
bility of “winning”, and these values were complementary and
summed to one within each cue dimension. For example, in a
given participant, the color blue might have a weight of 0.6, which
was its probability of winning, with the color red having a weight
of 0.4. The “net weight” was the difference between the state
weights for a dimension, in this case 0.2. It indicated how impor-
tant that individual dimension was for selecting the winning stim-
ulus (in this case, relatively unimportant). Table 2 displays the
possible cue weights assigned across different cue dimensions. As
can be inferred from the net weights, we created a compensatory
environment, in which the highest cue, ¢, can be out-weighed by
some combinations of less valid cues. The weights were randomly
assigned to the different cue dimensions for each participant at the
beginning of the experiment but always followed the organization
of Table 2. By exhaustively combining all possible cue states, 16
unique compound cue stimuli were constructed (Figure 1A). As
explained in detail below, the sum of the weights associated with
the four cue states comprising each stimulus governed the proba-
bility of that stimulus being a “winning” stimulus.

Table 1
Stimulus Organization

Cue state
Cue dimension 1 2
Color Blue Red
Shape Circle Square
Contour White Black
Line orientation Horizontal Vertical
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Table 2
Assigned Cue Weights
Cue dimension Cue state 1 Cue state 2 Net weight
Ci Wei Wein Weina — Wen — Weip
¢ 9 .1 8
c, 8 2 .6
[N i 3 4
Cy .6 4 2

Note. Net weights indicate the relative importance of each cue dimension
in determining the winning stimulus.

Task. Participants performed a probabilistic classification
task, in which they were required on each trial to compare two
stimuli and select the one they deemed to be most likely to win
(i.e., to have a higher total value than the other stimulus) by means
of a time-restricted button press (Figure 1B). Stimuli (150 X 150
pixels each) were presented on the left and the right side of the
screen (window size: 1,000 X 700 pixels) along the horizontal
meridian, at an eccentricity of 250 pixels from a central fixation
cross. The stimuli were sampled from the full set of the 16
compound cues (Figure 1A), such that each stimulus was paired
with all the other stimuli except for itself, resulting in 120 unique
trials. For a given trial, the compound cue stimuli could thus differ
in one, two, three, or four cue dimensions. Stimuli were presented
on the screen until a response was made or for the duration of an
assigned response window of 2 s or 750 ms depending on exper-
imental phase. Once a response was made, probabilistic feedback
(see below), consisting of the words “win” or “lose,” was dis-
played for 1 s, followed by a 1-s intertrial interval (Figure 1B). A
trial was considered invalid if a response was not made within a
given response window or was made faster than 150 ms poststimu-
lus. At the beginning of the experiment, participants were in-
formed that they needed to learn about the values (weights) asso-
ciated with the different cue states by trial-and-error, in order to
collect as many points as possible. Participants earned 1 point for
every winning trial and the total score at the end of the experiment
was used to select the participant who received a bonus payment.

The probability that a left (L) or a right (R) stimulus would win
was determined based on the cue states comprising the left (/) and
the right (r) stimuli, C = {cy;, ¢a, €34, C4» €1 C2s €30 €4, and
their associated weights, {w.;, W Weyp Weyp Wey s Wey » Wey »
w%} (see Table 2). The difference in the cue weights along each
dimension governed the winning probability, as described in the
equations below (adopted and modified from Yang & Shadlen,
2007):

4
102,-:, OWei = Weiy)
1+ 102 o 1Oveiy = Wi )

P(L|C)= 1)

P(R|C)=1— P(L|C)

where i represents cue dimension. For example, if there was no
difference in overall weights of each stimulus, X, (Weis

wei) = 0, then P(L|C) = P(R|C) = .5. At the other extreme, if
the left stimulus consisted of cues having every one of the higher
cue states (see Table 2), the probability that the left stimulus would
win could be calculated as, P(L|C) = 10A1 + 10%) = 0.99.
Based on Equation 1, feedback was determined probabilistically
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on a trial-by-trial basis. Thus, because feedback was probabilistic,
it was not providing participants with “correct” feedback in an
absolute sense, because there could be situations where a partici-
pant might receive negative feedback for an objectively correct
decision.

Our goal was to first allow participants to learn the (uncertain)
cue values, and to then compare decision making strategies be-
tween conditions of low versus moderate time pressure. To this
end, participants completed three different phases of the probabi-
listic classification task: (a) an initial learning phase, followed by
(b) a no time pressure (NP) phase, followed by (c) a time pressure
(TP) phase to create satisficing pressure. In each phase, partici-
pants completed 240 trials, consisting of the full set of possible
trials presented twice, where stimuli in the second set were pre-
sented in the opposite locations (i.e., as mirror images) to the first
set. Trials were grouped into 12 blocks of 60 trials each, with short
breaks in between. In both the initial learning period and NP
phases, participants were given a maximum of 2 s to respond.
Then, following the NP phase, participants performed an addi-
tional 240 trials of the TP phase, in which participants were given
a 750-ms response window (moderate time pressure). This time
pressure was based on pilot work with this task, where, without
time pressure, we obtained mean response times of around 700 ms.
Hence, Trial Sets 1 and 2 made up the learning phase, Sets 3 and
4 comprised the NP phase, and Sets 5 and 6 formed the TP phase.
Probabilistic feedback was provided throughout all three phases of
the experiment. Our analyses focused on assessing and contrasting
decision making strategies in the experimental (postlearning)
phases, that is, in the NP and TP phases.

Experiment 1
NP:2s
TP: 750 ms

Experiment 2
NP:2s
TP: 500 ms

Points: 0

lose

Figure 1. Stimuli and task of Experiments 1 and 2. (A) We constructed
16 unique compound stimuli by combining 4 cue dimensions (color, shape,
contour, line orientation), each with binary cue states (e.g., red vs. blue) of
varying “weights” (see Tables 1 and 2). (B) On each trial, participants
performed a probabilistic classification task by selecting the stimulus they
deemed more likely to “win,” with varying response windows of 2 s (initial
learning, and NP phase), 750 ms (TP phase in Experiment 1), and 500 ms
(TP phase in Experiment 2). Feedback was determined probabilistically
based on the probability that a left (L) stimulus would win given cue states
(C) presented on each trial, P(L|C) (see Eqn. 1), and displayed for 1 s
upon each response. NP = no time pressure; TP = time pressure. See the
online article for the color version of this figure.
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Survey. To gauge participants’ knowledge of cue values and
decision strategies, at the end of the experiment, participants filled
out a survey, which included multiple-choice questions about
participants’ beliefs concerning the cue rankings, number of cues
used in each phase, and cue-outcome probabilities. First, partici-
pants were asked to rank cue dimensions in order of their per-
ceived importance in predicting outcomes: “Please rank the cues
from the most informative (1) to the least (4). For example, if you
thought color cues (blue/red) were the most reliable indicator for
winning a given trial, or if you’ve made decisions mostly based on
color cues, color would be the most informative cue.” Then, they
were asked to indicate how many cue dimensions they considered
in making their decisions during the NP and the TP phase: “In the
slow phase, how many cues, on average, did you take into account
before making decisions?” and “In the fast phase, how many cues,
on average, did you take into account before making decisions?”
“Self-report strategy models” (as opposed to objectively inferred
ones) were constructed based on the answers to these questions.
For example, if a participant ranked cues as color, shape, contour,
and line orientation (ordered from the most to least informative)
and claimed to have used two cues during the TP phase, then his
or her self-report TP model was a model that included only color
and shape cues. In addition, to check whether participants learned
the relative cue state values correctly within each cue dimension,
we asked them for each cue dimension to select the cue state with
the higher value and to estimate that value (winning probability),
along a range from 50% to 100%. For instance, for the color
dimension, they were asked “Which cue [state] has a higher
probability of winning?” and provided with a choice between blue
and red with pictures of two stimuli differing only in the color
dimension. Participants were then asked “What is your estimate of
a winning percentage of the cue [state] you’'ve selected above?”
which they had to indicate on a scale ranging from 50% to 100%.

Data analysis. Data analyses were based on optimal choices
that were favored by the cue weights, independent of the actual
(probabilistic) feedback. In other words, whenever a participant
chose the stimulus with the higher probability of winning accord-
ing to Equation 1, the trial was considered “correct” (optimal) even
though the probabilistic nature of the feedback could have resulted
in negative feedback for that particular trial. For the purpose of
evaluating percent optimal choices, trials with two stimuli that had
an equal sum of weights were excluded, because a correct choice
cannot be defined in these trials. Hence, if a participant learned the
cue weights optimally, as in the case of an ideal observer (see
below), and correctly integrated them, that participant could in
theory achieve 100% accuracy (which would not be associated
with 100% “win” feedback though). However, it has been shown
in a number of previous studies that when receiving probabilistic
feedback, people tend to match their choice probabilities to the
outcome probabilities (see, e.g., Vulkan, 2000). From this match-
ing perspective, performance with 79% accuracy represents the
ideal percentage of optimal choices in our protocol. In reporting
analysis of variance (ANOVA) measures, violations of sphericity
assumptions were corrected by Greenhouse-Geisser correction to
the degrees of freedom. Similarly, in reporting ¢ test results,
degrees of freedom were corrected for unequal variance where
necessary.

Ideal observer model. To identify the optimal performance
level for the different task phases, we employed an ideal observer
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model. An ideal observer was exposed to the same trial sequences
and feedback as participants and learned the cue weights optimally
throughout the NP phase. This approach enabled us to estimate the
“ideal” cue weights that participants could have learned based on
the probabilistic feedback that they received.

