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Abstract— Research on underwater human-robot teaming is
particularly promising because of complementary sensory skills
that may overcome unique challenges associated with the com-
bination of limited connectivity and low visibility. Nevertheless,
testing human-robot collaboration under water, especially in
complex, real-world scenarios, poses severe safety, cost, and
time constraints that significantly hinder academic research in
this space. This paper presents a novel cyber-physical extended-
reality (XR) testbed, referred to as Underwater Real-Time
Human Autonomous Systems Collaboration (UnRealTHASC),
designed to enable human-robot interactions in simulated pho-
torealistic environments with mixed real and virtual wearables,
and advanced autonomous underwater sensors in-the-loop.
Novel sensor interfaces are designed to integrate real and virtual
sensors for measuring physiological and cognitive human states
underpinning decision-making abilities. Physics-based human
and robot motion models are developed along with new sensor
simulations in order to capture the couplings between under-
water behaviors and perception based on measurements from
optical and sonar sensors. Real-time data acquisition pipelines
are created to access and share data from both real and
virtual sensors and robots, such that new methods for online
planning and collaboration may be tested via human-in-the-
loop demonstrations.

I. INTRODUCTION

Scuba diving presents many technical challenges that
are potentially life threatening even for highly experienced
divers involved in exploration and navigation. Hence, when
complex tasks, physiological stresses (e.g. nitrogen narcosis),
limited visibility, or confined environments are introduced
they notably elevate cognitive load and operational risk often
resulting in incomplete or failed missions. Cognitive, phys-
iological, and environmental stressors all adversely impact
diver’s perception and cognitive state potentially resulting in
anxiety, panic, or even seizures as known from the well-
documented history of diving accidents [1], [2], [3]. To
help overcome these challenges, scientific and military dive
operations are incorporating unmanned underwater vehicles
(UUVs) with increased frequency, underscoring the necessity
for collaborative efforts between humans and machines to en-
sure safe and efficient undersea operations [4]. The primary
challenges in underwater human-robot teaming include (i)
the complexity of inter-agent communication, (ii) diminished
perception due to environmental factors, and (iii) the risks
and cost associated with in situ testing of collaboration
approaches.
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Recent studies in underwater human-robot interaction
(HRI) often rely on task-centric design strategies for inter-
action, which however effective in simpler communication
contexts of social robotics and terrestrial operations, prove
insufficient for the underwater domain, where communica-
tion and perception constraints drastically affect teaming
performance. Progress with this approach is further fettered
by the cost to test and iterate in this domain. This highlights
the need for a nuanced approach that addresses the specific
challenges of underwater environments [5], [6]. Communi-
cation and perception are vital for team dynamics, used for
sharing task-specific information and coordinating efforts to
prevent conflicts. Yet, the unique conditions of underwater
operations, including the covert nature of missions, optical
properties of water, and hardware limitations, necessitate a
shift towards autonomy. Acoustic sensors have proved to
be a viable solution to enhance perception in underwater
environments. The deficiencies in communication need to
be mitigated by explicit and implicit non-verbal cues, such
as body gestures [6], to aid the human diver effectively.
However, these cues alone do not fully reveal the reason
behind the diver’s behavior, which might be driven by
cognitive or environmental stressors, indicating the necessity
for deeper contextual understanding. Recent advancements
in physiological sensors offer promising insights into divers’
physiological and cognitive states[7].

To address these challenges, this paper presents a human-
centered HRI approach, integrated into an XR testbed for
Underwater Real-Time Human Autonomous Systems Col-
laboration, UnRealTHASC. This work builds on the state-
of-the-art XR testbed RealTHASC [8] to incorporate hu-
man physiological sensors and simulated sonar sensors in
underwater human-robot collaboration, enabling robots to
provide more effective and context-aware assistance, thereby
fostering safer and more efficient underwater human-robot
teaming. A novel method to render acoustic measurements in
real time is developed. This paper presents a novel integration
of real and virtual sensors enabling realistic human and robot
movement and a human-centric teaming approach inside 3D
underwater virtual environments.

