

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. CONTROL OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 292–320

A GEOMETRIC OPTIMIZATION APPROACH TO DETECTING
AND INTERCEPTING DYNAMIC TARGETS USING A MOBILE

SENSOR NETWORK∗

SILVIA FERRARI† , RAFAEL FIERRO‡ , BRENT PERTEET§ , CHENGHUI CAI† , AND

KELLI BAUMGARTNER†

Abstract. A methodology is developed to deploy a mobile sensor network for the purpose of
detecting and capturing mobile targets in the plane. The sensing-pursuit problem considered in
this paper is analogous to the Marco Polo game, in which a pursuer Marco must capture multiple
mobile targets that are sensed intermittently, and with very limited information. The competing
objectives exhibited by this problem arise in a number of surveillance and monitoring applications.
In this paper, the mobile sensor network consists of a set of robotic sensors that must track and
capture mobile targets based on the information obtained through cooperative detections. When
these detections form a satisfactory target track, a mobile sensor is switched to pursuit mode and
deployed to capture the target in minimum time. Since the sensors are installed on robotic platforms
and have limited range, the geometry of the platforms and of the sensors’ fields-of-view play a key
role in obstacle avoidance and target detection. A new cell-decomposition approach is presented
to determine the probability of detection and the cost of operating the sensors from the geometric
properties of the network and its workspace. The correctness and complexity of the algorithm are
analyzed, proving that the termination time is a function of the network parameters and of the
number of required detections.

Key words. mobile sensor networks, pursuit-evasion games, coverage, tracking, detection

AMS subject classifications. 49N75, 46N10, 74P20, 93E10

DOI. 10.1137/07067934X

1. Introduction. The proliferation of reliable low-cost sensors and autonomous
vehicles is producing advanced surveillance systems comprised of robotic sensors with
a high degree of functionality and reconfigurability. These mobile sensor networks
can play a critical role in several application domains, such as landmine detection
and identification [37, 14]; monitoring of endangered species [25]; monitoring of urban
environments, manufacturing plants, and civil infrastructure; high-confidence medi-
cal devices; and intruder and target detection systems. These networks are expected
to operate cooperatively and reliably in cluttered dynamic environments with lit-
tle human intervention. Coordinating such large heterogeneous sensor networks is
challenging and requires the development of novel methods of communication, mo-
tion control and planning, computation, proactive estimation and sensing, and power
management.

∗Received by the editors January 6, 2007; accepted for publication (in revised form) December 1,
2008; published electronically February 11, 2009.

http://www.siam.org/journals/sicon/48-1/67934.html
†Laboratory for Intelligent Systems and Controls, Department of Mechanical Engineering & Ma-

terials Science, Duke University, Durham, NC 27708-0300 (sferrari@duke.edu, cc88@duke.edu, kacb@
alumni.duke.edu). The work of the first author was supported in part by the Office of Naval Research
(Code 321), and by NSF grant ECS CAREER #0448906.

‡
Marhes Lab, Department of Electrical & Computer Engineering, University of New Mexico,

Albuquerque, NM 87131-0001 (rfierro@ece.unm.edu). The work of this author was supported by
NSF grants ECCS CAREER #0811347, IIS #0812338, CNS #0709329, by DOE NNSA grant DE-
FG52-04NA25590 (through the UNM Manufacturing Engineering Program), and by the U.S. Army
Research Office under grant DAAD19-03-1-0142 (through the University of Oklahoma).

§Department of Electrical & Computer Engineering, Oklahoma State University, Stillwater, OK
74078-5032 (brent.perteet@gmail.com).

292

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 293

One paradigm common to many sensing applications consists of one or more
sensors installed on robotic platforms that must move through an environment to
obtain measurements from multiple targets. Most of the research relating sensor
measurements to robot motion planning has focused on the effects that the uncertainty
in the geometric models of the environment has on the motion strategies of the robot
[27, 42, 41, 35, 33]. Hence, considerable progress has been made toward integrating
sensor measurements in topological maps [46], and on planning strategies based on
only partial or nondeterministic knowledge of the workspace [30, 32]. Coordination of
robotic networks and sensor planning approaches have received considerable attention
in recent years [51, 11, 3]. One line of research has investigated the extension of motion
planning techniques to the problem of sensor placement for achieving coverage of
unstructured environments [1, 9] or of a desired visibility space [30, 22]. Obstacle-
avoidance motion planners have been effectively modified in [40, 8] to plan the path of
mobile sensors for the detection and classification of stationary targets in an obstacle-
populated environment. Probabilistic pursuit-evasion strategies to detect and capture
intelligent evaders in obstacle-populated environments are described in [48]. In [24]
the authors show that a pursuer can detect an arbitrarily fast evader in a polygonal
environment using a randomized strategy. It is shown that one evader is guaranteed
to be captured by two pursuers in finite time, by solving a lion and man problem and
assuming that at least one pursuer is as fast as the evader [24].

In this paper, we develop a cell-decomposition methodology to optimize the prob-
ability of detection of a mobile sensor network, based on the geometry of the workspace
and of the robotic sensors. Cell-decomposition algorithms have previously been em-
ployed to represent the obstacle-free configuration of a robot for the purpose of obsta-
cle avoidance [29]. We present a framework for obtaining a decomposition in which
observation cells are used to represent sensor configurations that intersect the targets
while avoiding polygonal obstacles. The simple philosophy behind this approach is
that while the geometry of the robot must not intersect that of an obstacle to avoid
collision, the geometry of the sensor’s field-of-view (or visibility region) must intersect
that of a target to enable a detection. Then, the tracking information is used to
determine the probability of detection in the observation cells.

At any given time, the pursuers must also detect new targets, for which there is
no available track information. The monitoring of a workspace by means of multiple
sensors is typically referred to as coverage. Coverage control for mobile sensors has
been treated in [11] using Voronoi diagrams to achieve uniform sensing performance
over an area-of-interest. Another well-known coverage problem is the art-gallery or
line-of-sight visibility problem, in which multiple sensors are placed such that the
targets are in the line-of-sight of at least one sensor in the network [36, 45, 47]. In
this paper, we consider a track-coverage formulation in which multiple sensors are
deployed to cooperatively detect moving targets traversing the area-of-interest [17].
By this formulation, the probability of detection of undetected targets is obtained for
every cell in the decomposition. Then, the control policies that optimize a trade-off of
multiple sensing objectives are obtained by searching the robot configuration graph
and by performing inner-loop trajectory generation and tracking. The path obtained
from the configuration graph is one that maximizes the overall probability of detection
and minimizes the distance traveled by the pursuer to detect or capture the targets.

The remainder of the paper is organized as follows. The sensing-pursuit problem
is formulated in section 2. The geometric approach used to control the network of
robotic sensors to detect and pursue moving targets is presented in section 3. The
correctness and performance analysis of the algorithm is presented in section 4. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

294 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

simulation results obtained are described in section 5.

2. Problem statement and assumptions. We consider a pursuit-evasion game
in which N pursuers comprised of robotic sensors attempt to detect and pursue M
moving targets. The game takes place in a square area-of-interest S ⊂ R

2, with
boundary ∂S and dimensions L× L. S is populated by n fixed and convex obstacles
{O1, . . . ,On} ⊂ S. The geometry of the ith pursuer is assumed to be a convex poly-
gon denoted by Ai, with a configuration qi that specifies its position and orientation
with respect to a fixed Cartesian frame FS .

The dynamics of the pursuers can be approximated using the nonholonomic uni-
cycle model,

ẋi
p = vi

p cos θi
p,

ẏi
p = vi

p sin θi
p,(2.1)

θ̇i
p = ωi

p,

where qi = (xi
p, y

i
p, θ

i
p) ∈ SE(2) and pi = [xi

p yi
p]T ∈ R

2 is the position vector of
pursuer i (referred to as its centroid). The input to pursuer i is ui

p = [vi
p ωi

p]T , and
up ∈ U ⊂ R

2. The set of all pursuers is denoted by P , and IP is the index set of P .
The set of all targets in S is denoted by T , where IT is the index set of T . The model
of the targets is given by

ẋj
τ = cjxτ

,

ẏj
τ = cjyτ

,(2.2)

where τj = [xj
τ yj

τ]T ∈ R
2 is the position vector of target j and cjxτ

and cjyτ
are

constants. In other words, targets are assumed to move along straight lines

(2.3) yj
τ (t) =

cjyτ

cjxτ

xj
τ (t) + yj

τ (0) −
cjyτ

cjxτ

xj
τ (0),

where τj(0) = (xj
τ (0), yj

τ (0)) ∈ ∂S, and they remain in S at all t > 0. Exceptions
to this rule are maneuvers used to avoid an obstacle or another target. The heading
angle of a target j is denoted by θj

τ ; thus θj
τ := arctan(cjyτ

, cjxτ
). The maximum

translational speed Vp,τmax of all sensors and targets is known, and Vpmax > Vτmax [24].
While sensors can move with any speed in [0, Vpmax], it is assumed that the speed of
every target is uniformly distributed in [Vτmin , Vτmax], with Vτmin > 0.

In the sensing problem, the paths of the targets are represented by rays or half-
lines, denoted by Rj

θ, that are unknown a priori. The sensors installed on the robotic
platforms are assumed to be isotropic or omnidirectional, and therefore their field-
of-view is represented by a disk Di = D(pi, ri) ∈ S with radius ri and centered
at pi. The sensor i installed on the robot Ai has the ability to detect the jth
target when Di ∩ Rj

θ �= ∅. The measurements obtained from each detection can
be associated with a particular target using a data-association algorithm (such as
[39, 12, 21]), but they may be subject to errors and false alarms. At any time t, the
set of detections associated with a target j is denoted by Zt

j , which symbolizes all
measurements of the target positions τj obtained since the onset of the game t0; e.g.,
Zt

j = {zj(t1), zj(t2), . . . , zj(tl)}. Since the sensors produce few individual observations
for each moving target (e.g., due to their limited range) and are subject to frequent
false alarms, the approach known as track-before-detect [50] is used, in which a set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 295

of k spatially distributed sensor detections are used to estimate the target track, Rj
θ,

from Zt
j , before declaring a positive detection. Every track may be updated every

time a new measurement becomes available from the target. Once a target track has
been formed from at least k sensor detections that are obtained at different moments
in time, an upper-level controller declares the target positively detected and deploys
a pursuer to capture it. The inputs to the pursuers take into account the information
available from all targets, Zt = {Zt

j | j ∈ IT }, in order to optimize their sensing and
pursuit performance.