Subjective cue weight analysis. As noted above, the net
weights (see Table 2) correspond to the objective importance of
each cue dimension in identifying the “winning” stimulus. We
assumed that a decision variable (DV) is computed by cue weights
that a given subject learned over time such that the subject chooses
left, when DV > 0, and right, when DV < 0. Ideally, if the subject
had learned all the cue weights correctly, as in the case of the ideal
observer model, the corresponding psychometric function would
be a step function. However, people tend to make mistakes, which
can be better modeled using an S-shaped function that accounts for
decision errors (see Figure 3A and B). This is equivalent to adding
a little bit of noise into the DV or sampling the weights from a
distribution of subjective beliefs. Hence, to assess the post hoc,
subjective importance of each cue dimension for each subject, we
performed a logistic regression analysis. We estimated the effect of
individual cue dimension on subjects’ choices throughout the total
number of trials, N, in each phase, as follows:

_ 1
Prep= |+ ¢ Bot XB) @
X X4
where X = ,B= [31 B> B3 B4]T
AN s XNg

with B, representing a N X 1 matrix for estimating the intercept.
Each element of matrix X on ith cue dimension of nth trial was
defined as following:

—Lifwy, <w,
Xni = 0 lf Wi = Wi,r (3)
Lifwy >w;,

Subjective cue weights, w;, were calculated by transforming the
four fitted coefficients, i, to log base 10:

w; = log;eeP 4)

The magnitude of w; also roughly corresponds to the decision
noise so that a subject may be said to be relatively optimal when
their subjective weights are proportional to true weights.

Similar to the generalized take-the-best model (gTTB; Bergert
& Nosofsky, 2007), this approach is a probabilistic generalization
of the cue usage based on log odds instead of a linear combination
of cue weights. Although both models yield roughly similar pre-
dictions for the probability of choosing the left stimulus, P, , the
main discrepancy between the two models is that when all cues
presented on a given trial (ranging from 1 to 4 cues) are in favor
of the left (or right) stimulus, the gTTB will predict P,,, = 1 (or
P = 0) whereas the logistic model will predict the probability
scaled by the sum of cue weights. For consistency with our
probabilistic feedback protocol, which was also based on the sum
of cue weights (see Equation 1), we chose to adopt a logistic
regression analysis instead of the gTTB to achieve better sensitiv-
ity in inferring subjective cue weights. Another popular model of
decision noise is a “lapse model” that assumes random guessing in
some of the trials. However, this model is not appropriate for
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characterizing the participants’ behavior, because a lapse model
predicts psychometric curves that do not saturate at 0% or 100%
when the sum of evidence is at the minimum or maximum value.
This is not consistent with our empirical observations (again, see
Figure 3A and B). We therefore did not attempt to fit lapse model
variants to our data. We also note that, while we have not explicitly
considered a strategy which is a mixture of strategies considered,
the Bayes factors that we do compute (see below) can be used to
approximately determine the mixture proportions on a per subject
basis (see Friston et al., 2016 for details).

Decision strategy models. We explored a large space of plau-
sible decision models that participants may have applied to solve
the task, resulting in the comparison of 16 different models (Figure
4A) to identify participants’ decision strategies under conditions
with and without time pressure. Models 1 to 15 were created by
accounting for every possible case of cue usage, with Model 15
serving as an optimal cue-integration model. In other words,
Model 15 represented a compensatory strategy model where par-
ticipants were assumed to integrate the weights over all four cue
dimensions in making their choice, whereas Models 1-14 con-
sisted of all possible cue combinations short of the full integration
over the four cue dimensions. In addition, Model 16 was con-
structed based on the take-the-best satisficing algorithm (Gigeren-
zer & Goldstein, 1996), which searches through the cues in order
of descending value until it finds the first cue that differentiates
between the two stimuli. For example, although both Model 1 and
16 each use a single cue to arrive at a decision, Model 1 assumes
that the subject uses only the highest value (most discriminatory)
cue dimension, c,, and makes a random guess if this cue does not
differ between the two stimuli, whereas Model 16 searches through
the cue dimensions from ¢, to ¢, in descending value order until it
finds the highest-value cue that discriminates between the two
stimuli. In Figure 4B, we plot the expected accuracy for each
strategy model under the assumption that a decision maker has
learned to make optimal choices. As expected, the optimal cue-
integration model, Model 15, achieves the best performance,
which further validates our compensatory cue structure.

Based on the strategy models, we conducted Bayesian model
comparison, using variational Bayesian inference (Drugowitsch,
2013), which returns parameters of a fitted logit model, w,, with
input matrix, x,,, and output choice vector, y, for a given strategy
model, m:

_ _ 1
P(y =1 |xm’ Wm) - 1+ €<7W"‘ X X,) (5)
Pyl ) = N(w,, [0, 0, 'D) (6)
P(a,) = Gamma(o,, | ag, by) @)
Hyper-parameters for the prior over weights (¢, = .01 and

b, = .0001) were chosen so that they corresponded to a very
weak prior. This approach allows estimation of an approximate
posterior distribution over the weights, and it marginalizes out
the uncertainty to obtain a marginalized likelihood of the
model, m. Hence, Bayes factors, BF,,, were computed for each
model in comparison to Model 15 (the optimal, “full” cue
integration model):
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_ P(D|Model,,)

m = (8)
P(D | Modells)

where D denotes observed data and m denotes model number. Any
model that had BF,, greater than 3 was considered as having
greater evidence in its favor than the optimal cue-integration
model (Kass & Raftery, 1995). Using this approach, we were able
to infer the most likely strategy that each participant may have
employed to solve the task. Hence, the advantage of using such
analysis is that even if participants did not learn optimally, it is
possible to deduce the most likely cue usage based on each
individual’s choice patterns.

In a control analysis, we established that changing the hyper
priors based on the posterior distributions of the weights computed
from the initial learning phase did not yield any significant influ-
ence on Bayes factors nor model comparison results (see Figure 4).
More precisely, consistent with an empirical Bayesian approach,
the hyper priors, a, and b, were estimated based on the mean ()
and the variance (%) of the observed distribution of subjective cue
weights in the initial learning phase:

2
W= "3 by = % )
which yielded the following values: a, = .594 and b, = .815 for
Experiment 1, a, = .501 and b, = .798 for Experiment 2, and a, =
479 and b, = 1.804 for Experiment 3.

Bayesian model selection. To characterize strategy usage at
the group level, we used the Bayesian model selection approach of
Stephan, Penny, Daunizeau, Moran, and Friston (2009), which
treats models as random effects that could vary across subjects and
estimates the parameters of a Dirichlet distribution to obtain the
probabilities for all strategy models considered. These probabili-
ties are then used to define a multinomial distribution, which can
be used to estimate the probability that model m generated the data
of each subject, as well as the exceedance probability. The
exceedance probabilities reported here were calculated by sub-
mitting the approximate log model evidences to the spm_BMS
routine of the SPMS software suite (http://www.fil.ion.ucl.ac
.uk/spm/software/spm8/).

Results

Task performance. Prior to analyzing how subjects weighted
the cues and arrived at their decisions, we briefly summarize
general task performance. Mean proportion of optimal choices and
response time (RT) for each set and phase are shown in Table 3.
Here, an optimal choice refers to the “correct” decision favored by
the sum of cue weights, independent of the actual feedback pro-
vided. As can be seen in Figure 2 (black line), participants grad-
ually learned to choose the higher-value stimuli in the learning
phase, achieving 72.1% optimal responding by Set 2. We observed
no significant difference in performance between Set 2 and 3
(1(42) = 0.1, p = .92), suggesting that performance had stabilized
by the end of the learning period. However, percent optimal
choices increased from Set 3 to Set 4 (#(42) = 3.4, p = .001), thus
suggesting that some residual cue learning was still taking place
during the NP phase. This residual learning effect is not surprising
since probabilistic feedback was provided throughout the experi-
ment. As expected, the percentage of optimal choices and RT
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Table 3

Summary of Task Performance in Average Percent Optimal Choices and RT in ms

Experiment 1

Experiment 2

Experiment 3

Phase Set % optimal choices RT (ms) % optimal choices RT (ms) % optimal choices RT (ms)
LP 1 66.5 (1.6) 732 (27) 63.6 (1.8) 749 (37) 62.9 (1.5) 1150 (61)
2 72.1(1.5) 702 (24) 70.4 (1.4) 729 (33) 69.4 (1.6) 1122 (53)

NP 3 72.0 (1.4) 682 (23) 68.9 (1.8) 701 (34) 72.8 (1.3) 1126 (52)
4 75.4(1.5) 658 (21) 73.6 (1.7) 674 (32) 74.5(1.5) 1076 (52)

P 5 714 (1.4) 457 (8) 62.6 (1.5) 359 (7) 62.7 (1.4) 510 (13)
6 73.2(1.8) 458 (8) 65.1(1.9) 367 (6) 63.2 (1.6) S11(11)

Note. Numbers in parenthesis are standard error of the mean (SEM). Experiment 1 represents moderate
pressure group with 750-ms response window in the TP phase; Experiment 2 represents high pressure group with
500-ms response window in the TP phase. Both Experiments 1 and 2 used compound stimuli with 2-s response
window in the initial learning (LP) and NP phases; Experiment 3 represents noncompound stimuli group with
3-s response window in the LP and NP phases and 750 ms window in the TP phase. RT = response time; TP =

time pressure; NP = no time pressure.

reliably scaled with the difficulty of the decisions, as defined by
the difference in sum of cue weights between the two stimuli on
each trial. More difficult decisions (smaller weight differences)
were associated with decreasing percent correct choices (linear
trend: F(1,42) = 322.1, p < .001) and increasing RT (linear trend:
F(1,42) = 45.2, p < .001).