II. SYSTEM ARCHITECTURE

The UnRealTHASC facility, as illustrated in Fig. 1, com-
bines physical and virtual workspaces so that human divers
can interact seamlessly with programmable virtual robots
defined in the virtual workspace. Let the physical laboratory
space where the human diver exists be denoted by W ⊂ R3.
The virtual workspace where the virtual robots operate is
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Fig. 1. A real human diver interacting with a virtual remotely operated vehicle (ROV) agent in the UE™ simulation environment, through a diver avatar.
The real human diver controls the movement of the diver avatar and receives visual feedback from the environment through the VR headset. The real
human diver is also equipped with physiological sensors monitoring the heart rate, breath rate, and gaze of the human. The virtual UUV agent is equipped
with various acoustic and optical sensors, dynamics, and planning and control for maneuvering in the environment

created in Unreal Engine™ (UE™) and is denoted by
U ⊂ R3. The inertial reference frames embedded in physical
workspace W and virtual workspace U are denoted by FW
and FU , respectively. Virtual worlds from the UE™ Mar-
ketplace are adapted to create photorealistic underwater
environments to simulate realistic scenarios experienced by
human divers while performing tasks underwater. The virtual
environment U facilitates interaction between human divers
and robots.

Overall, three types of agents are involved in UnRe-
alTHASC, namely real human divers, diver avatars, and
virtual robots. All the UnRealTHASC agents are character-
ized with a motion model and a sensor model. Real human
divers exist in the physical laboratory W but sense the
virtual world U through virtual reality (VR) headsets. Diver
avatars are the projections of human divers into the virtual
environment U , which serve as the surrogate of the physical
divers for interacting with the virtual environment including
the virtual robots. The motion model of the diver avatar
is governed by the motions of the human diver in W as
described in Section.III-A.2. The human diver and associated
avatar share the same field of view (FOV) as a result of the
VR headset integration. The details for specifying the diver
avatar are described in Section III. Virtual robots are solely
defined in U and are programmable in terms of the motion
model, sensor model, and decision-making strategies. This
paper focuses on high-fidelity simulation of robot sensors
for both environment attributes and physiological states of
human divers. See Section IV for details. With the current
system architecture, it is also straightforward to define virtual
humans in UnRealTHASC besides the three aforementioned
types of agents.

III. HUMAN XR INTEGRATION

This section details the three aspects considered when
integrating human divers into UnRealTHASC: swimming
motion of human, physiological states, and diving apparatus.
In the simulation, the state of human diver is represented by
a lumped vector x = [ jT ,pT , lT ]T . Here the notation j
denotes the collection of joint angles that characterize the
limb motion of the human diver. The symbol p denotes the
position and orientation (expressed in the quaternion format)
of the diver with respect to FW . The vector l denotes the
physiological states.

A. Human Motion

The diver’s swimming motion is decomposed into limb
motion defined as the motion of limbs relative to a neutral
body pose, and body motion which is defined as the motion
of the entire body relative to the ground. Defining the motion
of a human avatar requires specifying both limb and body
motion. With motion capture devices, it is feasible to measure
joint angles j in real time that define the body pose and
transmit j to the diver avatar. However, it is prohibitively
difficult to measure positions and orientations p that charac-
terize the absolute body motion in water. In UnRealTHASC,
a simplified yet carefully calibrated hydrodynamic model is
integrated to generate the swimming motion of the human
avatar based on the sampled limb motion. This approach
is inspired by the work of Clarke and Gutman on the XR-
based skydiving simulator [9], [10]. Additionally, divers wear
a buoyancy control device (BCD) to regulate the depth at
which these motions are conducted. A combination of all
these factors enables the human diver to maneuver freely in
the 3D underwater virtual environment U .
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1) Real-time Motion Capture of Limb Motion: By model-
ing the human body as a multi-body system of 16 segments
(pelvis, abdomen, thorax, head, upper arms, forearms, hands,
upper legs, lower legs, feet) linked by 15 joints, the limb
motion of a human is fully characterized by the joint angles,
which we denote by j. UnRealTHASC leverages the IMU-
based motion capture suit Xsens Awinda to record the limb
motion and consequently, reconstruct the 3D body pose.
The real human diver straps 17 IMU sensors to different
parts of the body as shown in Fig. 2. As the experiment
commences, real-time IMU data is streamed to estimate j
and reconstruct limb motions for the diver avatar. These limb
motions are also used as input of the hydrodynamic model
to generate the body motion, as described in Section.III-A.2.
Additionally, UnRealTHASC integrates the MANUS gloves
for high-fidelity finger tracking to support the simulation
of underwater tasks that involve hand manipulation [11] as
well as gesture-based communication [12]. This integration
provides complete control of all the joints on the diver avatar.