Let eji be the Euclidean distance from the jth target position, τj , to the closest
pursuer; i.e., eji = min d(τj , pi) ∀i ∈ IP . Then the pursuer i is said to capture the
target j when eji < ε. The threshold value ε is called the capture threshold for an
interval Δc called the capture timeframe. We are interested in applications where
the sensor’s field-of-view is much larger than the robot geometry, and hence a robot
can sense a target without necessarily being close enough to capture it. Once a
target is captured, it becomes inactive and is removed from the set T ; thus the game
terminates when T = ∅. In this game, no communication between targets and sensors
takes place, but the sensors may obtain position information about the targets when
they enter their fields-of-view. Based on the previous discussion, the sensing-pursuit
problem can be stated as follows.

Problem 2.1. Given a set P of N pursuers and a set T of M targets moving
within a specified game area S, find a set of policies ui

p = ci(qi, Zt) ∈ U ∀i ∈ IP which
maximizes the total sensing reward and minimizes the total time required to capture
targets in T that have been positively detected.

To complete the formulation of Problem 2.1, we define the sensing reward in
terms of the probability of detection, as explained in section 3. Also, sensors and
targets are modeled as hybrid systems consisting of continuous dynamics along with
several discrete states [19]. Figure 2.1 shows a hierarchical state diagram for the
various modes of operation. Sensors operate in one of two modes, detection or pursuit,
depending on whether their primary objective is to detect targets or to capture them.
Also, we assume that sensors have sufficient processing capabilities to determine the
time and position of a detection event from their raw measurements.

In this problem, target tracks are classified based on the following definitions.
Definition 2.2. An unobserved track is the path of a target j for which there

are no detections at the present time, t; thus Zt
j = ∅.

Definition 2.3. A partially observed track is the path of a target that is estimated
from 1 < l < k individual sensor detections obtained up to the present time, t; i.e.,
Zt

j = {zj(t1), . . . , zj(tl)}.
Definition 2.4. A fully observed track is the path of a target that is estimated

from at least k > 2 individual sensor detections obtained up to the present time, t;
i.e., Zt

j = {zj(t1), . . . , zj(tm)}, where m ≥ k.
The parameter k is chosen by the user based on the reliability of the sensor

detections and on the cost associated with deploying a pursuer to capture the target.
For instance, in [50] it was found that, from a geometric point of view, k = 3 is a
convenient number of detections for estimating a track in the absence of false alarms.
However, in certain surveillance applications the cost associated with capturing a
target is very high, and therefore a higher number of detections may be required.
Only after a track is fully observed is the target considered to be positively detected.
Then, the estimated track is used by an upper-level controller to decide which pursuer
to deploy and switch to pursuit mode, and to compute a pursuit strategy online (as
described in section 3.3) that takes into account the kinematic constraints of the
mobile sensors. The time that elapses between sensor i becoming a pursuer and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

296 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

Fig. 2.1. A finite state diagram which models the sensor (pursuer) and target as hierarchical
hybrid systems with various discrete states of operation.

intercepting target j is called the capture time and is denoted by tcj
i
.

The objectives of the sensors in detection mode are to (i) avoid obstacles, (ii) max-
imize the probability of cooperatively detecting unobserved tracks, and (iii) maximize
the probability of detecting p partially observed tracks {R1

θ, . . . ,R
p
θ}. The objectives

of a sensor i in pursuit mode are to (1) avoid obstacles and (2) minimize the time tcj
i

required to capture a positively detected target j, based on its fully observed track Rj
θ

and the pursuer’s position at the time of deployment. Since in practice robotic sen-
sors are subject to kinematic (e.g., nonholonomic), dynamic, and input constraints,
we have designed and implemented a simple yet effective pursuit strategy that consid-
ers the nonholonomic constraints of the mobile sensor agents used in the simulations
reported in section 5.

The following section describes a methodology for planning the motions of the
pursuers, in order to meet all of the above objectives.

3. Methodology. The methodology described in this section computes policies
for pursuers in detection or pursuit mode that must meet multiple sensing and motion
objectives. At the onset of the game, all N pursuers are placed simultaneously into
S in detection mode. A new game round is initiated when a new partially observed
or fully observed track is obtained from the latest measurement set Zt. At every
new round of the game, one pursuer in P is deployed and, possibly, switched to
either detection or pursuit mode. Since the pursuers can perform measurements only
within their fields-of-view and are installed on robotic platforms, the problems of
planning the sensor measurements and the platform paths are inevitably coupled.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 297

The primary purpose for planning the motion of the pursuers in detection mode is
to obtain measurements from the targets. However, since the target tracks may be
unknown (unobserved) or uncertain (partially observed), the pursuers’ motion cannot
be planned using classical motion planning objectives, such as minimizing distance
and reaching a final configuration [29]. In fact, the positions and fields-of-view of
all pursuers must be taken into account to plan the motion of a robotic sensor in a
cooperative network. Thus, at every round, a pursuer’s trajectory is computed based
on cooperative sensing or pursuit objectives and, subsequently, implemented by a
trajectory tracking controller that is designed based on the unicycle model (2.1).

The sensor trajectory is obtained by modifying the classical motion planning
approach known as cell decomposition [29]. Let Cfree denote the robotic sensors’
configuration space that is free of obstacles. A cell is defined as a closed and bounded
subset of Cfree within which a robotic sensor path can be easily generated, and is
classified based on the following properties.

Definition 3.1. A void cell is a convex polygon κ ⊂ Cfree with the property that
for every configuration qi ∈ κ the sensor i has zero probability of detecting a partially
observed target.

In order to account for the geometries and dynamics of the pursuers and the
targets, we also introduce the following definition.

Definition 3.2. An observation cell is a convex polygon κ ⊂ Cfree with the
property that for every configuration qi ∈ κ the sensor i has a nonzero probability of
detecting a partially observed target.

Void and observation cells are determined such that an obstacle-free pursuer path
can be easily computed between any two configurations inside each cell. Furthermore,
two cells are said to be adjacent if they share a common boundary and, therefore,
the pursuer can move between them without colliding with the obstacles. Typically,
all cells are computed such that they do not overlap. In section 3.2, a method for
obtaining these cells for the system in Problem 2.1 is presented. Subsequently, they
are used to obtain the following graph.

Definition 3.3. A connectivity graph, G, is an undirected graph where the nodes
represent either an observation cell or a void cell, and two nodes in G are connected
by an arc if and only if the corresponding cells are adjacent.

The purpose of deploying pursuers in detection mode is to detect unobserved
and partially observed target tracks. Thus, the sensing objectives are expressed in
terms of a reward function that represents the improvement in the overall probability
of detection that would be obtained by moving from a configuration qi ∈ κl to a
configuration in an adjacent cell, qi ∈ κı,

(3.1) R(κl, κı) = PR(κı) + ΔP k
S (κl, κı),

where ΔP k
S is the gain in the probability of cooperatively detecting unobserved tracks

and PR is the probability of detecting a target with a partially observed track. These
probability density functions are obtained using the methodology described in sections
3.1 and 3.2, respectively.

At the onset of the game, Z0 = ∅, and all targets are unobserved, with PR = 0
for any cell in G. Thus, all N pursuers in P are placed simultaneously in S by
maximizing their probability of cooperatively detecting unobserved tracks at least
twice, i.e., k = 2, such that they may be declared partially observed. Since the
sensors are omnidirectional, the orientation does not influence the region covered by
each field-of-view, and the pursuers are placed by determining their initial positions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

298 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

X0 = {p1(t0), . . . , pN (t0)} from the following optimization problem:

(3.2) X ∗
0 = argmax

X
P2
S(X)

with 0 ≤ xi
p ≤ L and 0 ≤ yi

p ≤ L ∀i ∈ IP . The above optimization amounts to
a nonlinear program that can be solved by sequential quadratic programming [7, 5].
After all sensors are placed at X ∗

0 , with some orientation θi
p, their initial configurations,

q1(t0), . . . , qN (t0), are known and the game begins. At every game round, a pursuer is
deployed in detection or pursuit mode, depending on whether the new track is partially
or fully observed, respectively. If the pursuer is switched to and deployed in pursuit
mode, then its obstacle-free trajectory is computed by the method in section 3.3. If
the pursuer is deployed in detection mode, its obstacle-free trajectory is computed
from the sequence of cells, or channel, that maximizes its total reward, i.e.,

(3.3) μ∗ ≡ {κ0, . . . , κf}∗ = arg max
μ

∑
(κl,κı)∈μ

R(κl, κı),

where κf is chosen as the observation cell with the highest cumulative probability in
G, i.e., κf = argmaxκi

(PR(κi) +P k
S (κi)). In order to efficiently compute the optimal

channel, μ∗, the value of the reward function (3.1) is attached to every arc in G. Since
the detection probabilities may vary slightly within each cell, they are computed in
reference to the geometric centroid q̄i of every cell κi. Then, the optimal channel μ∗

is computed from G using the A∗ graph searching algorithm [29], and it is mapped
into a set of waypoints that are used by a trajectory generator and trajectory tracking
controller to determine the pursuer policy ui

p = ci(qi, Zt).
If all sensors have the same geometry, the same connectivity-graph structure

(i.e., the nodes and arcs of G) can be utilized for all sensors. Otherwise, a different
connectivity graph Gi may be employed for each geometry Ai. At every round, the arc
labels and the initial and final cells, κ0 and κf , vary based on the latest measurements
and on the sensor that is being deployed. Therefore, the A∗ algorithm must be run
at every round of the game (section 4). In the following subsections, the probabilities
of detection of unobserved and partially observed tracks that are used to define the
reward function (3.1) are derived using a geometric approach.