In the subsequent TP phase (Figure 2, black line), participants
experienced a moderate time pressure of 750 ms, which was close
to (but greater than) the mean RT in the NP phase (see Table 3).
Here, the rate of optimal choices did not differ significantly from
the NP phase (#(42) = 1.6, p = .11), but responses were acceler-
ated (#(42) = 11.5, p < .001), indicating that participants modified
their approach to the task to adapt to the higher time pressure. We
found no significant difference in performance between Set 5 and
6 (1(42) = 1.5, p = .15). Similar to the NP phase, both percent
correct choices (linear trend: F(1, 42) = 137.8, p < .001) and RT
(linear trend: F(1, 40) = 117.1, p < .001) were modulated by

learning phase NP phase TP phase
90
—— Exp. 1
2 —o— Exp. 2
2 80t
c
o
o
2 7l /’
®©
£
a
© 60t
X
50 1 1 1 1 1
1 2 5 6

3 4
Sets (120 trials/set)

Figure 2. General task performance of Experiments 1 and 2. Average
percent optimal responses in Experiment 1 (750 ms moderate time pres-
sure, black line) and Experiment 2 (500 ms severe time pressure, gray line)
in the learning (left), NP (middle) and TP (right) phases. An optimal choice
refers to the “correct” decision favored by the sum of cue weights, that is,
choosing the stimulus with the higher probability of winning, independent
of the actual feedback provided. Trials with two stimuli with equal sum of
weights were excluded. Error bars are standard errors (SEM). NP = no
time pressure; TP = time pressure; Exp = Experiment.

decision difficulty. Finally, assessing the potential impact of basic
individual differences on task performance, we found no effect of
gender on choices in either task phase (NP: #(41) =.9, p = .38; TP:
#(41) = 1.1, p = .29), and no correlation between age and perfor-
mance (Pearson’s correlation, NP: r = =2, p = .19; TP: r = —.1,
p = .51). In sum, these initial analyses demonstrate basic statistical
learning of our task as well as an effect of time pressure on RT. To
examine potential shifts in decision making strategies under time
pressure, we next turned to determining participants’ cue weight-
ing and cue-integration strategies in performing the task.

Subjective cue weights. To assess the extent to which each
cue dimension (e.g., color) affected participants’ decisions, we
performed logistic regression (Equations 2—4, Figure 3) based on
their performance in the NP and TP phases. The output of the
logistic regression analysis corresponds to log odds of choosing
the left stimulus given the presence of differing cue states, and
thus, provides a way to measure how much subjective net weight
was assigned to each of the four cue dimensions (as contrasted
with the objective, a priori established net weights; see Table 2).
Logistic regression curves for an example participant are displayed
in Figure 3A and B.

At the population level (Figure 3C), an ANOVA with assigned
cue weights (w;) and experimental phase revealed a significant
main effect of cue weights (F(2.2, 91.98) = 20.3, p < .001), which
was characterized by a significant linear trend (F(1, 42) = 33.7,
p < .001), suggesting that participants had correctly learned the
relative ranks of the cues. There was no effect of NP/TP phase
(F(1,42) = 2.0, p = .17) and no Cue Weight X Phase interaction
(F(3, 126) = .02, p = .99). Subjective cue weights of each
participant were further compared to weights produced by an ideal
observer, by computing Spearman’s rank correlation coefficients.
An ideal observer was exposed to the same stimulus and feedback
sequences and hence, ideal weights reflect weights that partici-
pants would have acquired if they had learned optimally. Table 4
shows a summary measure of correlation coefficients averaged
across participants (tested for significance using standard ¢ tests).
All the mean correlation coefficients were significantly greater
than zero, confirming positive correlations between participants’
subjective cue weights and the ideal weights. In sum, the subjec-
tive cue weight analysis indicates that participants learned to
accurately rank the informational values of the four cues. Next, we
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Figure 3. Logistic regression fit of individual performance and estima-
tion of subjective cue weights (A, B). Performance of a single example
participant in the (A) NP (2-s response window) and (B) TP (750-ms
response window) phases. The fraction of left choices is plotted as a
function of amount of evidence in favor of left stimuli, represented by
differences in sum of cue weights. An individual data point reflects
percentage of left choices made given the sum of evidence (y-axis). Curves
are logistic regression fits to the data (Equations 2—4). (C, D) Average
subjective cue weights over groups of subjects as a function of NP (gray
line) and TP (black line) phases, for (C) Experiment 1 (750 ms TP) and (D)
Experiment 2 (500 ms TP). Error bars are standard errors (SEM). NP = no
time pressure; TP = time pressure.

determined how participants combined the cue weights in reaching
their decisions.

Decision strategy model comparison and selection. To
quantify participants’ decision-making strategies, we used varia-
tional Bayesian inference (Drugowitsch, 2013) to gauge evidence
for different decision models in reference to the optimal cue-
integration model, Model 15 (Figure 4A; see Method section). A
marginalized likelihood of each model per participant was then
used to characterize overall decision strategies at the group level
through Bayesian model comparison (Stephan et al., 2009). In the
NP phase, the optimal cue-integration model (Model 15) was the
winning model with exceedance probabilities of .78 (Figure 4C).
Under 750 ms time pressure (TP phase), however, a model that
used only the three most predictive cues (Model 11, using ¢, ¢,
and c;) was the most likely model with an exceedance probability
of .67 (Figure 4C). The additional control analysis using informa-
tive priors estimated based on the posterior distributions of the
weights from the initial learning phase yielded highly similar

results (Figure 4E). These results suggest that participants shifted
from using all four cues when having no time pressure to using
only the three highest-value cues under moderate time pressure of
750 ms.

Taken together, the subjective cue weight and decision model
analyses suggest that (a) participants learned to correctly rank
the values of the cue dimensions, and (b) under moderate time
pressure, they disregarded the least valuable cue dimension. We
reasoned that the latter “dropping” of the worst cue dimension
from the decision process under moderate time pressure could
reflect one of two processes: it could either reflect a strategic
shift in processing, whereby participants categorically ignore
the worst cue dimension in their decision making, or it could
simply be due to the fact that participants are running out of
time in a serial, value-ranked cue integration process. In the
latter scenario, participants would still attempt to use the worst
cue, but on most trials they do not have sufficient time to
process it, because they first attend to higher valued cues. The
fact that the average RT for these trials in the TP phase was well
below the response deadline of 750 ms (mean = 481 ms;
one-sample ¢ test: #(42) = 29.2, p < .001) speaks against the
hypothesis that participants simply ran out of time in consid-
ering this cue.

However, to adjudicate between these two possibilities in
greater detail, we analyzed choices in trials where the worst cue
was the only distinguishing dimension between the two stimuli (16
trials/phase). In these trials, participants should be able to evaluate
that cue dimension, since they do not have to spend time on
integrating differential values over the other cue dimensions, and
the single differentiating visual feature should be quite salient
perceptually. Thus, if subjects dropped the worst cue in the TP
phase due to a lack of time in serial cue integration, they should
nevertheless perform above chance on these trials. By contrast, if
subjects strategically disregarded the worst cue dimension under
time pressure, they would simply guess on these trials. This
analysis revealed that 30 out of 43 participants (70%) performed
no different from chance level (binomial test, p > .05) when only
the least important cue differentiated the stimuli, indicating that
majority of participants guessed in these trials. To further corrob-
orate this result, we computed Bayes Factors (BF) comparing two
models, with H,,: the probability of correct choice, p = .5 and H,:
all possible values of p in [0,1] is equally probable. This analysis
revealed that 28 out of 43 participants (65%) had a BF > 1
favoring H,, although only seven participants showed a significant
effect (BF > 3; Kass & Raftery, 1995). At the group level, we
estimated BFs for use in a paired ¢ test (adopted from Rouder,
Speckman, Sun, Morey, & Iverson, 2009) based on average per-
formance between the NP (mean = 58.9%, SEM = 3.5) and TP
(mean = 59.6%, SEM = 3.1) phases. This ¢ test did not show any
significant difference (BF = 5.88, favoring the null hypothesis). In
sum, we obtained equivocal results in this selective analysis of
low-value cue decisions, which do not allow us to draw strong
conclusions about whether participants truly performed at chance
on these trials. Note though that power in these analyses is limited,
as we only considered a small number of trials (16 trials per phase)
per participant.

Comparison of the TP phase results between the estimated
subjective cue weights (Figure 3C) and the strategy model selec-
tion (Figure 4C and E), at a glance, may seem odd because the
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Figure 4. Decision strategy models and Bayesian model selection. (A) Strategy models were constructed by
accounting for every possible case of cue usage (Model 1-15) with Model 15 representing an optimal
cue-integration model. Filled circles (®) denote the cues that are included in a given model. Model 16 was
constructed based on the take-the-best heuristic (Gigerenzer & Goldstein, 1996). (B) Expected accuracy,
determined by the percentage of correct choices independent of the probabilistic feedback, was estimated as a
function of cue usage defined by strategy models. The optimal model, Model 15, achieves 100% accuracy given
that a decision maker has learned the cue weights optimally. Dotted lines separate strategy models according to
the number of cues used (C-D). Bayesian model selection group results for the NP (gray) and TP (black) phases
of (C) Experiment 1 (750 ms TP) and (D) Experiment 2 (500 ms TP) using uninformative priors. Exceedance
probability represents how likely a particular model is given the group data (Stephan et al., 2009). (E-F) To
control for the effect of priors, Bayesian model selection analysis was repeated using informative priors based
on the posterior distributions of the weights computed from the initial learning phase of (E) Experiment 1 and
(F) Experiment 2. NP = no time pressure; TP = time pressure.
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Table 4

Mean Rank Correlation Coefficients (Spearman’s ty) Between
Ideal Weights, Subjective Weights, and Explicit Survey Ratings
for Experiment 1, 2, and 3

Experiment NP TP
Experiment 1
Ideal - Subjective 48" 45
Ideal - Survey 457 447
Subjective - Survey 54+ 48"
Experiment 2
Ideal - Subjective 55 45
Ideal - Survey 31 27"
Subjective - Survey 37 A1
Experiment 3
Ideal - Subjective 55 50"
Ideal - Survey 617 .54+
Subjective - Survey 67" g
Note. ldeal = ideal weights produced by an ideal observer; Subjective =

subjective weights computed based on participants’ behavioral data (see
Figure 3); Survey = participants’ self-reported cue ranks. NP = no time
pressure; TP = time pressure.