2) Hydrodynamic Model of Body Motion: For swimming
motion, the connection between limb motion and body
motion is the hydrodynamic forces and moments, which
are generated from through-water limb motion and serve as
the driving power of body motion relative to the ground.
In UnRealTHASC, a hydrodynamic model is incorporated
which adopts empirical formulas to calculate the hydrody-
namic forces and moments fh,k exerted to each body segment
k for k = 1, · · · , 16, based on the real-time body pose j.
Then a Newton-Euler model about the body motion p is
propagated to generate the body motion of the human avatar.
The equations of motion takes the form,

M p̈+Dṗ+Kp = fg + fb +

16∑
k=1

fh,k(j,p, c),

where M is the mass and inertia matrix, D is the generalized
damping matrix, K is the generalized stiffness matrix, fh
denotes the calculated hydrodynamic forces and moments,
c denotes the model parameters, fg denotes the gravity, and
fb denotes the water buoyancy. Since the human diver is
lying flat, a simplified model is used in this paper which
considers the motion of lower limbs and the rotation of the
spine to define the in-plane motions of the diver avatar. The
derivation and experiment validation of the hydrodynamic
model are omitted in this article due to the page limit.

3) Buoyancy Control Device: The Buoyancy Control De-
vice (BCD) is an inflatable jacket-like wearable device that
is connected to the gas cylinders. Regulating the air filled
in the BCD regulates the buoyancy force acting on the diver
allowing the diver to change diving depth at will. The amount
of air in the BCD is adjusted using the hose. The hose has
two buttons, one each to gradually increase and decrease
the amount of air in the BCD. Additionally, a dump valve
is also installed on the BCD to quickly release the air and
descend faster. A commercially available BCD was modified
as shown in Fig. 2 to support digital buttons. Two of these
digital buttons are placed on the inflate and deflate buttons

on the hose and the third one is placed near the dump valve
of the BCD. These buttons are connected to a Rasberry Pi
4 microcontroller installed inside the BCD which harbors
the hose and dump valve. The microcontroller communicates
wirelessly with the virtual environment over a User Datagram
Protocol (UDP) port. Thus, every time any of these buttons
are pressed, the depth of the diver avatar changes based on
the functionality assigned to that button.

IMU sensors

Eye tracking 

VR headset 

with 

microphone

Finger-

tracking 

gloves

Heart-rate 

monitor

Deflate hose

Inflate hose

Dump valve

Fig. 2. Real human diver equipped with the physiological sensors, modified
BCD, and IMU-based body tracking system

B. Physiological Sensors

1) Eye Tracking: Gaze tracking is the process of estimat-
ing the direction of gaze relative to the head of a person. This
direction is defined by a 3D vector called the gaze vector,
which is estimated by recording the images of the eyes with
high-infrared speed cameras. Gaze tracking has been used
in HRI applications to communicate with the robot agents
non-verbally and predict human intent [13]. In the human-
computer interaction (HCI) community, eye tracking is also
extensively used for the analysis of human attention and
focus [14]. Since the nature of underwater communication
is highly non-verbal, real-time gaze tracking serves as an
important tool for estimating the human cognitive states, pre-
dicting future states x, and latent goals. This is implemented
in the UnRealTHASC using the Varjo XR-4 headset. The
XR-4 headset uses the OpenXR plugin to stream information
about the gaze vector. This gaze vector is then projected on
the 2D image frames observed by the real human to obtain
gaze tracks in the image frame. The inferred gaze tracks can
also be used to infer saccades and fixations.

2) Heart Rate Monitoring: Heart rate monitoring is con-
ducted to analyze the effect of a stressor on the human
diver. Polar H10 chest trap is used to measure the heart rate
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and associated metrics in real time. This chest strap uses
ECG technology to monitor heart rate. The data recorded is
transmitted over Bluetooth to a Python-based interface which
estimates various metrics such as heart rate variability.