3.1. Probability of detection for unobserved tracks. As shown in the pre-
vious section, the observation cells in the connectivity graph represent subsets of
configurations that enable measurements from partially observed tracks. Also, at any
given time, the network of pursuers must detect unobserved tracks of targets that
have just entered the search area in S that have been previously missed. Since the
targets are always in motion, maximizing area coverage or other coverage formulations
may not lead to effective cooperative detections. It was recently shown in [4, 49] that
the quality of service of an omnidirectional sensor network performing cooperative
detections of moving targets, referred to as track coverage, can be assessed without
any prior knowledge of the target tracks, and depends only on the geometry of the
sensors and of the search area.

In this section, track coverage is formulated using geometric transversal theory
(see [23] for a comprehensive review).

Definition 3.4. A family of k convex sets in R
c is said to have a d-transversal

if it is intersected by a common d-dimensional flat (or translate of a linear subspace).
When d = 1 and c = 2, the transversal is said to be a line stabber of the family

of convex sets. Therefore, a track detected by k sensors is a stabber of their fields-
of-view, e.g., of a family {D1, . . . ,Dk} in R

2. It can be shown [17] that the family of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 299

stabbers with y-intercept by of a disk Di(pi, ri) in R
2 can be represented by the cone

generated by the unit vectors

(3.4) ĥi(by) =
[

cosαi − sinαi

sinαi cosαi

]
vi

‖vi‖
= Q+

i v̂i

and

(3.5) l̂i(by) =
[

cosαi sinαi

− sinαi cosαi

]
vi

‖vi‖
= Q−

i v̂i,

where vi ≡ pi − [0 by]T . This cone, denoted by K(Di, by) = cone(l̂i, ĥi), is referred
to as the coverage cone of Di, with origin by. For notational simplicity, we omit the
dependency on by and write the above unit vectors as l̂i = l̂i(by) and ĥi = ĥi(by).
The angle αi denotes half the opening angle of K(Di, by), and its sine function can
be computed from the sensor position pi:

(3.6) sinαi =
ri

‖vi‖
=

ri√
(xi

p)2 + (yi
p − by)2

.

The above unit vectors are also used to determine the line stabbers of families
of k nontranslate disks. We order all unit vectors in R

2 based on the orientation of
the frame FS (i.e., counterclockwise). Two vectors ui, uj ∈ R

2 are said to be ordered
according to the orientation of a reference frame FS as ui ≺ uj if, when these vectors
are translated such that their origins coincide and ui is rotated through the smallest
possible angle to meet uj , this orientation is in the same direction as the orientation
of FS [15]. Then, the family of stabbers with y-intercept by can be obtained for a
family of disks, as shown by the following result.

Proposition 3.5. The set of all stabbers of a family of disks Dk = {D1, . . . ,Dk},
through by, is contained by the finitely generated cone

(3.7) Kk(Dk, by) = cone(l̂∗, ĥ∗),

where

(3.8) (l̂∗, ĥ∗) = (l̂ı, ĥj), where l̂ı
 l̂i, ĥj � ĥj , l̂ı ≺ ĥj, ∀i, j ∈ IDk

and IDk
denotes the index set of Dk. If l̂ı
 ĥj, then Kk(Dk, by) = ∅.

A proof is provided in Appendix A. Since Kk(Dk, by) represents the set of tracks
detected by a family of k sensors, it is referred to as the k-coverage cone. The opening
angle of this k-coverage cone obtained by the cross product,

(3.9) ψ = sin−1 ||l̂∗ × ĥ∗|| = H(det[l̂∗ ĥ∗]T) sin−1(det[l̂∗ ĥ∗]T),

is a Lebesgue measure over the set of line stabbers ofD and is used below to obtain the
probability of detection of unobserved tracks. The Heaviside function H(·) guarantees
that if l̂∗ � ĥ∗, the opening angle of the coverage cone is equal to zero.

We restrict our attention to tracks that traverse S and thus intersect two of its
sides. Place FS along two sides of S, and a second reference frame, F ′

S , along the
remaining sides, as shown in Figure 3.1. Since both frames have the same orientation,
Proposition 3.5 can be applied to stabbers with any intercept, namely by, bx, by′ , and
bx′ (see Figure 3.1). The opening angles of the corresponding k-coverage cones are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

300 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

k = 2-Coverage cones

ψ

yb

p2

xb

x’

ζ

ϕ

ρ

'yb

'xb

Game area S

p1

F
S

′F
S
 y

x

y’

Fig. 3.1. Coverage cone definition illustrated for two sensors with fields-of-view centered at p1

and p2, and a rectangular area-of-interest S, with perimeter ∂S shown in bold.

denoted by ψ, ζ, ϕ, and ρ, respectively, and are illustrated in Figure 3.1 for a family
of N = 2 sensors and k = 2 required detections. We assume that prior to obtaining
detections in S, the probability that a target enters S through any intercept b ∈ ∂S
and with a heading θτ ∈ (−π/2, + π/2) is uniformly distributed over all of their
possible values. The set of tracks traversing S and intersecting at least k disks is
approximated by the union of the k-coverage cones over a set of intercept values that
are obtained by discretizing ∂S using a constant interval δb. Then, the following
result can be obtained for a family of N disks representing the fields-of-view of the
sensor network.

Theorem 3.6. The probability of detection of unobserved tracks for a set P of
N pursuers with fields-of-view D1, . . . ,DN , in a square game area S of dimensions
L × L, is a multivariate probability density function of the sensors’ positions X =
{p1, . . . , pN} given by a Lebesgue measure on this union,

P k
S (X) =

δb

4πL

L/δb∑
�=1

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m

[ψ(D i1,j
p , b�y) + ϕ(D i1,j

p , b�y′)]

+
δb

4πL

(L/δb−1)∑
�=0

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m

[ζ(D i1,j
p , b�x) + ρ(D i1,j

p , b�x′)]

with m =
N !

(N − k)!k!
, D i1,j

p ≡ {Di1
k ∪ · · · ∪Dij

k },(3.10)

where the summation
∑

1≤i1<···<ij≤m is a sum over all the [m!/(m − j)! j!] distinct
integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < · · · < ij ≤ m, Dil

k denotes the ilth
k-subset of D, and D i1,j

p is a p-subset of D, with k ≤ p ≤ n.
A proof of this theorem is provided in Appendix B.
By letting δb → 0, the Lebesgue measure (3.10) approaches the measure over

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 301

ri

Partially-observed track Rθ
j

Fig. 3.2. C-target grown isotropically from a partially observed track Rj
θ, based on the ith

sensor range ri.

the entire set of tracks that traverse S [4]. In practice, the value δb is chosen by
the user based on a trade-off between accuracy and computation time. Also, if a
sensor moves to a cell κl, the new network configuration is approximated by Xl =
{p1, . . . , pi ⊂ q̄l, . . . , pN}, letting the center of the sensors’ field-of-view, pi, coincide
with the centroid q̄l of κl. Thus, the gain in probability of detection for unobserved
tracks that is associated with moving between two nodes κl → κı in G is

(3.11) ΔP k
S (κl, κı) ≡ P k

S (Xı) − P k
S (Xl).

The gain ΔP k
S is negative when the above change in configuration leads to a decreased

probability of detection of unobserved tracks. However, since sensors in detection
mode are moved according to (3.3) and both PR and P k

S pertain to the same set of
targets T , the overall probability of detection (3.1) increases at every round of the
game.

3.2. Probability of detection for partially observed tracks. The partially
observed tracks are viewed as an opportunity for obtaining additional measurements
before investing in the costly resources needed to capture a target. In order to account
for the geometry of the sensor field-of-view Di, the platform Ai, and the target track
Rj

θ, we present an approach motivated by cell-decomposition algorithms [29]. The
simple philosophy behind this approach is that, in sensor planning problems, targets
can be viewed as the dual of obstacles in classic robot motion planning. While in
classic robot motion planning the geometry of the robot must avoid intersecting that
of any obstacle, in sensor planning the geometry of the sensor’s field-of-view must
intersect that of the targets in order to enable sensor measurements.

Let FAi denote a moving Cartesian frame embedded in Ai. The configuration qi
specifies the position and orientation of FAi with respect to the inertial frame FS . If
we assume that Di and Ai are both rigid, then qi also specifies the position of every
point in Di (or Ai) relative to FS . Using the latest estimate of a partially observed
track, it is possible to identify the subset of S in which the sensors may obtain target
measurements.

Definition 3.7 (C-target). The target track Rj
θ in S maps in the ith sensor

configuration space C to the C-target region CRj = {qi ∈ C | Di ∩ Rj �= ∅, i ∈
IP , j ∈ IT }.

The boundary of a C-target is the curve followed by the origin of FAi when
Di slides in contact with the boundary of Rj

θ. With the assumed robot and sensor
geometries, the C-target boundaries are obtained by growing Rj

θ isotropically by the
radius ri within S, and they have the pill shape shown in Figure 3.2. C-obstacles are
similarly defined [29] and are used together with the C-targets introduced above to
obtain the connectivity graph G at every round.

Let COk denote the C-obstacle obtained from the kth obstacle in the game area,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

302 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

Ok ⊂ S. In obstacle-avoidance algorithms, the obstacle-free configuration space,

(3.12) Ci
free = C \

n⋃
k=1

COk =

{
qi ∈ C | Ai(qi) ∩

(
n⋃

k=1

Ok

)
= ∅

}
,

is decomposed into a finite set of cells, {κ1, . . . , κf}, within which a path free of
obstacles can be easily generated. In order to obtain a decomposition that includes
observation cells (Definition 3.2), we present the following method:

(I) Decompose the configuration space that is void of any C-obstacles or C-targets
and is defined as

(3.13)

Ci
void = C \

⎧⎨
⎩

n⋃
j=1

COk ∩
p⋃

i=1

CRj

⎫⎬
⎭

=

⎧⎨
⎩qi ∈ C | Ai(qi) ∩

(
n⋃

k=1

Ok

)
= ∅, Di(qi) ∩

⎛
⎝ p⋃

j=1

Rj

⎞
⎠ = ∅

⎫⎬
⎭ .