“p <.05. " p<.001 from one-sample t-test.

population average of the weight of the least important cue (c,)
does not drop to zero, while the modeling results suggest that these
cues were dropped from the decision making process. It should
be noted though that although the majority of participants learned
the correct cue rankings, there was a lot of variability in estimated
cue weights across subjects. Given that the magnitude of cue
weights also roughly corresponds to the amount of decision noise
in each participant, fitted subjective cue weights were also highly
dependent on individual task performance. The combination of an
increase in decision noise and a decrease in number of observa-
tions in the TP phase, therefore, may have contributed to the
increased variability in the subjective cue weights. To rule out the
possibility that this increase in noise affecting the estimation
subjective cue weights under time pressure is what is driving our
group results of the Bayesian model selection, we reran the anal-
ysis using only the least noisy half of our data set, that is “high
performing” subjects, based on a median split of performance
accuracy in the initial learning phase (average perfor-
mance =65%). The results of this analysis remained the same as
for the whole sample (data not shown). Furthermore, we observed
a significant down-weighting of the least important cue in the TP
phase compared to the NP phase (#(20) = 2.5, p < .05), whereas
no significant difference was observed for the rest of the cue
weights.

Overall, our decision strategy analysis provides evidence that
participants engaged in optimal, exhaustive cue value integration
when time pressure was low. When faced with moderate time
pressure, however, our analyses provided some evidence indicat-
ing that the participants satisficed strategically through cue dis-
counting, compensating for the lack of time via a “drop-the-worst”
cue strategy, that is, they ignored the least predictive subset of the
cue information. As shown in Figure 4B, switching from the
optimal cue integration model, Model 15, to Model 11 leads to
only a negligible difference in expected accuracy (97%), which
further supports the adaptive nature of strategy selection under
moderate time pressure.

OH, BECK, ZHU, SOMMER, FERRARI, AND EGNER

Survey results. To gauge the degree to which decision-
making was driven by explicit knowledge concerning the different
cue states, we analyzed a range of survey questions. When partic-
ipants were asked to define a cue state with higher weight within
a cue dimension (e.g., blue vs. red), the mean number of correct
responses (out of a possible maximum of 4) was 3.4, indicating
that the majority of participants were able to explicitly understand
the relative importance of the cue states within each dimension.
Then, to identify a “self-report strategy model” for each participant
(see Method section), we surveyed relative ranks of cue dimen-
sions and number of cue dimensions considered in each phase. As
can be seen in Table 4, participants’ ratings of relative rank of cue
dimensions, from the most to the least informative, showed a
significant positive correlation with (a) the subjective cue weights
estimated using logistic regression analysis, and (b) the ideal
weights estimated from the ideal observer model.

In terms of number of cue dimensions used in each phase,
participants answered that they used significantly fewer cues
(1(42) = 7.8, p < .001) during the TP phase (mean = 1.8, SD =
.7) compared with the NP phase (mean = 2.6, SD = .7). These
self-report models, however, did not match well with our findings
based on the objectively inferred strategy models. That is, only
five participants out of 43 were able to correctly identify their own
decision strategies for both the NP and TP phases. In sum, the
survey results indicate that participants gained some explicit
knowledge of the relative cue weights; however, they did not have
much insight into the strategies they employed in translating these
cue weights into decisions.

Discussion

In order to characterize satisficing decisions under uncertainty
and split-second time pressure, we developed a new multicue
statistical learning protocol and applied a range of analyses to infer
participants’ learning of cue values and their use in the decision
process. The results of Experiment 1 document that participants
reliably acquire knowledge of cue values from trial and error
learning, and Bayesian model selection suggests that they employ
a decision strategy of (optimal) exhaustive cue information inte-
gration when they are not under time pressure (2-s response
window); however, when put under moderate pressure (750-ms
response window), participants appear to strategically adapt their
decision process by ignoring the least valuable cue dimension.
Thus, Experiment 1 seems to have revealed a novel satisficing
strategy of “drop-the-worst” cue under time pressure. However, a
confirmatory analysis focusing on those trials where only the
lowest-value cue differentiated between the two stimuli produced
equivocal results. The latter might be attributable to a small trial
count (n = 16 trials/phase) and/or a subset of participants who
were able to perform optimally even under moderate time pressure
(see Figure 4C). Therefore, we followed up these initial findings
with a second experiment that pursued two main goals. First, we
aimed to replicate the decision making pattern observed in Exper-
iment 1. Second, we sought to characterize decision making when
time pressure was increased even further. If “drop-the-worst” is a
reliable general strategy in split-second satisficing, then we would
expect participants to further trim their usage of lower value cues
as the time pressure increases. To test this hypothesis, we ran an
exact replication of Experiment 1 in a new cohort of subjects, with
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the only difference being that the TP phase in Experiment 2 was
reduced, from 750 ms to 500 ms.

Experiment 2: Satisficing Under Severe Time
Pressure (500 ms)

Method

Participants. A new, nonoverlapping cohort of 40 volunteers
was recruited through a separate HIT on Amazon MTurk with the
expectation of collecting 38 usable data sets as in Experiment 1.
The same HIT approval criteria used in Experiment 1 were applied
to ensure high data quality. Four participants were further excluded
due to chance-level performance (one-tailed binomial test on per-
cent optimal responses in the initial 480 trials without time pres-
sure; p > .05), leaving a total of 36 participants (mean age = 32.0
years, SD = 10.4, 21 — 64 years; 15 female, 20 male, 1 unknown).
Participants were paid $5.00 upon completion of the experiment
and an additional $5.00 bonus payment was given to the partici-
pant who achieved the highest score. The age (#(76) = 1.0, p =
.31) and gender (x(1) = .1, p = .77) distribution of participants in
Experiment 2 was equivalent to those of Experiment 1.

Task. Experiment 2 was identical to Experiment 1, except that
the response time window in the TP phase was reduced from 750
ms to 500 ms (less than the mean RT of the NP phase in Exper-
iment 1) to observe how decision strategies change under more
severe time pressure.

Results

Task performance. Similar to Experiment 1, participants
were able to gradually improve their performance throughout the
first 240 trials in the learning phase. We observed no significant
difference in performance between Set 2 and 3 (#(35) = 1.0, p =
.31), suggesting that performance had stabilized by the end of the
learning period. However, as in Experiment 1, optimal choices
increased from Set 3 to Set 4 (#(35) = 3.8, p = .001), suggesting
that some residual cue learning was still taking place during the NP
phase as participants continued to observe probabilistic feedback
provided upon each choice (see Figure 2, gray line, and Table 3).
As expected, in the NP phase, the percentage of optimal choices
and RT were affected by decision difficulty with more difficult
decisions resulting in a significant decrease in performance (linear
trend: F(1, 35) = 267.4, p < .001) and increase in RT (linear
trend: F(1, 35) = 29.3, p < .001). Also as expected, given the
equivalence between the learning period and NP phases between
Experiments 1 and 2, no difference in performance of Set 1
through 4 between experiments was observed (main effect of
experiment: F(1, 77) = 1.5, p = .23; Experimental Group X Set
interaction: F(3, 231) = .3, p = .81), indicating comparable cue
learning and NP performance across the two cohorts.

In the TP phase (Figure 2, gray line), however, both optimal
responses (#(35) = 5.5, p < .001) and RT (#(35) = 11.0, p < .001)
decreased significantly compared to the NP phase. Accordingly,
the percentage of optimal choices in the TP phase was significantly
lower in the severe pressure group than in the moderate pressure
group (between-subjects effect of experiment: F(1, 77) = 15.3,
p < .001). There was no difference in performance between Set 5
and 6 (1(35) = 1.7, p = .10). Despite a significant change in
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performance, the effect of decision difficulty on percent optimal
choices (linear trend: F(1, 35) = 32.1, p < .001) and RT (linear
trend: F(1, 29) = 68.6, p < .001) was still present in this phase.
Similar to Experiment 1, there was no significant effect of gender
on task performance (NP: #(33) = .2, p = .83; TP: ¢(33) = .7, p =
48) as well as no significant correlation between age and perfor-
mance (Pearson’s correlation, NP: r = .02, p = .90; TP: r = —.1,
p = .42). In sum, throughout the learning period and NP phases,
which were equivalent between Experiment 1 and 2, participants
successfully acquired the (uncertain) values of the different cue
dimension via trial-and-error learning. However, there was clear
evidence that the 500 ms time pressure in the TP phase of Exper-
iment 2 had a detrimental effect on performance, both compared to
the NP phase of Experiment 2, as well as to the 750ms TP phase
in Experiment 1.

Subjective cue weights. Separate sets of subjective cue
weights for the NP and TP phases were obtained using logistic
regression (Figure 3D). An ANOVA revealed a significant effect
of cue weights (F(2.2, 76.9) = 14.2, p < .001), with a significant
linear trend of cue weights (F(1, 35) = 27.7, p < .001) indicating
that participants learned the correct relative ranks of cue weights.
The main effect of NP/TP phase (F(1, 35) = 47.2, p < .001), and
the Cue Weight X Phase interaction (F(2.4, 84.1) = 4.1, p = .01)
were also significant. Post hoc analyses revealed significant main
effects for both NP (F(2.2,76.2) = 12.3, p < .001) and TP (F(2.5,
86.0) = 11.0, p < .001) phases on cue weights. In addition, there
was a significant effect of time pressure phase on subjective cue
weights (F(1, 143) = 47.9, p < .001), which was further con-
firmed by significant pairwise cue weight differences for cues 0.4
(t(35) = 3.5, p = .001), 0.6 (¢(35) = 4.0, p < .001), and 0.8
(t(35) = 4.5, p < .001), demonstrating an overall down-weighting
of cue values under severe time pressure. The main effect of phase
on subjective cue weights as well as Cue Weight X Phase inter-
action observed in Experiment 2 (which was not found in Exper-
iment 1) is indicative of robust changes in decision strategy as well
as increased decision noise under more severe time pressure,
which may account for the significant performance difference
between the NP and TP phases reported above. In addition, we
observed significant positive correlations between participants’
subjective cue weights and ideal weights (see Table 4).