3) Breath Monitoring: Breath monitoring plays a pivotal
role in predicting stress, fatigue, and the onset of negative
physiological conditions such as hypercapnia [15] in techni-
cal diving. This facility uses breath sounds to investigate
the breathing characteristics of the human diver during
experiments in real time. Breath sounds are measured using
the microphone installed in the VR headset. These sounds are
communicated to a Python script that records 10 seconds of
audio from the microphone. A power spectral density anal-
ysis of the breath sounds, as described in [16], is conducted
to estimate the number of breaths per minute (BPM). The
spectral analysis and data recording are conducted in two
parallel threads in the CPU, to avoid missing out on audio
signals while calculating the BPM estimate for the previous
10 seconds of audio.

C. Dive Computer and VR Interface

In addition to the visual feedback provided by the VR
headset, an interface is designed to provide feedback from
the BCD and a simulated dive computer worn by the diver
avatar. The BCD control input provided by the human diver
in the W is displayed on the VR headset. Dive computers
are used by professional divers to track their dives. A
decompression model running on these devices uses built-
in depth sensors and timers to track the amount of dissolved
nitrogen in the body. As a result, these devices calculate
the remaining dive time and thus form an important part
of the decision-making process while indirectly providing
information about the diver’s physiological state. The dive
computer interface designed for UnRealTHASC simulations
integrates the DecoTengu library to run a decompression
model with inputs from the virtual environment. The dive
computer also acts as an important source of information for
the robot agent collaborating with the human. For example,
the robot can warn or intelligently disobey the human if
a certain task cannot be done because the remaining dive
time prohibits its completion. Thus, Python-based socket
communication ports are created to stream this information,
whenever required, from the virtual environments to the
planners running on the robots. The VR diver user interface
with the dive computer and BCD feedback is shown in Fig.
3.

IV. ROBOT XR INTEGRATION

Since the robot in UnRealTHASC is virtually defined,
fidelity of sensor simulation largely determines the fidelity
of the downstream planning and control simulations. In this
section, we investigate XR simulation of various underwater
sensors including imaging sonar and profiling sonar. Then
we develop a simple pipeline for simulating robot planning
and control. In this section, we denote the motion state of a
robot by s ∈ R12 which includes its 6D pose and the first-
order derivatives of the pose. The geometry of the robot is

Fig. 3. Dive computer and BCD control inputs displayed on the VR
interface for the real human diver

denoted by A ∈ U , and the robot fixed frame is denoted by
FA.

A. Robot Sensors

Robot and other autonomous agents inside the virtual
environment interact with diver avatars and perceive the
environment using both exteroceptive and propioceptive sen-
sors. UnRealTHASC builds on the sensor suite developed
in RealTHASC [8], which integrated sensor APIs from
UnrealCV [17], traditional computer vision (CV) algorithms,
and recent advances in CV to provide a wide array of optical
sensors in VR. These sensors included RGB cameras, online
panoptic segmentation, surface normal maps, depth cameras,
and optical flow maps. An RGB-image-based side-scan sonar
measurement model developed in [18] is also implemented
in RealTHASC. However, underwater environments pose
unique challenges for robot perception, navigation, and com-
munication which must rely on a combination of optical and
acoustic sensors [19]. HoloOcean [20] is one approach to
simulating sonar sensors in UE™ by leveraging the Octree
representation. This paper presents an alternative pipeline to
augment several existing UE™-based 3D computer vision
pipelines such as UnrealCV [17] and AirSim [21] to ren-
der sonar images in simulation environments. This section
describes a novel approach to simulating imaging sonar
or forward-looking sonar, profiling sonar and echo sounder
measurements, using depth maps and surface normal maps.

Game engines and recent computer vision algorithms
provide depth maps as well as surface normals in real time.
Thus it is assumed that the depth map, D, and surface normal
map, N, can be accessed depending on the desired sonar
sensor frequency required. The algorithm for this approach
is summarized in Algorithm. 1 . Firstly, raytracing [22] is
used to project each pixel in D to reconstruct the target
geometry, T ⊂ U , being observed as a 3D point cloud. Note
that this 3D point cloud is defined in the camera or robot
reference frame FA. Now, this point cloud is transformed
into spherical coordinates and pruned according to the sensor
FOV geometry, denoted by S ⊂ R3, which defines the limits
on the range, azimuthal angle, and elevation angle. This
pruned 3D point cloud is an estimate, T̂ , of the 3D target
geometry lying inside the FOV of the sonar sensor S . For
every 3D point, t ∈ T̂ , the surface normal map N defines
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a vector n ∈ R3 as a vector containing 8-bit RGB values
[r, g, b], where the unnormalized surface normal vector is
estimated by using

n = 2

[( r

255

)γ

− 1,
( g

255

)γ

− 1,

(
b

255

)γ

− 1

]T
(1)