(II) Decompose each obstacle-free C-target,

(3.14) CRj \
n⋃

j=1

COk, j = 1, . . . , p,

thereby obtaining the set of observation cells.
(III) Construct a connectivity graph G using the void and observation cells ob-

tained in (I) and (II), respectively.
When the C-targets are grown isotropically by a disk (Figure 3.2), the decomposi-
tion may involve generalized polygons [29]. A sweeping-line algorithm can be used to
decompose a nonconvex generalized polygon with ν vertices into O(ν) convex general-
ized polygons in O(ν log ν) time (see section 5.1 in [29]). Alternatively, the pill-shaped
C-targets can be approximated by a convex polygon, obtaining the running time pre-
sented in section 4. An illustrative example of workspace and corresponding cell
decomposition is shown in Figure 3.3. The connectivity graph constructed using this
cell decomposition is illustrated in Figure 3.4, where the observation cells are shown
in grey and the void cells are white. Each node in the connectivity graph corresponds
to one polygonal cell in Figure 3.3, where the cells are numbered from left to right
and from top to bottom.

The probability density function PR, used to compute the reward (3.1), is ob-
tained as follows. Suppose that κl is one of the observation cells that are obtained
from the decomposition of the jth C-target: κl ⊂ CRj . Then, the sensing benefit of
visiting the lth cell in G is the probability of detecting the target j,

(3.15) PR(κl ⊂ CRj) = Pr{Dji = 1 | eji ≤ ri},
where Dji represents the event that the ith sensor reports a detection when the jth
target comes within its detection range. In this paper, PR is assumed to be uniform
over CRj for simplicity, and when a cell is void PR(κl) = 0 since the sensor field-of-
view will not intersect any of the p partially observed tracks. In general, PR can be
estimated from knowledge of the measurement process and can be made dependent
on time and on the distance from the target [18].

The next section presents an effective control methodology by which sensors in
pursuit mode capture and intercept targets whose tracks have been fully observed and
thus have been declared positively detected.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 303

Partially-observed track
Rθ

A

D

S

y

x

CO k

CR

r

Target

r

∂S

Fig. 3.3. Example of cell decomposition (dashed lines) for a workspace with four C-obstacles
(darkly shaded polygons) and one C-target CR (lightly shaded region) corresponding to 2 < k detec-
tions. One sensor with range r and field-of-view D is installed on a robot with a square platform
geometry A.

2

635

7

13

9
10

19

15

184

8

1
14

11

12

16

17

Fig. 3.4. Connectivity graph obtained from the cell decomposition in Figure 3.3, where the cells
in the decomposition are numbered from left to right and from top to bottom, and the observation
cells are shown in grey.

3.3. Pursuit strategy. Once a new target is positively detected, a sensor is
switched to pursuit mode and deployed to capture it. A geometric approach motivated
by the behavior of the potential field controller, described in [10], is used to drive the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

304 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

Y

X

rt

δ

Rθ

τj(t0)

pi(t0) := p0

θτ

φ

p1

c

α

θp

β γ

Fig. 3.5. Control strategy to capture a target.

nonholonomic robot sensor in pursuit mode to a goal waypoint, δ ∈ R
2, calculating

both the point and time at which a pursuer will intercept a target moving in a known
straight line, Rj

θ, with constant velocity, Vτ . This strategy, depicted in Figure 3.5, is
based upon the geometry of the problem and takes into account the kinetic constraints
of the pursuer but not the presence of the obstacles. Therefore, here it is combined
with the cell-decomposition methodology presented in section 3.2.

First, the interception point δ is calculated by determining the time required by
both the pursuer and target to reach δ. The pursuit initial time t0 can be assumed
to be the time at which the last detection zj(tk) became available from target j, and
pi(t0) and τj(t0) denote the initial positions of the pursuer i and target j, respectively.
The interception point δ and the time to interception tcj

i
are defined as

(3.16) δ =

[
xj

τ (t0) + tcj
i
Vτ cos θj

τ

yj
τ (t0) + tcj

i
Vτ sin θj

τ

]
, tcj

i
=
rtφ+ ‖c− δ‖ cosα

Vpmax

,

where the distance traveled by the pursuer is the distance along the arc p0p1 plus the
straight line distance between p1 and δ. The arc radius is the same as the turn radius
of the pursuer and is defined as rt = Vpmax

ωp
, where Vpmax and ωp are the maximum

speed and angular velocity, respectively, of the pursuer. There are two possible circles
corresponding to a right or a left turn of the pursuer. The center points, cR and cL,
of the circles defined by the turn radius are calculated as

cR =
[
p0x + rt cos(θp − π

2)
p0y + rt sin(θp − π

2)

]
, cL =

[
p0x + rt cos(θp + π

2)
p0y + rt sin(θp + π

2)

]
.

The center point lying closest to the interception point is chosen as

c =
{
cR if ‖cR − δ‖ ≤ ‖cL − δ‖,
cL if ‖cR − δ‖ > ‖cL − δ‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 305

The other parameters for calculating the interception time are calculated as

α = arcsin
(

rt
‖c− δ‖

)
, γ = arctan [cy − δy, cx − δx] ,

β =
{
γ − α if c = cR,
γ + α if c = cL,

p1 =
[
δx + ‖c− δ‖ cosα cosβ
δy + ‖c− δ‖ cosα sinβ

]
,

φ = |arctan(p1y − cy, p1x − cx) − arctan(p0y − cy, p0x − cx)| ,

where δ = [δx δy]T . The time to interception tcj
i

and the interception point δ in (3.16)
are computed numerically by Newton’s method [34].

In order to find an obstacle-free shortest path between pi(t0) and δ, the connec-
tivity graph G obtained in section 3.2 is modified by changing the arc labels to reflect
the Euclidean distance between any two nodes κl → κı in G:

(3.17) d(κl, κı) ≡ max ||A(q̄ı) −A(q̄l)||.

The channel μ∗
p of shortest overall distance between κ0 � qi(t0) and κf � δ (assuming

a zero heading at δ) can be determined by the graph searching algorithm A∗ [29].
Subsequently, μ∗

p is mapped into a set of waypoints in R
2
+ that are used by an inner-

loop trajectory generator and trajectory tracking controller designed for the unicycle
model (2.1).

4. Performance and complexity analysis. Previous work on the correctness
and complexity of pursuit-evasion games has focused on graphs, in which one or more
pursuers attempt to capture one target by moving between adjacent nodes in a graph
(see [24, 2, 28, 38] for a comprehensive review). In these problem formulations, the
sensing ability and fields-of-view of the pursuers are not taken into account, and the
pursuit strategies consist of randomized searches on the graph, because the pursuers
cannot see the evader until the latter is caught. Also, only one evader who may be
restricted or unrestricted to the graph is considered during each game. By computing
the connectivity graph by the methodology in section 3.2, these results could poten-
tially be extended to the pursuit-evasion game in Problem 2.1. For example, if the
strategy in [2] is implemented for one pursuer and one evader (N = M = 1), then the
pursuer captures the evader on an n-node cycle with probability at least Ω(1/ log(nG)),
and the game ends in O(nG log(diam(G))) time, where nG is the number of nodes in
G and diam(G) is the diameter of the graph. However, by not taking into account
the sensing ability of the pursuers and the knowledge of fully observed tracks (i.e.,
the presence of observation cells), these strategies are not very effective at capturing
multiple evaders in large game areas. In these applications, nG and diam(G) are very
large. Therefore, the probability of capturing the evaders can be very small and the
game end time O(MnG log(diam(G)) can be very large.

The correctness and game end time for the strategy presented in section 3 are
analyzed by assuming that the time required to maneuver around obstacles or to turn
(φ/ωp) are negligibly small compared to the duration of the game. Let (̄·) denote the
expected value (or mean), and �·� denote the floor function. Then, the performance
of the sensor network depends on the dimension of the game area (L), the number of
sensors (N), the number of required detections (k > 2), and the field-of-view radius

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

306 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

(ri), which here is assumed constant (ri = r ∀i) for simplicity, as summarized by the
following result.

Theorem 4.1. The pursuit-evasion game in Problem 2.1 is guaranteed to termi-
nate, provided that

(4.1) N ≥ Nmin =
1
2

[⌊
2L
r

⌋
+ k − 1 +

∣∣∣∣
⌊

2L
r

⌋
− k + 3

∣∣∣∣
]
,

and requires a time

tf ≤ Tu =
(
√

2L− 2r)
Vτmin

+
[⌊

(k − 2)M
N

⌋
+ 1

]
(
√

2L− r)
V̄p

(4.2)

+
r

(V 2
pmax

− V̄ 2
τ)

+
⌊
M

N

⌋ (
V̄τ +

√
2V 2

pmax
− V̄ 2

τ

)
(V 2

pmax
− V̄ 2

τ)2
L(4.3)

to capture all M targets in T . If the network contains at least

(4.4) N� =
1
2

[
�

⌊
2L
r

⌋
− 4�(�− 1) + (k − 2)M +

∣∣∣∣�
⌊

2L
r

⌋
− 4�(�− 1) − (k − 2)M

∣∣∣∣
]

sensors, with � = 1, . . . , �L/4r�, then all targets in T can be captured in a time

tf ≤ T� =
1

Vτmin

{√
2

2
L− 2

√
2r(�− 1) +

∣∣∣∣∣2r[1 +
√

2(�− 1)] −
√

2
2
L

∣∣∣∣∣
}

+
(
√

2L− r)
V̄p

+
r

(Vpmax − V̄τ)
,(4.5)

and the game terminates in tf ≤ T� ≤ Tu, where T� = Tu when � = 1 and k = 3.
A proof is provided in Appendix C. Based on the above result, Nmin is the

minimum number of sensors needed to guarantee that the game will end in less than
Tu time. But, if more sensors can be utilized, then N can be increased according to
(4.4) to decrease the maximum time required to end the game, as shown by (4.5).
The performance of the algorithm also depends on the choice of reward function (3.1)
through the parameter k, which, together with the parameters N , L, and r, specifies
the definition of the probability density function (3.10).