Decision strategy model comparison and selection. In ac-
cordance with Experiment 1, in Experiment 2, the optimal cue-
integration model (Model 15) had the highest exceedance proba-
bility (.92) when participants were under no time pressure (NP
phase). Under 500 ms time pressure (TP phase), however, Model
5, using only the two most predictive cues, ¢, and ¢, was the most
likely strategy model, with an exceedance probability of .94 (Fig-
ure 4D). The control analysis using informative priors also re-
vealed the same pattern of strategy shift (Figure 4F). Note that the
Bayesian model comparison enables us to distinguish between
whether the least valuable cue was assigned a small weight (per-
haps as a consequence of generally lower cue weights in the
speeded conditions) versus it being simply ignored altogether, and
our results support the latter strategy. Again, switching from the
optimal model to Model 5 results in reasonably high (“good-
enough”) expected accuracy (87%) but with only half of the
number of cues to consider, which demonstrates the adaptive
nature of cue usage under severe time pressure (Figure 4B).
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As in Experiment 1, we next sought to test whether the dropping
of the two least valuable cue dimensions was strategic in nature, or
whether participants were still trying to employ these cues but ran
out of time. Accordingly, we analyzed performance in the TP
phase for trials where the two most important cues were identical
between the two stimuli (32 trials/phase). Average RT for these
trials was 369 ms, which was well below the response deadline of
500 ms (one-sample ¢ test: #(35) = 61.5, p < .001), and thus argues
against the running-out-of-time hypothesis. Next, as for Experi-
ment 1, we performed a set of analyses on the choice data to
determine whether participants performed at chance-level on these
trials in the TP phase. Here, 33 out of 36 participants (92%)
performed at chance level (binomial test, p > .05). Additional
analyses based on BFs revealed that 26 out of 36 participants
(72%) had a BF > 1 (favoring the hypothesis of chance-level
performance), with 17 participants showing a significant effect
(BF > 3). Next, we used BF analysis for testing for significant
differences in performance between NP and TP phases using a
paired ¢ test (Rouder et al., 2009). This analysis yielded a signif-
icant difference between the NP (mean = 59.5%, SEM = 2.4) and
TP (mean = 49.3%, SEM = 2.0) phase performance (BF = 67.4,
favoring alternative), and importantly, a one-sample ¢ test of the
TP phase performance showed a BF = 5.2, favoring the null
hypothesis, that is, significant evidence for group performance
being at chance-level in this condition. Thus, unlike in Experiment
1, in Experiment 2, we obtained unequivocal support for the
hypothesis that the dropping of the weakest cues was strategic and
categorical, rather than a function of participants running out of
time to employ these cues. The reason for this significant finding
in Experiment 2 compared to equivocal support in Experiment 1
might of course be the more severe degree of time pressure, but it
might also be partly attributable to the fact that this analysis
entailed a higher number of trials in Experiment 2 (32 per phase
per participant, as compared with 16 in Experiment 1).

To address the apparent discrepancy between the results of
subjective cue weights and strategy model selection in the TP
phase, as in Experiment 1 we here repeated the analysis using only
the high performing participants (average performance of the
learning phase =65%). Given that the magnitude of cue weights
are highly dependent on individual task performance, a significant
decrease in the percentage of optimal responses along with the
increase in number of no-response trials in Experiment 2 may have
contributed to the overall down-weighting of estimated subjective
cue weights, which was not observed in Experiment 1. The rerun
of the Bayesian model selection analysis using only the least noisy
half of our data set revealed the equivalent results as we obtained
above (data not shown). This suggests that the overall decrease of
subjective cue weight estimates in the TP phase reflects an in-
creased decision noise and a lower number of observations. The
results of Bayesian model selection analysis, indicating a dropping
of the weakest cues from the decision process, however, does not
appear to be driven by this increase in noise.

In sum, the decision strategy analysis in Experiment 2 docu-
mented again that participants engaged in optimal cue integration
when time pressure was low, but when faced with time pressure,
they satisficed through cue discounting; dropping some informa-
tion sources from the decision-making process. Importantly, the
severe time pressure (500 ms) applied in Experiment 2 led partic-
ipants to disregard the rwo least predictive cues, compared with the
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dropping of only the single least predictive cue under moderate
pressure (750 ms) in Experiment 1.

Survey results. When asked about the relative importance of
cue states within each cue dimension, the majority of participants
were able to correctly identify the higher cue states with a mean
correct response of 3.3 (SD = .7) out of 4. There was no significant
difference in these results between Experiment 1 and 2 (#(77) = .7,
p = .49), indicating that regardless of experimental group, partic-
ipants were able to explicitly identify the more predictive cue
states in each cue dimension to a similar extent. Similar to Exper-
iment 1, participants’ ratings of relative rankings of cue dimen-
sions showed a significant positive correlation with the subjective
cue weights and the ideal weights, although this association was
more modest for the ideal weights (see Table 4).

When asked about the number of cue dimensions used during
each phase, participants indicated that they used significantly
fewer cues (#(35) = 6.2, p < .001) during the TP phase (mean =
1.6, SD = .7) compared with the NP phase (mean = 2.5, SD = .7).
These results, however, were not significantly different from those
of Experiment 1 for both the NP phase (#(77) = .37, p = .71) and
the TP phase (#(77) = 1.28, p = .21). In addition, there were only
a total of four (out of 36) participants, whose indicated subjective
strategy models matched the objectively identified strategy models
for both experimental phases. Thus, as in Experiment 1, we ob-
served some evidence for explicit knowledge of cue values, but
little evidence that participants had insight into their decision-
making strategies.

Discussion

In Experiment 2, we successfully replicated and extended the
results of Experiment 1. First, participants again displayed reliable
statistical learning of the probabilistic cue values, and engaged in
exhaustive cue integration when solving the task in the absence of
time pressure (NP phase). Second, we obtained stronger evidence
for the use of the “drop-the-worst” satisficing strategy, in that (a)
increasing time pressure from moderate (Experiment 1) to severe
(Experiment 2) led to a further trimming of cue usage (from the
single to the two least valuable cues); and (b) in selectively
analyzing trials where the two highest valued cues were identical
between stimuli, we observed clear evidence for intentional ignor-
ing of the weakest cues, and against the notion that participants
simply ran out of time in trying to integrate all available cues. In
sum, participants strategically disregarded the two least predictive
cues to adapt to severe time pressure, although there was little
evidence of explicit knowledge about this shift in cue usage in the
survey data.

Experiment 3: Satisficing Using Noncompound Cues
Under Time Pressure

Many of the previous studies that documented the use of lexi-
cographic heuristics under satisficing pressures have used non-
compound stimuli (e.g., Broder, 2000; Dieckmann & Rieskamp,
2007; Payne, Bettman, & Johnson, 1988; Rieskamp & Otto, 2006),
presenting cues independently, for example in the form of an
information matrix. In Experiments 1 and 2, we took a departure
from this approach and used compound cue stimuli, which inte-
grated all cue dimensions to construct a single object. This raises
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the question whether our findings of a drop-the-worst satisficing
strategy is for some reason unique to the case of integrated,
compound cues. To investigate the generalizability of our “drop-
the-worst” findings to noncompound cues, we therefore conducted
a third experiment, where we adopted the same type of probabi-
listic classification task that was used in the previous experiments
but using noncompound cue presentation. Given that it is difficult
to create unambiguous segregated cues out of some of the cue
dimensions we employed in Experiments 1 and 2 (e.g., we cannot
show a contour stimulus that does not also have a shape), we here
opted to use a new set of cue symbols that lend themselves well to
being presented in a cue matrix.

Method

Participants. A new group of 48 volunteers was recruited
through a separate HIT on Amazon MTurk with the goal of
collecting 38 usable data sets. The same HIT approval criteria used
in Experiments 1 and 2 were applied to ensure high data quality.
Data from nine participants were excluded, one because of data
loss, and eight due to chance-level performance (one-tailed bino-
mial test on percent optimal responses in the initial 480 trials
without time pressure; p > .05), leaving a total of 39 participants
(mean age = 33.9 years, SD = 8.2, 21-55 years; 23 female, 16
male). Participants were compensated with $4.00 upon completion
of the experiment and an additional bonus ranging from $0.50 to
$2.00 based on their performance.

Stimuli. The task stimuli consisted of four pairs of unique
cues that comprised each of four cue dimensions (see Figure 5).
Similar to the previous experiments, each cue dimension was
binary and consisted of two cue states that belong to the same
category. For instance, the cue dimension of “weather” had two
possible states, sunny and rainy. In addition, each cue dimension
was assigned to a fixed location in a stimulus composed of a 2 X
2 matrix, so that the weather cue always appeared in the top left
(location 1), the transportation cue in the top right (location 2), the
activity cue in the bottom right (location 3), and the building cue
in the bottom left (location 4; see Figure 5A). The same weights as
in Experiments 1 and 2 (see Table 2), were randomly assigned to
the different cue dimensions for each participant at the beginning
of the experiment. Hence, except for the use of noncompound
cues, the cue weight assignment and probabilistic nature of the
stimuli remained identical to Experiments 1 and 2.