Assuming isotropic sound emission by the acoustic sensor
[23], the intensity contribution of every point t ∈ T̂ with an
associated surface normal vector n is expressed as,

I(t) = cos(α) =
⟨n, t⟩
|n| |t|

(2)

where α defines the angle of incidence of the acoustic ray
with respect to the surface normal, intrinsically representing
how incoming sound wave is reflected by the surface. All
the points in the sensor FOV that do not belong to the
target geometry, denoted by S\T̂ ), do not contribute to
the intensities observed in the measurement. For numerical
computations, the sensor FOV is discretized in the spherical
coordinate frame according to pre-specified discretizations
nr, nθ and nϕ along the radial, azimuthal, and elevation
direction respectively. The location [r, θ, ϕ] of every point
t ∈ T̂ in this discretized sensor FOV is estimated, and stored
in a matrix I with dimensions (nr, nθ, nϕ) such that

I(r, θ, ϕ) =

{
cos(α) t ∈ T̂
0 t ∈ S\T̂ .

(3)

Based on the sensor FOV geometry S and their correspond-
ing measurement model, operations are performed on these
intensity contributions I to render the measurement.

1) Imaging sonar: Imaging or forward-looking sonar is a
high-frequency acoustic imaging sensor used for tasks such
as path planning, localization, and mapping. Measurements
from imaging sonar are visualized as polar plots which
resolve the range and azimuthal angle of the reflected
acoustic waves but do not preserve the elevation angle.
Thus imaging sonar measurements suffer from an elevation
ambiguity issue. The intensity measurement at a given [r, θ]
is represented using the model,

z(r, θ) =

∫ ϕmax

ϕmin

I(r, θ, ϕ)dϕ (4)

where ϕmin and ϕmax are the minimum and maximum
elevation angles respectively, as defined by the imaging sonar
FOV geometry. This integration is approximated numerically
by adding the intensity contributions for a given r and θ
along the elevation axis and dividing by the total number of
bins along the azimuth axis to normalize the measurement
value.

ẑ(r, θ) =
1

nϕ
Σnϕ

I(r, θ, ϕ) (5)

2) Profiling sonar: Profiling sonar are acoustic sensors
mounted on larger vessels such as ships facing downwards
towards the ocean floor. These sensors generate large-scale
bathymetric maps of the ocean floor. Similar to the imaging
sonar, profiling sonar measurements are also be represented

in a polar plot. The FOV geometry is exactly similar to that of
imaging sonars however profiling sonar operates at smaller
elevation angles and larger azimuthal angles as compared
to imaging sonar. Thus, the sensor measurement model is
described in (4) has been used to render the profiling sonar
measurements.

3) Echo sounder: Echo sounders emit acoustic pulses and
measure the echo return time to estimate the ocean floor
depth. The FOV geometry for these sensors is characterized
by a 3D cone with a specified semi-vertical angle ψ. The
intensity contributions of all the points lying inside the FOV
of the sensor are integrated along the elevation and azimuthal
direction. Thus, the final rendered measurement is the range
value measured along the radial direction of the sensor which
is mathematically represented as

z(r) =

∫ θmax

θmin

∫ ϕmax

ϕmin

I(r, θ, ϕ)dϕdθ. (6)

The numerical approximation of the measurement in (6) is
estimated by taking an average of the intensity contributions
along both the azimuth and elevation.

ẑ(r) =
1

nθnϕ
Σnθ

Σnϕ
I(r, θ, ϕ) (7)

The FOV geometries and corresponding measurements for
the three types of sonar sensors are summarized in Fig. 4.
Since the operations described in Algorithm.1 are conducted
on depth and normal maps generated by the environment
with ray-casting, explicit checking for occlusions as well
as shadows is not required. Unlike [20], direct ray tracing
without marching along each ray is possible and hence
computationally more efficient than searching in an Octree
grid to find intersections. Another important advantage over
existing sonar simulators is that the presented algorithm can
be augmented to include the target semantic information to
generate semantic segmentation masks for imaging sonar
measurements useful for underwater target classification and
reconstruction [24]. Owing to the pixel-based rendering
model, this novel approach can be applied to any set of depth,
normal, and semantic segmentation images to render sonar
measurements. Thus, several existing pixel-based datasets
can be augmented to synthesize sonar measurements to
train neural networks for sonar sensors, without conducting
resource-intensive data-collection experiments for real and
synthetic sonar sensor data.