In Problem 2.1, a round is defined as the deployment of one sensor in either detec-
tion or pursuit mode, and it is initiated based on the measurement set Zt when a new
target track becomes either partially observed or fully observed. Thus, the computa-
tional complexity of the algorithm in section 3 is assessed based on the calculations
required by each round. Let neO denote the number of edges required to describe all
n obstacles in S, and neR = 2p denote the number of edges required to describe all p
tracks that have been partially observed up to the present time. Then, if nκ and nGa

are the number of observation cells and the number of arcs in G, respectively, and
nδ ≡ L/δb, the following result is obtained.

Theorem 4.2. In every round of the pursuit-evasion game in Problem 2.1, the
running time required to deploy a sensor in detection mode is

(4.6)
Γd = O((neO + neR) log(neO + neR) + neRneO logneO) +O(nκnδm(k + logm))

+ O(n2
G + nGa),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 307

where m =
(

N
k

)
is given by the binomial coefficient and the running time required to

deploy a sensor in pursuit mode is

(4.7) Γp = O((nG + nGa) log2 nG).

A proof is provided in Appendix D. Clearly, depending on the characteristics
of the robotic sensors and of the workspace, S, only one of the three terms in (4.6)
will dominate over the others, providing the overall running time complexity of the
detection round. As an example, when the leading time complexity is that of the
reward function (3.1), the deployment of a sensor in detection mode in a problem
with N = 50, k = 3, r = 5 km, and L = 100 km took 0.797 sec on a Pentium 4
CPU 3.06 GHz computer. On the same computer, when the leading time complexity
is that of A∗, the deployment of a sensor in pursuit mode took between 0.078 and
0.2350 sec in a connectivity graph with nG = 340 and nGa = 338, and between 1.672
and 60.125 sec in a graph with nG = 9,590 and nGa = 32,687.

5. Simulation results. In order to validate the methodology developed in sec-
tion 3, a MATLAB simulator has been developed. We integrate the information-driven
sensor planning and pursuit strategies described in previous sections into several sim-
ulation scenarios.

5.1. Scenario 1: Multiple static sensors and one pursuer. In many surveil-
lance applications static sensor networks can be used with a few motion-enabled sen-
sors. Static sensors are placed to optimally cover a given area [17]. If a target (evader)
is detected, then a mobile sensor can be sent to investigate or capture the target. This
scenario is a special case of the pursuit-evasion problem addressed in this work. The
simulation results are depicted in Figure 5.1. This scenario includes obstacles and the
use of the reward function (3.1).

5.2. Scenario 2: Multiple mobile sensors and targets. This simulation
scenario extends the first by considering the same environment but with multiple
targets. Before the simulation scenario begins, five sensors with platforms measuring
0.25 m square are placed in the 10m-by-10m environment to maximize the probability
of detecting tracks with k = 2, since we require this number of detections to form a
partially observed track. Obstacle and coverage maps are generated for each sensor
corresponding to the placement in each cell. Figure 5.2 shows the initial environment
and the five sensors—one with sensing radius 1.5 m, one with sensing radius 1.25 m,
and three with sensing radii of 1 m. Initially, all sensors are in detection mode, and
each is a candidate to switch to the pursuit mode when target tracks become fully
observed.

In this scenario, two targets enter the environment at different locations and
headings and with different velocities. As they move along their trajectories, they are
detected by the sensors (Figure 5.3). The sensors remain motionless since each target
has been detected only once. After the second detection of a target, the network
hypothesizes the target track based on previous detections and deploys the sensor
which receives the highest reward (or lowest cost) as obtained by the A* graph search
algorithm to move to obtain an additional detection of the target (Figure 5.4). When
the second target becomes partially detected, the same track hypothesis and sensor
deployment occurs. At the point that the first target’s track becomes fully observed
(see Figure 5.5), the network again evaluates the reward (distance) and deploys the
best sensor to pursue the target. The same pursuit is performed when the second

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

308 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

Initial location of
mobile sensor

Optimal
path

Detection points

Static sensors

Target

Mobile sensor

Hypothesized
track

Obstacles

Fig. 5.1. Static multiple detectors and one pursuer.

Fig. 5.2. Initial sensor placement.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

x position (m)

y
po

si
tio

n
(m

)

Fig. 5.3. Two targets each detected once.

target is fully observed, as shown in Figure 5.6. The state of the network following
capture of all known targets is depicted in Figure 5.7. The network is rearranged
to maximize area coverage at the next recalculation interval. Table 5.1 summarizes
the chronology of the main events which occur during the simulation. Algorithm 1
illustrates how the simulation scenario has been implemented.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 309

Fig. 5.4. Target 1 is partially observed with
its hypothesized track, and Sensor 1 is deployed
to obtain additional observations.

Fig. 5.5. Target 1 is fully observed and
Sensor 3 is deployed to pursue it while Target
2 becomes partially observed, and Sensor 1 is de-
ployed to obtain an additional observation.

Fig. 5.6. Target 1 has been captured. Target
2 is fully observed and is pursued by Sensor 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

x position (m)

y
po

si
tio

n
(m

)

Fig. 5.7. Final sensor arrangement after
both targets are captured.

Table 5.1

Simulation events of Scenario 2.

Event Time (s) Position (m) Sensor Target
Detect 0.40 (3.46,9.78) 1 2
Detect 1.70 (0.49,6.99) 4 1
Detect 5.45 (1.56,8.06) 3 1
Deploy 5.45 (1.75,8.25) 1 1
Detect 6.30 (1.80,8.30) 1 1
Pursue 6.30 - 3 1
Detect 6.35 (2.94,6.85) 4 2
Deploy 6.35 (2.75,5.25) 2 2
Capture 6.60 (1.76,8.57) 3 1
Detect 8.55 (2.75,5.77) 2 2
Pursue 8.55 - 2 2
Capture 9.40 (2.75,5.55) 2 2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

310 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

Algorithm 1. Scenario 2 Algorithm.
1: Perform initial optimal sensor placement
2: Decompose environment into Cfree and Cobstacle cells
3: for all Sensors do
4: Calculate obstacle map
5: Calculate coverage map
6: end for
7: while Game not over do
8: for all Sensors in pursuit do
9: if Pursued target beneath capture threshold then

10: Remove target
11: End pursuit
12: end if
13: end for
14: if Detection then
15: if Target detections = 2 then
16: Hypothesize target track
17: Calculate observation cells
18: for all Sensors that have not detected this target do
19: Calculate path and reward to investigate target
20: end for
21: Deploy the sensor with the greatest reward
22: else if Target detections = 3 then
23: for all Sensors not in pursuit do
24: Calculate path and reward to pursue target
25: end for
26: Deploy the sensor with the greatest reward
27: end if
28: end if
29: if Sensor update interval then
30: for all Sensors do
31: Calculate coverage map
32: end for
33: Deploy next sensor to maximize coverage
34: end if
35: end while

6. Conclusions. This paper presents a novel framework for developing sensor
control policies in systems involving multiple robotic platforms that seek to detect
and intercept multiple mobile targets. Multiple objectives, such as the probability of
detecting unobserved tracks, for which little or no information is available a priori, ob-
stacle avoidance, and the probability of detection associated with partially observed
targets are approached using a geometric approach. The path leading to the opti-
mal trade-off between these objectives is obtained through the A* graph searching
algorithm and is passed to a control strategy that accounts for the actual pursuers’
dynamics. By adopting a track-before-detect approach, a target is declared positively
detected once a satisfactory number of detections k may be used to form a consistent
track. Subsequently, a heuristic rule switches one of the mobile sensors from detection
mode to pursuit mode, and the track is readily available to compute an optimal pursuit

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 311

strategy. By maximizing the same reward function, the remaining sensors in detection
mode are reconfigured such that the probability of detecting the remaining targets is
again optimized. The progressive simulation scenarios presented validate the devel-
oped methodology. The future work of this approach will include fully implementing
the methodology on a multivehicle testbed [13]. Additionally, the approach will be
extended to reflect a more general pursuit-evasion game by considering intermittent
communication among pursuers and targets, intermittent estimation, and intelligent
evaders that are not restricted to moving in straight lines.

Appendix A. Proof of Proposition 3.5. This proof considers a family of
k = 3 nontranslates Dk = {Di,Dj,Dl} with index set IDk

= {i, j, l}. The results can
be extended to higher k by induction. The coverage cone K(D�, by) contains the set
of all rays that intersect D� in R

2
+, where � ∈ IDk

. Then, the set of tracks intersecting
all circles in the family Dk is given by the following intersection:

(A.1) Kk(Dk, by) =
⋂

�∈IDk

K(D�, by) = K(Di, by) ∩K(Dj , by) ∩K(Dl, by).

From the properties of cones [6, p. 70], the intersection of a collection of cones is also
a cone, and thus Kk(Dk, by) is a cone. A vector z representing a ray Rθ with the
same slope and origin lies in a cone K if and only if Rθ lies in K, since any point on
Rθ can be written as cz, with c > 0.