Task. Participants performed a probabilistic classification
task, in which they compared two stimuli each composed of four
cues and chose the one that is most likely to win (Figure 5B).
Stimuli (194 X 194 pixels each) were presented on the left and the
right side of the screen (window size: 1,000 X 700 pixels) along
the horizontal meridian, at an eccentricity of 250 pixels from a
central fixation cross. Similar to the previous experiments, by
exhaustively combining all possible cue states, we constructed 120
unique trials, in which the stimuli could differ in one to four cue
dimensions. Stimuli were presented on the screen until a response
was made or for the duration of an assigned response window of
3 s or 750 ms. Upon each valid response, probabilistic feedback
(determined by Equation 1), indicating “win” or “lose,” was dis-
played for 1 s, followed by a 1-s intertrial interval. Participants
were provided with identical task instructions as Experiment 1
(adapted to the new cue symbols), and earned 1 point for every
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Figure 5. Cue organization and task of Experiment 3. (A) We constructed
16 unique noncompound stimuli by combining four cue dimensions
(weather, transportation, activity, and building), each with binary cue states
of varying weights (see Table 2). (B) On each trial, participants performed
a probabilistic classification task by selecting the stimulus they deemed
more likely to “win” under 3 s (initial learning, and NP phase) and 750 ms
(TP phase) response deadline. Identical to Experiments 1 and 2, feedback
was determined probabilistically based on Eqn. 1, and displayed for 1 s
upon each response. NP = no time pressure; TP = time pressure.

winning trial. The total cumulative score at the end of the exper-
iment was used to determine the amount of a bonus payment for
each participant.

Again, to compare decision making strategies between con-
ditions with and without time pressure, participants completed
three phases sequentially: (a) an initial learning phase (Set 1
and 2); (b) an NP phase (Set 3 and 4); and (c) a TP phase (Set
5 and 6), each of which consisted of 240 trials grouped into four
blocks of 60 trials. In both the initial learning period and the NP
phase, participants were given a maximum of 3 s to make a
decision. This response window was chosen based on a pilot
study, which used a 2-s response window for Phases 1 and 2. In
this study, participants achieved an average of 70.6% optimal
responses at the end of the NP phase (Set 4), which was
significantly lower than the NP phase performance of Experi-
ment 1 (#(79) = 2.4, p = .02). Therefore, to provide participants
with sufficient time to observe the cues and thereby to facilitate
the learning process, we extended the response window to 3 s.
Following the NP phase, participants performed an additional
240 trials of the TP phase with 750 ms time pressure. Identical
to the previous experiments, probabilistic feedback was pro-
vided throughout the entire experiment.

Survey. At the end of the experiment, participants completed a
brief survey, which tested participants’ explicit knowledge of cue
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values and their decision strategies in each phase. All the questions
were identical to the previous version used in Experiments 1 and 2,
except that the choices of cue dimensions and states were modified to
match noncompound stimulus conditions. Based on the answers to the
survey questions, self-report strategy models were constructed.

Data analysis. Data analyses were carried out identical to
Experiments 1 and 2.

Results

Task performance. Similar to Experiments 1 and 2, partici-
pants were able to gradually improve their performance throughout
the initial learning phase (Figure 6, Table 3). Even after the
completion of the first 240 trials, participants continued to learn,
indicated by significant difference in the percentage of optimal
choices between Set 2 and 3 (#(38) = 3.2, p < .01). We found no
difference in performance between Set 3 and 4 (#(38) = 1.4, p =
.16), suggesting that performance had stabilized during the NP
phase. The percentage of optimal choices and RT were influenced
by decision difficulty, which is characterized by the difference in
sum of cue weights between the two stimuli, with more difficult
decisions associated with decreasing performance (linear trend:
F(1,38) = 269.5, p < .001) and increasing RT (linear trend: F(1,
38) = 43.4, p < .001).

In the subsequent TP phase (see Figure 6), participants experi-
enced a time pressure of 750 ms, which was substantially below
the mean RT of the NP phase (see Table 3). Accordingly, both the
rate of optimal choices (#(38) = 8.9, p <.001) and RT (#(38) =
12.4, p < .001) decreased significantly compared with the NP
phase. We found no significant difference in performance between
Set 5 and 6 (#(38) = .3, p = .74). Regardless, the effect of decision
difficulty on the percentage of optimal choices (linear trend: F(1,
38) = 134.9, p < .001) as well as RT (linear trend: F(1, 38) = 4.2,
p < .05) was still present in the TP phase. Similar to the previous
experiments, there was no significant effect of gender on perfor-
mance (NP: #(37) = 1.8, p = .08; TP: #(37) = 1.7, p = .10), and
no significant correlation between age and performance (Pearson’s

learning phase NP phase TP phase
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Figure 6. General task performance of Experiment 3. Average percent
optimal (correct) responses in the learning (left), NP (3-s response window;
middle) and TP (750-ms response window; right) phases. An optimal
choice refers to the “correct” decision favored by the sum of cue weights,
independent of the actual feedback. Trials with two stimuli with equal sum
of weights were excluded. Error bars are standard errors (SEM). NP = no
time pressure; TP = time pressure.

correlation, NP: r = .1, p = .67, TP: r = —.1, p = .77). Taken
together, using noncompound stimuli, we obtained a comparable
statistical learning profile to that observed in Experiments 1 and 2.
That is, participants successfully learned to solve the task through
trial-and-error learning over the course of the initial learning and
the NP phases. In the TP phase, however, time pressure had a
detrimental effect on performance, thus creating conditions for
possible changes in decision strategy.

Subjective cue weights. To examine the effect of each cue
dimension on participants’ decisions, we again carried out logistic
regression based on choice data in the NP and TP phases (Equa-
tions 2—4, Figure 7A). In accordance with our previous findings
based on compound stimuli, an ANOVA with assigned cue
weights (w;) and experimental phase showed a significant main
effect of cue weights (F(2.0, 75.5) = 26.8, p < .001), which was
characterized by a significant linear trend (F(1, 38) = 73.8, p <
.001). This suggest that participants had correctly learned the
relative importance of the different cues even with noncompound
stimuli. In addition, there was a significant effect of NP/TP phase
(F(1, 38) = 48.0, p < .001) with marginal Cue Weight X Phase
interaction (F(3, 114) = 2.6, p = .06). Post hoc test revealed that
there was a significant overall down-weighting of cues in the TP
phase compared to the NP phase (mean difference = .23, SE =
.03, p < .001). This main effect of experimental phase, as in the
case of Experiment 2, is indicative of a shift in decision strategy
along with increased decision noise under time pressure, which
also accounts for a significant decrease in performance in the TP
phase compared with the NP phase. Moreover, comparison be-
tween subjective cue weights and weights produced by an ideal
observer revealed a significant positive correlation (see Table 4),
which further confirms that, on average, participants learned to
accurately rank the cue dimensions.

Decision strategy model comparison and selection. We
again used variational Bayesian inference (Drugowitsch, 2013)
and Bayesian model comparison (Stephan et al., 2009) to quantify
participants’ decision making strategies at an individual as well as
at the group level (see Method in Experiment 1). In the NP phase,
unlike Experiments 1 and 2, the model selection resulted in no
clear winning model, with exceedance probability evenly shared
among Model 15 (.37 for uninformative and .23 for uninforma-
tive priors), Model 11 (.33 for uninformative and .28 for unin-
formative priors), and Model 5 (.28 for uninformative and .47
for informative priors; Figure 7B, C; see also Figure 4A). This
suggests that unlike the comparison between compound stimuli,
when subjects are comparing noncompound stimuli, they are
more inclined to consider a lower number of cues even when the
time pressure is fairly low. It is, however, worth noting that this
reduction of cue usage appears to be strategic and adaptive, and
conforms to the drop-the-worst strategy: compared to the opti-
mal model (Model 15), Model 11 ignores the least important
cue with 97% expected accuracy, and Model 5 ignores the two
least important cues with 87% expected accuracy, both of which
result in only small drop-offs in performance (Figure 4B). By
contrast to the NP phase, performance in the TP phase, with a
750-ms response window, was best captured by strategy Model
1. This model, which only uses the most valuable cue dimen-
sion and thus ignores the three weakest cues, was the most
likely strategy model with an exceedance probability of .85
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Figure 7. Subjective cue weights and Bayesian strategy model selection. (A)
Average subjective cue weights as a function of NP (gray line) and TP (black line)
phases for Experiment 3. Error bars are standard errors (SEM). (B-C) Bayesian
strategy model selection group results for the NP (gray) and TP (black) phases of
Experiment 3 using (B) uninformative priors and (C) informative priors. NP = no
time pressure; TP = time pressure.

(uninformative priors) and .95 (informative priors, Figure 7B,
7C). These results conceptually replicate those of Experiments
1 and 2, in that they suggest that under higher time pressure
participants reduced the search space following a drop-the-

worst principle, here using only the single highest cue, c,, to
arrive at their decisions.

Next, as in Experiments 1 and 2, we aimed to tackle the question
whether the observed shift in strategy from the NP to TP phase is
strategic in nature or participants simply didn’t have enough time
to process additional cues. Accordingly, we analyzed performance
in trials when the most important cue was identical between
the two stimuli (112 trials/phase). Average RT for these trials in
the TP phase was significantly below the response deadline of 750
ms (mean = 519 ms; one-sample ¢ test: #38) = 18.6, p < .001),
which is in contradiction with the running-out-of-time hypothesis.
To further examine the validity of the model selection result, we
conducted a set of additional analyses to test whether performance
on these trials is at chance in the TP phase. This analysis revealed
that 35 out of 39 participants (90%) performed no different from
chance level (binomial test, p > .05), indicating that the great
majority of participants guessed when the most important cue did
not discriminate between the two stimuli. Additional analysis
based on BFs revealed that 35 out of 39 participants (90%) had a
BF > 1 (favoring the hypothesis of chance-level performance),
with 28 participants showing a significant effect (BF > 3). At the
group level, we performed a Bayesian paired ¢ test (Rouder et al.,
2009) to compare average performance between the NP (mean =
64.7%, SEM = 1.7) and TP (mean = 51.5%, SEM = 1.1) phases.
This ¢ test yielded a highly significant difference (BF = 4.4 X 107,
favoring alternative), and an additional one-sample # test of the TP
phase performance revealed BF = 2.5 (standard ¢ test: #(38) = 1.3,
p = .19), thus favoring the null hypothesis that group performance
is at chance level on these trials under time pressure. In sum, using
noncompound cues, we again obtained evidence supporting that
dropping of the weakest cues is a strategic decision to cope with
time pressure.