B. Robot Planning and Control

To integrate robot dynamics and environmental physics,
UE™Physics Engine PhysX is leveraged for physical simu-
lation computations. Each UUV is modeled as a rigid body
in the virtual world with the thrusters as the control inputs.
The location of each thruster is defined with respect to the
robot body frame FA to resolve torques on the body due to
the thrust forces. For instance, in the case of an underwater
remotely operated vehicle (ROV), the positions of the four
horizontal thrusters and four vertical thrusters are specified in
the robot model. The drag force and buoyancy force acting on
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Algorithm 1: Render acoustic measurement from
point cloud T̂ and surface normal map N

Input: T̂ , N
Output: z

1 I = 0nr×nθ×nϕ

2 for i = 0; i < m; i = i+ 1 do
3 ri, θi, ϕi = Cartesian2Spherical(pi) pi ∈ T̂
4 if rmin < ri < rmax and θmin < θi < θmax and

ϕmin < ϕi < ϕmax then
5 rdi , θ

d
i , ϕ

d
i =

DiscretizedSpherical(ri, θi, ϕi, nr, nθ, nϕ)
6 I(rdi , θ

d
i , ϕ

d
i ) = di

Fig. 4. Acoustic sonar measurements rendered from surface normal maps
S and depth maps D. The field-of-view geometry of an imaging sonar and
profiling sonar is characterized by a 3D sector (blue) while an echo sounder
FOV (pink) is characterized by a 3D cone with vertical angle ψ

the robot agent are modeled by specifying linear and damp-
ing constraints, water density, and considering the physical
attributes of the agent such as the mass, volume, center of
mass, and center of buoyancy of the rigid body defining the
ROV. Consequently, these forces and torques are provided to
the PhysX engine that simulates the motion of the robot in
the virtual world. The robot agents employ a Proportional-
Integral-Derivative (PID) control with a waypoint-following
policy to maneuver in the virtual environment. Given a
current state of the robot s and a desired state of the robot
s∗, the control input u is defined as:

u = KP (s∗ − s) +

∫
KI (s∗ − s) dt−KD ṡ (8)

where, KP , KI and KD are the proportional, integral, and
derivative gains respectively. These control inputs are clipped
by control bounds to avoid unrealistic motion trajectories.
Finally, the force and torque values to be applied by PhysX
are calculated by considering the control commands as the
linear and angular accelerations while taking into account
the physical attributes of the robot.

V. COMMUNICATION

Although UnRealTHASC aims at facilitating real-time
interaction between the human diver and simulated robot

agent, it can also be leveraged for offline tasks such as
learning interaction models using training data from the
environment. An overview of the communication framework
that supports these interactions is shown in Fig. 5. The
virtual environment is hosted by an Alienware Aurora R13
system and handles the graphics rendering requirements
of the environment. The human diver in the laboratory
is equipped with eye tracking VR headset which, over a
Local Area Network (LAN) connection, communicates the
gaze vector to the virtual environment while acting as a
source of visual feedback for the diver. The IMU modules
attached to the human diver transmit joint angles and angular
velocities at 120 Hz over Wi-Fi to the human motion model
which calculates the body position and velocities of the
avatar in the virtual environment. These body positions and
velocities are streamed over a UDP connection to the virtual
environment. All physiological sensors wirelessly transmit
data to a Python script which transmits these values to the
virtual environment. The buttons provided on the BCD are
also connected directly to a Raspberry Pi 4 microcontroller
which publishes the boolean arrays, interpreted as presses,
over WiFi. The virtual environment consists of the virtual
robot agent equipped with the dynamics, control strategies,
and planners for waypoint following. This robot agent is
controlled by a Python script which acts as a remote or
local client to the virtual environment based on the type
of application setting that is being simulated. This client
can, synchronously or asynchronously, access all the sensors
deployed in UnRealTHASC and can add controllable and
simulated delays in sensor data transmission which is often
the case in real-world experiments.