Consider a ray Rθ ∈ K(D�, by), where K(D�, by) = cone(l̂�, ĥ�) and thus can
be represented by a vector z� = c1 l̂� + c2ĥ� with constants c1, c2 > 0. Then, z� ∈
K(D�, by) and, by the properties of vector sum, l̂� ≺ z� ≺ ĥ�. Next, consider a cone
K∗ = cone(l̂∗, ĥ∗) that is finitely generated by two unit vectors ĥ∗ = ĥj and l̂∗ = l̂ı
with j, ı ∈ IDk

, and assume l̂ı ≺ ĥj. By the properties of finitely generated cones [6],
any vector z∗ = b1 l̂

∗ + b2ĥ
∗ with constants b1, b2 > 0 must lie in K∗. It follows that

a ray R∗
θ with the same slope and origin as z∗ must also lie in K∗, since any point on

R∗
θ can be written as cz∗, with c > 0. Since z∗ is a positive combination of l̂∗ and ĥ∗,

it also follows that l̂∗ ≺ z∗ ≺ ĥ∗.
According to Proposition 3.5, choose ĥ∗ = ĥj � ĥ� and l̂∗ = l̂ı
 l̂� ∀� ∈ IDk

.
Suppose that the unit vectors of Dk can be ordered as ĥl ≺ ĥj ≺ ĥi and l̂i ≺ l̂l ≺ l̂j .
Then, the unit vectors and z∗ can be ordered as follows:

(A.2) l̂� � l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl � ĥ� ∀� ∈ {i, j, l} = IDk

or, more explicitly,

(A.3) l̂i ≺ l̂l ≺ l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl ≺ ĥj ≺ ĥi.

Since the above order also implies l̂� ≺ z∗ ≺ ĥ� ∀� ∈ IDk
, then z∗,R∗

θ ∈ K(D�, by)
∀� ∈ IDk

. Thus, from (A.1), z∗,R∗
θ ∈ Kk(Dk, by) = K∗ = cone(l̂∗, ĥ∗), provided that

ĥ∗ and l̂∗ are chosen subject to (A.2).
So far it has been assumed that l̂ı ≺ ĥj. If the unit vectors of Dk are such that

l̂ı � ĥj, then there are no vectors that can satisfy the order l̂ı = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥj,
and Kk(Dk, by) = K∗ = ∅.

Appendix B. Proof of Theorem 3.6. The set of all tracks through a y-
intercept by that are detected by at least k sensors in D = {D1, . . . ,DN} is the union

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

312 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

of the k-coverage cones of all k-subsets of D,

(B.1) Kk(D, by) =
m⋃

j=1

Kk(Dj
k, by), m =

(
N
k

)
.

Dj
k denotes the jth k-subset of D, and the number m of possible k-subsets is given by

the binomial coefficient N choose k. Since Kk(D, by) is a union of possibly disjoint
cones, it may not be a cone [6]. Nevertheless, the same Lebesgue measure defined for
a cone, μ on [0, π], can be applied to it using the principle of inclusion-exclusion [43]

μ(Kk(D, by)) = μ

⎛
⎝ m⋃

j=1

Kk(Dj
k, by)

⎞
⎠(B.2)

=
m∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤m

μ(Kk(Di1
k , by) ∩ · · · ∩Kk(Dij

k , by)),

where m =
(

N
k

)
= N !

(N−k)! k! and
∑

1≤i1<···<ij≤m is a sum over all the [m!/(m− j)! j!]
distinct integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < · · · < ij ≤ m. Also, μ(·)
denotes a measure on the set. Since the right-hand side of (B.2) is an intersection of
cones, it also is a cone on which we can impose μ. Moreover, it represents the set of
tracks through by that intersect all sensors in D

i1,j
p = {Di1

k ∪ · · · ∪ Dij

k }. Based on
the properties of k-subsets, Di1,j

p must contain k ≤ p ≤ n elements of D and, thus, is
a p-subset of D. Based on the properties of k-coverage cones (Proposition 3.5), the
set of line transversals of Di1,j

p through by can be represented by the p-coverage cone
Kp(D

i1,j
p , by). Thus, (B.2) can be written as

μ(Kk(D, by)) =
m∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤m

μ(Kp(Di1,j
p , by))

=
m∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤m

ψ(Di1,j
p , by),(B.3)

by Proposition 3.5, where p is the number of elements in the union of j k-subsets of
D, and the opening angles ψ(Di1,j

p , by) in the above summation are given by (3.9).
Now, let Rθ(by) denote a ray with y-intercept by and heading angle θτ ∈ (−π/2, +

π/2). Suppose μ(Kk(D, by)) = π; then Rθ(by) will be detected by k pursuers with
probability one. Assuming that all headings are equally likely, if 0 ≤ μ(Kk(D, by)) ≤
π, then Rθ(by) will be detected by k pursuers with probability μ(Kk(D, by))/π. Let
P (by) denote the prior probability that a target enters S at by. Assuming that all
y-intercepts are equally likely, P (by) = δb/(L+ δb). Since the two events are indepen-
dent, the probability that an unobserved track is Rj

θ(by) and is detected by k pursuers
is given by the product of the individual probabilities

(B.4) Pr{Djk = 1,Rj
θ(by)} =

δb

(L+ δb)
μ(Kk(D, by))

π
,

where Djk denotes the event that the jth target traversing S along an unobserved
track is detected by at least k pursuers. Since the k-coverage cones with different

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 313

 ∂S

S

Im

bℓ

K(Di, b
ℓ)

Di

Fig. B.1. Examples of total coverage configuration for k = 2 (sensors on ∂S), sensors packed
by the triangular number (grey disks), and coverage cone K2 < π when N < 2L/r.

y-intercepts are disjoint, the probability that a target’s point of entry in S is the �th
intercept b�y ∈ ∂S and that it is detected by k pursuers is
(B.5)

Pr{Djk = 1,Rj
θ(b

�
y ∈ ∂S)} =

L/δb∑
�=0

δb

π(L + δb)

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m

ψ(Di1,j
p , b�y).

The probability that Djk = 1 and that the target’s point of entry is on one of
the other axes can be obtained by the same approach, using the opening angles of
the corresponding coverage cones. The set of tracks that traverse S and are detected
by at least k pursuers is given by the probability of the union of intersecting sets
Kk(D, by), Kk(D, bx), Kk(D, by′), and Kk(D, bx′) that are obtained by applying (B.1)
to intercepts on the y, x, y′, and x′ axes, respectively. The final probability density
function P k

S (X) in (3.10) is obtained by observing that every track in this union
intersects two sides of S, and that the indices in the second summation must be
shifted in order to consider intercepts at the corners only once.

Consider now the case of a total coverage configuration, denoted by X k
tot, that

detects all tracks in S at least k times. We want to show that for X k
tot the probability

density P k
S in (3.10) is equal to one (its upper bound). In large sensor networks total

coverage may be obtained by concentric configurations placed on and around ∂S, as
shown by the example in Figure B.1 with k = 2. The Lebesgue measure (or opening
angle) of a finitely generated cone K(Di, b

�) ∈ R
2
+, with origin b�, is bounded between

0 and π, and it is equal to π only when b� ∈ Di. The Lebesgue measure on a union of
cones, μ(Kk(D, b�)), attains its upper bound π when all tracks through b� intersect k
disks in D, and it is independent of k and N because all k-coverage cones are finitely
generated. Then, the probability of detection for X k

tot is obtained from (3.10) by
letting μ(Kk(D, b�y)) = μ(Kk(D, b�x)) = μ(Kk(D, b�y′)) = μ(Kk(D, b�x′)) = π ∀�; i.e.,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

314 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

P k
S (X k

tot) =
δb

4πL

L/δb∑
�=1

(π + π) +
δb

4πL

(L/δb−1)∑
�=0

(π + π)

=
δb

4πL

[
L

δb
2π +

L

δb
2π

]
= 1.

Appendix C. Performance analysis. Since every target remains in S and
maintains Rj

θ for the duration of the game and Vpmax > Vτmax , every target j ∈ T can
be captured by a pursuer j ∈ P in time tcj

i
, using the pursuit strategy in section 3.3,

provided that Rj
θ is fully observed. If N ≥ �2L/r�, an initial network configuration

X ∗
0 , defined in (3.2), with P2

S(X ∗
0) = 1 can be obtained by solving a nonlinear program

in which (3.10) is maximized with respect to X , subject to 0 ≤ xi
p ≤ L and 0 ≤ yi

p ≤ L
∀i ∈ IP [4]. As shown in Appendix B, in this total coverage configuration the network
obtains at least two detections per target with probability one. After two detections
are obtained, Rj

θ is estimated and declared partially observed. Then, during every
subsequent round, one sensor is moved from a cell κl to a cell κı (κl → κı), only if the
overall probability of detection of the network, (PR(κı) + ΔP k

S (κl, κı)), is increased
by the change in configuration (Xl → Xı). Since the probability density functions PR
and P k

S are defined over the same set of targets T and the same search area S, the
probability of obtaining the M(k−2) additional sensor detections required to declare
all M target tracks fully observed increases at every round, provided that there are
at least (k − 2) sensors in the network to obtain at least (k − 2) distinct detections
per target. After a track Rj

θ is fully observed, target j can always be captured by any
sensor in the network, because Vpmax > Vτmax . Since, in the worst case, one sensor
can be used to pursue every target sequentially, the game is guaranteed to terminate
if N ≥ Nmin, where
(C.1)

Nmin = max
{⌊

2L
r

⌋
+ 1, k − 2, 1

}
=

1
2

[⌊
2L
r

⌋
+ 1 + k − 2 +

∣∣∣∣
⌊

2L
r

⌋
+ 1 − k + 2

∣∣∣∣
]
,

which simplifies to (4.1).
If N < Nmin, it can be shown by contradiction that the game cannot be guaran-

teed to terminate because there is a subset of tracks that may never be fully observed.
From (C.1), there are two possible cases, namely, Nmin = �2L/r�+1 or Nmin = k−2,
depending on the problem’s parameters. In the first case, from the properties of
the floor function, if N < �2L/r� + 1, then �N� < �2L/r + 1�, and it follows that
N < 2L/r, because N is an integer and 2L/r is a rational number (with the no-
table exception that if 2L/r is an integer, then Nmin should be decreased by one). It
also follows that 2Nr < 4L, and thus for any X ∗