In summary, the decision strategy analysis in Experiment 3
revealed that when multiple cues were presented in a spatially
segregated manner, participants were more prone to consider a
lower number of cues and to adopt a noncompensatory strategy
even without high time pressure. Under 750 ms time pressure,
participants satisficed by dropping the weakest three cues from
their decision making process, considering only the highest cue
and resorting to guessing when this cue did not discriminate
between the two cue matrices. In addition, Bayesian model com-
parison showed that only three participants out of 39 (one in the
NP and two in the TP phase) preferred the take-the-best model
(Model 16) over the optimal cue integration model, suggesting that
the majority of participants did not adopt a sequential, lexico-
graphic strategy. Rather, participants seem to strategically disre-
gard the least predictive cues and focus only on a small subset of
cues to guide their decisions.

Survey results. Similar to Experiments 1 and 2, most partic-
ipants were able to correctly identify the cue states with a higher
predictive value within each cue dimension with a mean correct
response of 3.7 (SD = .6) out of 4. Participants’ explicit ratings of
relative importance of cue dimensions showed a significant posi-
tive correlation that matched very closely to their inferred subjec-
tive cue weights as well as the ideal weights (see Table 4).

When asked about the number of cue dimension usage in each
phase, participants indicated that they used significantly fewer
cues (#(38) = 12.5, p < .001) in the TP phase (mean = 1.5, SD =
.5) compared with the NP phase (mean = 2.8, SD = .7). Com-
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parison between subjective strategy models, which were defined
by each participant’s response to the survey questionnaire, and
objectively identified strategy models revealed that only a total of
five out of 39 participants were able to correctly identify their
strategies for both experimental phases. Thus, in accordance with
our previous findings, we obtained some evidence for explicit
knowledge of relative importance of cue dimensions and states, but
only ambiguous support for any insight into the decision-making
strategies employed in the NP and TP phases.

Discussion

In Experiment 3, we sought to examine whether our findings of
a “drop-the-worst” satisficing strategy based on compound cues
can be generalized to a probabilistic classification task using
noncompound cues. We found that similar to the previous exper-
iments, participants were able to learn the probabilistic cue values
through trial-and-error. In the NP phase, however, only a small
portion of participants appeared to engage in exhaustive cue inte-
gration and many participants adopted suboptimal strategies. Im-
portantly, though, those suboptimal strategies conformed to a
drop-the-worst pattern, with participants using only the two or
three highest value cues to make decisions. In the 750 ms TP
phase, participants further reduced the search space and considered
only the single most important cue. Our model selection results
provided no support for widespread use of the take-the-best strat-
egy. In sum, using noncompound cues, we successfully replicated
our main results from Experiments 1 and 2, confirming the reliable
use of the “drop-the-worst” strategy.

The difference in the results of the NP phase from our previous
findings may have been caused by participants’ strategic decision
to decrease the number of cues to consider to reduce their effort in
the presence of low, but not negligible, time pressure. As reported
in Table 3, participants took longer to arrive at decisions in the
learning and NP phases in Experiment 3 compared with the ex-
periments using compound cues, suggesting that comparing non-
compound multicue stimuli may be more effortful than comparing
compound stimuli. In addition, previous studies that reported the
use of the weighted additive strategy using noncompound cues
have provided participants with ample time to observe and com-
pare the cues before making a choice (e.g., Glockner & Betsch,
2008; Pachur & Olsson, 2012). However, our task imposed a fixed
response deadline of 3 s during the learning and NP phases, which
may have already encouraged the use of suboptimal strategies.
Regardless, rather than adopting the lexicographic, take-the-best
heuristic that relies on a single discriminating cue through sequen-
tial search (Gigerenzer & Goldstein, 1996; e.g., Payne, Bettman, &
Johnson, 1988; Rieskamp & Hoffrage, 2008), or dropping random
cues from their decision process, participants systematically inte-
grated the two or three most valuable cues to arrive at decisions in
the NP phase.

In the TP phase, participants strongly relied on the single highest
cue to solve the task. Through a set of control analyses, we were
able to confirm that participants performed at chance when faced
with trials when the highest cue did not discriminate between two
stimuli. It is, however, difficult to clearly distinguish whether
participants were trying to employ the take-the-best strategy but
did not have enough time to evaluate the second highest cue or
they strategically disregarded the rest of the cues altogether. Given
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the saliency of the cues as well as RT data, it is unlikely that
participants did not have enough time to process the second cue
visually but it is difficult to completely rule out the possibility of
the use of lexicographic strategy under high time pressure.

General Discussion

Decision-making in everyday life is beset by uncertainty due to
noisy and incomplete information, and limited available decision
time and cognitive resources. It has long been held that humans
adaptively use satisficing strategies that can simplify the decision-
making process to save time and cognitive effort to arrive at
good-enough solutions (Gigerenzer & Goldstein, 1996; Shah &
Oppenheimer, 2008; Simon, 1955, 1956, 1990), and some previous
studies have begun to investigate the nature of shifts in decision-
making under time pressure. The goal of the present study was to
expand this literature by creating a protocol that emphasized two
key aspects of real-life, high-stakes decision making, namely un-
certainty of cue values combined with severe time constraints, that
is, split-second decision making. Specifically, we examined how
people solve a probabilistic classification task under varying time
pressure, thereby connecting the often disparate literatures on
learning and decision making. Using compound cues, we found
that, under low time pressure (NP phase), participants were able to
correctly weight and integrate all available cues to arrive at near-
optimal decisions. With increasing time pressure (TP phase), how-
ever, participants shifted their decision strategies by dropping cues
from the information-integration process. Importantly, this selec-
tive discounting of a subset of cue information was clearly strate-
gic and adaptive, in that participants specifically dropped the one
(Experiment 1, moderate time pressure group with 750-ms re-
sponse window) or two (Experiment 2, severe time pressure group
with 500-ms response window) least informative cues from the
decision-making process. Moreover, control analyses confirmed
that disregarding of the least valuable cue(s) was not an expression
of simply running out of time during an attempt at integrating
those cue values. Rather, the weakest cues seem to have been
categorically excluded from the decision process under high time
pressure. We replicated these results using noncompound cues
(Experiment 3), which demonstrated that under 750-ms time pres-
sure, participants dropped the three least informative cues, utiliz-
ing only the best cue to make decisions. Postexperiment survey
results suggested that participants had at least some explicit knowl-
edge concerning the informative value of the cues but lacked
insight into the decision strategies they adopted. Our results thus
document, and quantify, adaptive shifts in decision strategies un-
der uncertainty to compensate for limited decision time. Specifi-
cally, we showed that participants engaged in adaptive cue dis-
counting, ignoring the least valuable information sources, a
satisficing variant we here call “drop-the-worst.”

Our discovery of the decision strategy that drives satisficing
under uncertainty and high time-pressure is significant, because
this knowledge, in principle, renders split-second human choices
(e.g., in traffic or combat) predictable, which in turn can inform the
optimal design of safety measures and/or autonomous agents that
interact with humans. The fact that the nature of satisficing in
split-second decision making cannot be anticipated on the basis of
strategies uncovered in more slow-paced environments becomes
clear when we contrast the present findings with those of several
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prior investigations using cue-based search paradigms. These stud-
ies examined the effect of time pressure on strategy selection in
slow-paced (>15 s—50 s) scenarios and have found that under low
time pressure, similar to the present study, a strategy model that
integrates all available information (e.g., weighted additive strat-
egy) performed best at predicting participants’ choices (Rieskamp
& Hoffrage, 2008). However, under higher time pressure, people
adapted by using a simple lexicographic heuristic (i.e., a “take-
the-best” heuristic for a binary choice problem; Gigerenzer &
Goldstein, 1996; Payne et al., 1988, 1996; Rieskamp & Hoffrage,
2008), which looks for “one clever cue” to base decisions on.
These conclusions are partly drawn from the information search
structure of tasks that allow subjects to inspect only one piece of
information at a time (Payne et al., 1988; see Glockner & Betsch,
2008 for discussion). Specifically, take-the-best requires searching
through cues in descending order of cue validity until the decision
maker finds the first (and the “best”) cue that discriminates be-
tween the alternatives and such sequential search paradigm can
strongly encourage subjects to adopt one-cue heuristic under time
pressure. Indeed, when cues were presented all at once, people
were able to integrate cue information using compensatory strat-
egies relatively quickly (Glockner & Betsch, 2008; Pachur &
Olsson, 2012), which is in accordance with our findings under no
time pressure. Our present findings further extend the previous
work on bounded rationality by documenting, for the first time,
that under much higher time pressure that enforces split-second
decision making, subjects instead adopted a “drop-the-worst” heu-
ristic, whereby the least valuable cues are simply ignored (or
discounted) altogether.

This difference in satisficing strategy likely represents an adap-
tive shift in information integration to accommodate the less
certain nature of cue information and much higher time pressure in
the present task. First, in order to implement the take-the-best
approach, it is crucial for the decision maker to be confident in
their knowledge of the exact rankings of cue validities; in fact, the
majority of previous work on this heuristic has provided partici-
pants with explicit cue validities on each trial (e.g., Broder, 2000,
2003; Dieckmann & Rieskamp, 2007; Payne et al., 1988, 1996;
Rieskamp & Hoffrage, 2008; Rieskamp & Otto, 2006). Moreover,
it has been shown that experts who have better knowledge of cue
validities than novices are more likely to adopt the take-the-best
heuristic (Garcia-Retamero & Dhami, 2009; Pachur & Marinello,
2013). By contrast, participants in our study were not provided
with explicit cue weights and had to infer the correct cue ranking
through trial-and-error learning, likely rendering them less confi-
dent about the exact rankings. In addition, due to a large number
of possible cue combinations, each associated with probabilistic
feedback, our experimental design likely prevented subjects from
making memory-guided decisions (see Juslin, Olsson, & Olsson,
2003). Given this uncertainty about cue information and the com-
plexity of the task structure, it may be more adaptive to first set a
satisfactory cutoff level, integrate cues in an order that is most
likely to reach this cutoff, and then make a decision without
evaluating all available cues (Shah & Oppenheimer, 2008), espe-
cially under high time pressure. This strategy reduces cognitive
effort by integrating less information and choosing an alternative
that is simply “good-enough” whereas take-the-best reduces effort
by examining only one cue at a time, but it can require searching
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for multiple cues if the first cue does not discriminate between
alternatives (Shah & Oppenheimer, 2008).