Fig. 5. Real-time communication between various real and virtual agents
as well as sensors operating in UnRealTHASC.
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VI. EXPERIMENTS

This section presents two experiments designed to show-
case some functionalities of the real and virtual sensors in
the UnRealTHASC facility and demonstrate how data from
these sensors can be used to simulate underwater human-
robot teaming scenarios. Specifically, the first experiment
showcases the novel sonar rendering approach and the second
experiment demonstrates how physiological sensors can be
used as an alternate medium of implicit human-robot com-
munication.

A. Sonar Sensor Measurements

This experiment is conducted to demonstrate how the
presented sonar measurement rendering approach can be
used to simulate measurements for imaging sonar, profiling
sonar, and echo sounder. In the first part of this experiment,
an ROV observing a diver avatar through an onboard imaging
sonar sensor is considered as shown in Fig. 6. The sonar
range is assumed to be between 1 meter to 5 meters while
the azimuthal and elevation aperture angles are assumed to be
90°and 28°respectively. In the second part of the experiment,
a profiling sonar mounted on a ship vessel is employed to
create a bathymetric map of the environment. The profiling
sonar measurement at a certain time-step is shown in Fig.
7. The azimuthal range is 90°while the elevation is small
( 0.5°) representing a thin but wide swath measuring the
ocean floor. In the final experiment, an ROV equipped with
an echo sounder is tasked with measuring the ocean floor
depth. The ROV slowly moves down towards the floor at a
speed of 5 m/min, as shown in the range-time graph shown
in Fig. 8. The sensor FOV is discretized into 500 bins along
each axis of the spherical coordinate frame in all the three
experiments.

Fig. 6. (a)ROV is collaborating with a diver by (b) observing the diver
inside the FOV of the imaging sonar sensor mounted on it and (c) rendering
an imaging sonar sensor measurement.

B. Physiological Sensor Integration with the Virtual Envi-
ronment

This experiment is conducted to demonstrate the use of
gaze tracking to enable human-robot collaboration in a task.
A team of human diver and an ROV is tasked with searching
the workspace around a sunken submarine. The human diver
wearing the eye-tracking VR headset suddenly observes a

Fig. 7. Profiling sonar mounted on a ship vessel (a) scanning the seafloor
and (b) recording the depth

Fig. 8. Range measured by an echo sounder mounted on a UUV moving
vertically down towards the seafloor at 5 m/min.

shark. A Faster RCNN-based detector [25] processes a fixed-
size bounding box around the gaze track to identify whether
the human is observing any stressors. The detector detects
that the human is observing a shark with 96% accuracy.
Consequently, the category of the stressor, “shark” in this
instance, and its relative position with respect to the diver is
sent to the ROV. The onboard ROV planner is programmed
to conduct certain maneuvers when a certain type of stressor
is reported by the detector. Without explicit communication
from the human diver, the ROV is autonomously informed
about the shark and its relative position. Within 3 seconds,
the ROV conducts a defensive maneuver during which it
positions itself between the shark and the diver avatar to con-
tinuously observe the movements with the onboard forward-
looking sonar of the shark giving the human diver time to
escape or conduct some other task safely. This experiment
is summarized in Fig. 9.

VII. CONCLUSION

This paper presents UnRealTHASC, an XR-testbed to
study underwater HRI and develop human-centric collabo-
ration strategies for teaming. Seamless integration of motion
capture technology, embedded systems, as well as under-
water dynamics modeling facilitates realistic human and
robot motion generation in the virtual environment. Vari-
ous physiological sensing modules are integrated to enable
the robot agent to analyze human diver performance, infer
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Fig. 9. (a) The diver avatar observes a shark swimming (b) A bounding-
box image around the gaze track is used by the detector to identify the shark
(c) ROV receives the information from the detector and positions itself in
between the diver and the shark (d) The ROV continues to observe the shark
with the onboard forward-looking sonar sensor

and predict diver states, and better inform robot decision-
making for collaboration. Communication pipelines enable
real-time data acquisition from real and virtual sensors while
seamlessly interfacing with real and virtual workspaces. A
novel method to render real-time acoustic measurements in
simulation and post-process existing datasets is developed.
Future work will include qualitative studies with novice and
expert divers to evaluate the effectiveness of the testbed. This
facility will be leveraged to develop and conduct studies on
physiological sensor-driven robot decision-making, as well
as acoustic perception-enabled HRI strategies for mapping,
localization, and collaborative planning.
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