0 there exists at least one interval
Im = {b | b ∈ ∂S, b ∩ Di = ∅ ∀i ∈ ID}, as illustrated in Figure B.1, where if the
dotted disk is removed, N < 2L/r. From Appendices A and B, the Lebesgue measure
(or opening angle) μ of a coverage cone K(Di, b) attains the upper bound π if and
only if b ∈ Di. From (A.1), any (k = 2)-coverage cone K2(D

j
2, b) is the intersection

of two coverage cones, e.g., K(Di, b) and K(Dl, b), where Dj
2 = {Di,Dl} ⊂ D, and

thus μ(K2(D
j
2, b)) ≤ min{μ(K(Di, b)), μ(K(Dl, b))}. It follows that for any intercept

value b� ∈ Im, μ(K(Di, b
�)) < π ∀i ∈ ID, and thus μ(K2(D

j
2, b

�)) < π ∀j, where K2

is the (k = 2)-coverage cone for any 2-subset of D, as defined in (D.1). Thus, by
Proposition 3.5, the set of tracks in the complement set Km(b�) = S \ K2(D

j
2, b

�),
comprised of a union of cones, is detected by at most one sensor in X ∗

0 (Figure B.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 315

Now, let M = 1 and assume that the target has a track Rm
θ (b�) ∈ Km(b�), through

an intercept b� ∈ Im (Figure B.1). Then, the target can be detected by at most one
sensor in X ∗

0 and remains unobserved by definition. Since there are no other targets
in S, at every subsequent round in the game all sensors remain in detection mode,
and all nodes in G remain void cells such that PR(κι) = 0 ∀κι ∈ G. From (3.2), X ∗

0 is
the configuration with the maximum value of P 2

S . Thus, by its choice of κf for sensors
in detection mode (section 3), the algorithm holds the sensors stationary at X ∗

0 at
every round, and the game never terminates, because for this configuration Rm

θ (b�)
always is unobserved. In the second case, Nmin = k − 2 > �2L/r� + 1. Therefore,
when N < Nmin, there may be a sufficient number of sensors in the network to obtain
at least two detections per target and partially observe all tracks. However, after
the tracks have been partially observed, there are not enough sensors to obtain the
additional k − 2 independent detections required to declare any track fully observed.
Thus, all sensors remain in detection mode, and the game never terminates because
the targets are never captured. It can be concluded that if N < Nmin, the game
cannot be guaranteed to terminate.

Based on the problem formulation in section 2, the time required to terminate
the game T depends on the time required to obtain two detections per unobserved
track, ΔTd; the time required to obtain 1 < l < k additional detections per partially
observed track, ΔTo; and the time required to pursue every target after its track has
been fully observed, ΔTc. Although the method in section 3 allows different targets
to be simultaneously detected and pursued, the worst-case scenario is one where there
is no overlap between these time periods, i.e., T = ΔTd + ΔTo + ΔTc.

After all targets are in S, the maximum time required by a network with Nmin

sensors, positioned at X ∗
0 , to obtain at least two detections per target is the time

required by the slowest target to travel the longest distance in S between two disks
Di and Dj with pi and pj at opposite corners, i.e., ΔTd(Nmin) = (

√
2L − 2r)/Vτmin .

Consider now a network with N ≥ Nmin sensors. Before obtaining any detections,
it can be easily shown that the configuration that maximizes the distance between
any two sensors is one where they are packed concentrically in S (e.g., the grey disks
in Figure B.1). By the definition of a triangular number, this configuration can be
achieved by increasing the number of sensors according to

(C.2) N = �

⌊
2L
r

⌋
− 8T(�−1) = �

⌊
2L
r

⌋
− 4�(�− 1), � = 1, . . . ,

⌊
L

4r

⌋
,

where � is an integer and �L/4r� is the maximum value of � that allows one to pack
N sensors in S. Tn denotes the triangular number of n and is used to represent the
decrease in the number of sensors that can be placed at the corners as N increases
(see Figure B.1). Then, the maximum time required to obtain two distinct detections
is the time required by the slowest target to travel the maximum distance between
any two sensors, that is,

ΔTd(N) =
1

Vτmin

max
{

2r,
√

2L− 2r[2
√

2(�− 1) + 1]
}

=
1

Vτmin

1
2

{
2r +

√
2L− 2r[2

√
2(�− 1) + 1] −

∣∣∣2r −√
2L+ 2r[2

√
2(�− 1) + 1]

∣∣∣}

=
1

Vτmin

{√
2

2
L− 2

√
2r(�− 1) +

∣∣∣∣∣2r[1 +
√

2(�− 1)] −
√

2
2
L

∣∣∣∣∣
}
.

(C.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

316 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

After all targets have been partially observed, (k − 2) additional detections per
target are required to declare them fully observed (where it is assumed that k > 2). If
there are Nmin sensors in the network, this can always be accomplished by repeatedly
moving the sensors until all M target tracks are fully observed. Since the maximum
distance that must be traveled by any of the sensors to obtain an additional detection
is (

√
2L− r), the time required to fully observe all M target tracks is

(C.4) ΔTo(Nmin) =
[⌊

(k − 2)M
Nmin

⌋
+ 1

]
(
√

2L− r)
V̄p

.

However, if at least (k − 2)M sensors are available, they can all be moved at once
to each obtain one additional detection, and, assuming that the running time to
reconfigure them is negligibly small, all M target tracks are fully observed after a
time (

√
2L− r)/V̄p.

Suppose that there are �2L/r� ≤ N ≥ M sensors available to pursue the targets
after they have been fully observed. Then, the maximum distance that must be
traveled to capture target j by switching the nearest sensor to pursuit mode is the
distance between the sensor that has obtained the last kth detection from j and the
interception point δ. For the purpose of analysis, one can place an inertial frame of
reference at τj(tk) and align it with the target track such that xj

τ (tk) = yj
τ (tk) = θj

τ =
0. Then, at time tk the sensor must be within a distance r from the target position,
with a heading θp. From (3.16), assuming that the turn time is negligibly small, the
capture time tc must satisfy the equality

(Vpmaxtc)
2 = r2 cos2 θp + (V̄τ tc)2 − 2tcrV̄τ cos θp + r2 sin2 θp

= (V̄τ tc)2 − 2tcrV̄τ cos θp + r2(C.5)

for any θp, since the sensors are assumed to travel at their maximum speed when in
pursuit mode (section 3.3). Differentiating (C.5) with respect to θp and setting the
result equal to zero, it can be shown that the heading with maximum capture time
is θ∗p = π with respect to the target track. Thus, the maximum capture time can be
obtained from

(C.6) t∗c =
1

Vpmax

∥∥∥∥ (r cos θ∗p − t∗c V̄τ)
r sin θ∗p

∥∥∥∥
by letting θ∗p = π and solving for t∗c = r/(Vpmax − V̄τ). Since all of the M sensors that
obtained the last kth detection from the M targets can be deployed simultaneously to
pursue them, the maximum time required to capture them is ΔTc(N) = r/(Vpmax −
V̄τ).

If there are onlyNmin sensors in the network, they need to be deployed (�M/Nmin�+
1) times in order to capture all M targets that have been fully observed. The first
time, the Nmin sensors that obtained the last kth detection from Nmin targets are
deployed in r/(Vpmax − V̄τ) maximum time, as shown in the previous paragraph.
However, when the sensors are subsequently redeployed, they could be anywhere
in S, since they reenter the game after having captured other targets. It can be
shown by solving a simple constrained-optimization problem (omitted here for brevity)
that for a sensor and a target located anywhere in S the maximum capture time is
L[V̄τ + (2V 2

pmax
− V̄ 2

τ)1/2]/(V 2
pmax

− V̄ 2
τ). Thus, it follows that the maximum capture

time with Nmin sensors is

(C.7) ΔTc(Nmin) =
r

(V 2
pmax

− V̄ 2
τ)

+
⌊
M

Nmin

⌋ (
V̄τ +

√
2V 2

pmax
− V̄ 2

τ

)
(V 2

pmax
− V̄ 2

τ)2
L.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 317

From the above analysis, the minimum number of sensors Nmin, obtained by the
maximum of all minima in (4.1), is required to terminate the game in a maximum
time Tu in (4.2). Also, the maximum time required to end the game can be reduced
to T�, in (4.5), by increasing the number of sensors to the maximum of all maxima,

(C.8) N� = max
{
�

⌊
2L
r

⌋
− 4�(�− 1), (k − 2)M,M

}
, � = 1, . . . ,

⌊
L

4r

⌋
,

which simplifies to (4.4), since k > 2.

Appendix D. Complexity analysis. During every detection round, the main
computations required by the methodology in section 3 are the cell-decomposition
procedure to obtain G, the computation of the sensing reward (3.1) for every obser-
vation cell in G, and the search for the optimal channel (3.3), by the A∗ algorithm.
Therefore, we first analyze the complexity of the cell-decomposition procedure. Since
the sensor field-of-view Di is a disk, the decomposition may involve generalized poly-
gons. To avoid this case, Di can be approximated by a regular octagon D̂i tightly
contained in Di. For simplicity, θi

p is assumed fixed. The obstacle-free configura-
tion space Ci

free for the ith pursuer Ai can be decomposed via the method in section
3.2. The position pi = (xi

p, y
i
p) of Ai is abbreviated here by (x, y), and C denotes

the robot configuration space, which can be assumed to be a rectangle or a union
of rectangles. Let κ = [xκ, x

′
κ] × [yκ, y

′
κ] denote a rectangle in R

2. From the prob-
lem formulation, Ai, D̂i, and Ok, k = 1, . . . , n, are assumed to be convex polygons,
and targets Rj , j = 1, . . . , l, are rays in the workspace S; then it follows that COk,
k = 1, . . . , n, and thus CRj , j = 1, . . . , l, all are convex [29]. Let neA denote the num-
ber of edges describing Ai, which is assumed to be a fixed constant. The number of
edges defining sensor D̂i is eight. The running time to compute the two-dimensional
C-obstacle COk, for all k = 1, . . . , n , in S is O(neO). The running time to compute
CRj , for all j = 1, . . . , l, in S is O(neR) [29, 31]. The decomposition of the com-
plement of COk, k = 1, . . . , n, and CRj , j = 1, . . . , l, into convex cells is a vertical
decomposition in two dimensions [29, 31]. Thus, the complexity of the decomposition
of Ci

void, in step (I), is O((neO + neR) log(neO + neR)). In step (II), the decomposi-
tion of CRj \

⋃n
j=1 COk, for each j = 1, . . . , p, can be also implemented via vertical

decomposition in two dimensions [29, 31] with complexity O(neO logneO). Thus, the
complexity of step (II) is O(neRneO logneO). Therefore, the overall complexity of the
cell-decomposition method is O((neO + neR) log(neO + neR)) +O(neRneO logneO) =
O((neO +neR) log(neO+neR)+neRneO logneO), whereas the complexity of a decompo-
sition involving only obstacles is O(neO log(neO)) [29, 31]. By using the approximate-
and-decompose method in [52], the cell decomposition in section 3.2 can be run in
O((neO + neR)2) [8].