Second, given that take-the-best requires serially searching
through the cues in order of their validity until one finds the first
discriminating cue, in some cases this strategy can require more
time than the drop-the-worst strategy, in particular when the least
informative cue (Experiment 1) or cues (Experiments 2 and 3) are
the only cues differentiating between the two stimuli. Therefore, if
there is high pressure to make a quick decision with some uncer-
tainties in cue validities, lowering the satisfactory cutoff level and
hence, focusing only on a fixed subset of cues in the decision
process may be a more efficient way to save cognitive effort and
achieve good-enough accuracy. Accordingly, our findings docu-
ment that participants did not employ the take-the-best strategy
(Model 16), even when the cues were presented separately, but
instead used a drop-the-worst approach, where only a subset of
cues with the highest validities (weights) was considered, and
random guesses were made if those cues did not differ between the
two stimuli. Although Bergert and Nosofsky’s (2007) response-
time approach demonstrated more use of take-the-best strategy
compared with the weighted additive strategy using compound
cues, the use of deterministic feedback during the training phase as
well as a task structure that yielded comparable results between the
use of take-the-best and the optimal strategies may have influenced
the participants to rely on a single cue heuristics (see Juslin et al.,
2003). It is also important to note that the observed strategy shift
to noncompensatory heuristics can be induced by the effect of
learning and experience over the course of the experiment (Garcia-
Retamero & Dhami, 2009; Johnson & Payne, 1986; Pachur &
Marinello, 2013; Rieskamp & Otto, 2006). Our results are no
exception to this observation, and because participants were pro-
vided with probabilistic feedback throughout all phases of the
experiment, and the TP phase always followed the NP phase, it is
possible that continued learning may also have played a role in
inducing the switch to the drop-the-worst strategy.

One intriguing question arising from the present protocol is
whether multiple cues are processed in a serial manner (i.e.,
integrating cues serially from the most important to the least
using an additive rule) or in a parallel fashion. For instance, one
could imagine evidence for all cue dimensions being accumu-
lated simultaneously in a drift-diffusion type model (Smith &
Ratcliff, 2004), where the drift rate of evidence may increase as
a function of cue weight, corresponding to an effect of atten-
tion. With our current paradigm, however, it is difficult to
distinguish whether behavior stems from a serial or parallel cue
processing strategy, because equivalent predictions seem to
follow from both models. For instance, in the NP phase of both
experiments, we found significant linear trends of RT as a
function of cue weights when only a single cue was different
between two stimuli (Experiment 1: F(1, 42) = 22.1, p < .001;
Experiment 2: F(1, 35) = 4.1, p < .05). In other words,
participants took longer time to make a choice when a less
valuable cue was the only distinguishing feature between the
two stimuli, in spite of the fact that this single difference should
be perceptually quite salient. This might be interpreted as
support for the serial processing model, as participants may
have evaluated cues serially in order of importance, thus lead-
ing to slower response times for less valuable cues even when
only that cue distinguishes the two stimuli. However, this result
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could equally be driven by decision difficulty, with more dif-
ficult trials (i.e., with less cue value difference between stimuli)
requiring more time to make a choice. Taken together, the
precise manner in which multiple cues are integrated and how
the shift in decision strategy is instantiated computationally and
neurally under time pressure represents an exciting challenge
for future research.

Several previous studies have explored ways of identifying
strategies that participants use in solving the classic weather
prediction task (Gluck, Shohamy, & Myers, 2002; Lagnado,
Newell, Kahan, & Shanks, 2006; Meeter, Myers, Shohamy,
Hopkins, & Gluck, 2006; Meeter, Radics, Myers, Gluck, &
Hopkins, 2008; Speekenbrink, Lagnado, Wilkinson, Jahan-
shahi, & Shanks, 2010), which has close parallels with the
present protocol. Gluck et al. (2002) introduced a method using
a least-mean-squared-error measure that compares each partic-
ipant’s data to the ideal response profiles constructed from three
different strategy models, the multicue (optimal model), one
cue, and singleton strategies. Hence, a strategy that resulted in
the lowest error was defined to be the best-fit model. This
model-based approach was later extended by using Monte Carlo
simulations that can be harnessed to infer switches from one
strategy to another over the course of the experiment (Meeter et
al., 2006). Another approach in identifying an individual’s
strategy is to use “rolling regression” methods that estimate
subjective weights of each cue through a moving window of
consecutive trials, which can be applied to characterize how the
learning occurs during the course of the task (Kelley & Fried-
man, 2002; Lagnado et al., 2006). Meeter et al. (2008) demon-
strated that both strategy analysis and rolling regression anal-
ysis results in a more or less equivalent ability to predict
responses.

We here applied a new analytical approach that captures
these key aspects of prior strategy analyses and enabled us to
infer both subjective cue values and the manner in which these
were combined to reach decisions. Specifically, we inferred
how the cues were weighted in each phase of the experiment
using logistic regression, and identified the most likely strategy
employed by using Bayesian model comparison at an individual
as well as the group level. Hence, instead of simply categorizing
strategies into the number of cues used (cf. Gluck et al., 2002;
Lagnado et al., 2006; Meeter et al., 2008), we explored an
exhaustive set of plausible strategy models to identify the exact
cues used and their relative importance in making decisions.
For instance, even if a given participant adopted a suboptimal
strategy that resulted in poor performance, we were neverthe-
less able to infer the most likely underlying cue structure that
the participant may have developed throughout the task. The
present analysis approach therefore may have great potential for
enhancing the inferences drawn from future studies of statistical
learning.

Moreover, the present results, in accordance with previous
studies using the classic weather prediction task (Gluck et al.,
2002; Lagnado et al., 2006; Meeter et al., 2006, 2008; Speek-
enbrink et al., 2010), highlight the fact that there is likely
considerable variability in participants’ cognitive strategies in
probabilistic decision making scenarios. Previous studies re-
ported that people tend to start with a simple strategy using a
single cue (i.e., singleton strategy) but switch to an optimal
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multicue strategy toward the end of the task. Although we did
not assess changes in strategies across multiple time points
within each experimental phase (which would require a yet
higher trial count), our performance data suggest that partici-
pants learned to use the cues in a near-optimal manner as they
learned the cue characteristics throughout the initial learning
and the NP phase (see Figure 4B, 4C). In addition, our data on
the subjective cue weights indicate that the majority of partic-
ipants learned the correct relative importance of cue weights.

Another intriguing model for solving a multicue probabilistic
classification task, especially under high time pressure, is a
mixture strategy model where participants some of the time
integrate cues in an optimal manner and some of the time decide
randomly. We had considered the possibility of this type of
mixture model, but rejected it based on the fact that this model
predicts psychometric curves that do not saturate to 100%
accuracy when the sum of evidence is at the maximum value,
unless when the guessing parameter is set to zero. By contrast,
the suboptimal cue usage models such as Models 5 and 11,
predict that accuracy will suffer more when the evidence is low
but the performance will eventually saturate toward 100%. Note
that this pattern also holds for predictions at very low guess
rates (g = .2), which are in a reasonable range if we consider
decision noise and imperfect knowledge of cue weights. Hence,
even though participants are making more errors (possibly
random guesses) under time pressure, the performance of a
majority of participants, especially the high performers, is
scaled by the sum of evidence, reaching the peak when the
evidence is at maximum. The shape of these performance
curves corresponds to the mixture model with g = .2, indicating
that performance in the TP phase does not reflect a random
increase in the guess rate, but is reflective of a systematic lapse
in decision making dependent on the sum of evidence. In
addition, in case of severe time pressure (Experiments 2 for
compound cues and Experiment 3 for noncompound cues), we
showed that performance is at chance when the low-value cues
are the only informative cues. Therefore, although the mixture
model can account for some proportion of our observations,
because our goal was to uncover patterns of cue usage under
varying degrees of time pressure, we did not include the model
in our strategy model comparison.

Finally, there have been mixed findings regarding whether
participants have explicit knowledge about how they solve the
classic weather prediction task (Gluck et al., 2002; Knowlton et
al., 1994; Lagnado et al., 2006; Newell, Lagnado, & Shanks,
2007). This knowledge can be divided into two different in-
sights that might not necessarily coincide: (a) insight into the
cue structure of the task, and (b) insight into strategy use
(Lagnado et al., 2006). Gluck et al. (2002) reported that there
was little or no evidence that participants had explicit insight
about the task structure or their strategy use based on their
postexperiment questionnaire. On the other hand, Lagnado et al.
(2006), using more detailed and frequent measures, found that
having accurate knowledge of the task structure and self-insight
is necessary for achieving optimal performance. Our postex-
periment survey results seem to indicate that the majority of
subjects in the present study had some explicit knowledge about
the cue structure, but that this knowledge did not necessarily
lead to having accurate insight into strategy use.
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In summary, the present study characterized the nature of adap-
tive shifts in decision strategies in an uncertain and fast-paced
environment. By combining a probabilistic classification task un-
der varying time pressure with new analytical approaches to quan-
tifying decision models, we showed for the first time that, when
forced to make split-second decisions in an uncertain environment,
participants strategically discount the least valuable piece(s) of
information, providing novel evidence for a “drop-the-worst” cue
satisficing decision-making strategy.
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