Next, we analyze the complexity of the probability of cooperative detections
(3.10), which is clearly the most expensive computation in the sensing reward (3.1).
Let by = � · δb, where � = 0, . . . , L/δb. Consider the complexity of computing (B.5)
and denote it by Γk

y . Then, the time complexity of computing (3.10) is O(4Γk
y). All

tracks Rα(by) detected by a set of k sensors, Dk, are contained by the k-coverage
cone of Dk, and those detected by at least k sensors in a set of n sensors, D, are
given by the union in (B.1). By computing the geometric union of the convex cones
Kk(Dj

k, by), j = 1, . . . ,m, Kk can equivalently be expressed as a union of ℘ disjoint

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

318 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

convex cones,

(D.1) Kk(D, by) =
℘⋃

j=1

cone(l̂∗j , ĥ
∗
j),

where cone(l̂∗j , ĥ∗j)
⋂
cone(l̂∗ı , ĥ∗ı) = ∅ ∀j �= ı, where ı, j = 1, . . . , ℘, and l̂∗j ≺ l̂∗j ≺

l̂∗ı ∀j < ı. Clearly, ℘ ≤ m, and l̂∗j ∈ {l̂∗j |j = 1, . . . ,m} and ĥ∗j ∈ {ĥ∗j |j = 1, . . . ,m}, j =
1, . . . , ℘. Therefore, (B.5) can be obtained by two steps: (i) obtain Kk(D, by) in (D.1),
and (ii) obtain (B.5) from the following equations:

Pr{Djk = 1,Rj
θ(b

�
y ∈ ∂S)} =

(L/δb−1)∑
�=0

℘∑
j=1

sin−1 ||l̂∗j × ĥ∗j ||.(D.2)

The computation of the inner summation above can be performed in two steps. First,
for every Dj

k, j = 1, . . . ,m, ∀i ∈ IDj
k
, compute sinαi in (3.6) and cosαi = (1 −

sinαi
2)1/2 , then compute ĥi in (3.4) and l̂i in (3.5); choose optimal l̂∗j and ĥ∗j so that

l̂∗j = sup{l̂i|i ∈ IDj
k
} and ĥ∗j = inf{ĥj| j ∈ IDj

k
}. Then, Kk(D, by) is obtained in the

form of (D.1); then compute the measure in (D.2).
Assume that the running time to compute the elementary function sinαi in (3.6)

is a constant. The complexity of its inverse sin−1 αi is also a constant, since all el-
ementary functions are analytic and hence invertible by means of Newton’s method.
The time to compute all sinαi and cosαi, i ∈ IDj

k
, is O(k) +O(k), i.e., O(k). Then,

ĥi and l̂i can be obtained by simple multiplication and addition operations. Since
there is no need to order {l̂i|i ∈ IDj

k
} and {ĥj | j ∈ IDj

k
}, l̂∗j and ĥ∗j can be ob-

tained in linear running time O(k). The complexity to generate m convex cones
cone(l̂∗j , ĥ

∗
j) ∀j = 1, . . . ,m is O(mk). The computation of the unions of finite con-

vex cones is exactly similar to the computation of the union of finite closed intervals
in R

1. This class of problems is well known as Klee’s measure problem [26]. In
1977, Klee considered the following problem: given a collection of m intervals in the
real line, compute the length of their union; he then presented an algorithm [26] to
solve this problem with computational complexity (or “running time”) O(m logm).
Fredman and Weide showed that Klee’s algorithm, based on sorting the intervals,
was optimal [20]. Therefore, the complexity of the second step is O(m logm), and
Γk

y = nδ(O(mk) +O(m logm)) = O(nδm(k + logm)), where nδ = L/δb and m is the
binomial coefficient N choose k. Finally, the time complexity of (3.10) is 4 · Γk

y for
every observation cell, and thus the required to compute (3.1) for all nκ observation
cells in G is O(nκnδm(k + logm)).

Finally, G is searched for the optimal channel (3.3) using the A∗ algorithm. The
time complexity of A∗ depends on the heuristic function and, therefore, on the cost
or reward function attached to the arcs of G. For the reward (3.1), the easiest choice
of heuristic function is h(x) = 0 ∀x. Then, the A∗ reduces to Dijkstra’s algorithm
[16], for which the running time is O(n2

G + nGa). Therefore, the time complexity
of a detection round is given by the leading term in (4.6), which depends on the
characteristics of the workspace, robotic sensors, and targets. When the game round
consists of deploying a sensor in pursuit mode, the optimal channel μ∗

p is computed
by first determining the interception point and time, δ and tcj

i
, and then using the

A∗ algorithm to find the shortest path from pi(t0) to δ in G. δ and tcj
i

are computed
by solving four nonlinear equations in four variables, using Newton’s method [34].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 319

Since the gradient evaluation equals 42 component function evaluations, the time
complexity of one Newton’s method iteration is O(43). Although the number of
iterations required is unknown, Newton’s method is known to converge locally in
linear, or even superlinear, time. Therefore, the time complexity for computing the
pursuit strategy is that of the A∗. Since, in this case, the cost attached to the arcs of
G is the Euclidean distance (3.17), the heuristic function h(x) can be chosen as the
straight-line distance, and the complexity can be reduced to O((nGa + nG) log2 nG)
[44].

REFERENCES

[1] E. U. Acar, Path planning for robotic demining: Robust sensor-based coverage of unstructured
environments and probabilistic methods, Internat. J. Robotic Res., 22 (2003), pp. 7–8.

[2] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, Randomized pursuit-
evasion in graphs, Combin. Probab. Comput., 12 (2003), pp. 225–244.

[3] A. Arsie and E. Frazzoli, Efficient routing of multiple vehicles with no explicit communica-
tions, Internat. J. Robust Nonlinear Control, 18 (2007), pp. 154–164.

[4] K. C. Baumgartner and S. Ferrari, A geometric transversal approach to analyzing track
coverage in sensor networks, IEEE Trans. Comput., 57 (2008), pp. 1113–1128.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, Wiley Interscience, Hoboken, NJ, 2006.

[6] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, MA, 2003.
[7] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 2007.
[8] C. Cai and S. Ferrari, Information-driven sensor path planning by approximate cell decom-

position, IEEE Trans. Syst. Man Cyber. Part B, 39 (2009), pp. 1–18.
[9] H. Choset, Coverage for robotics: A survey of recent results, Ann. Math. Artif. Intell., 31

(2001), pp. 113–126.
[10] J. Clark and R. Fierro, Mobile robotic sensors for perimeter detection and tracking, ISA

Trans., 46 (2007), pp. 3–13.
[11] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, Coverage control for mobile sensing

networks, IEEE Trans. Robotics Automat., 20 (2004), pp. 243–255.
[12] I. J. Cox and M. L. Miller, On finding ranked assignments with application to multitarget

tracking and motion correspondence, IEEE Trans. Aerospace Electronic Systems, 31 (1995),
pp. 486–489.

[13] D. Cruz, J. McClintock, B. Perteet, O. Orqueda, Y. Cao, and R. Fierro, Decentralized
cooperative control: A multivehicle platform for research in networked embedded systems,
IEEE Control Syst. Mag., 27 (2007), pp. 58–78.

[14] R. V. Dam, Soil effects on thermal signatures of buried nonmetallic landmines, in Detection
and Remediation Technologies for Mines and Minelike Targets VIII, Proc. SPIE 5089,
SPIE, Bellingham, WA, 2003, pp. 1210–1218.

[15] H. F. Davis and A. D. Snider, Vector Analysis, Wm. C. Brown, Dubuque, IA 1987.
[16] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),

pp. 269–271.
[17] S. Ferrari, Track coverage in sensor networks, in Proceedings of the IEEE American Control

Conference, Minneapolis, MN, 2006, IEEE Press, Piscataway, NJ, pp. 2053–2059.
[18] S. Ferrari and A. Vaghi, Demining sensor modeling and feature-level fusion by Bayesian

networks, IEEE Sensors, 6 (2006), pp. 471–483.
[19] R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. P. Ostrowski, G. Pappas,

C. J. Taylor, Y. Hur, R. Alur, I. Lee, G. Grudic, and J. Southall, A framework and
architecture for multi-robot coordination, Internat. J. Robotic Res., 21 (2002), pp. 977–995.

[20] M. L. Fredman and B. Weide, On the complexity of computing the measure of ∪[ai, bi],
Comm. ACM, 21 (1978), pp. 540–544.

[21] A. Gad, F. Majdi, and M. Farooq, A comparison of data association techniques for target
tracking in clutter, in Proceedings of the Fifth IEEE International Conference on Informa-
tion Fusion, 2002, IEEE Press, Piscataway, NJ, vol. 2, pp. 1126–1133.

[22] A. Ganguli, J. Cortés, and F. Bullo, Maximizing visibility in nonconvex polygons: Non-
smooth analysis and gradient algorithm design, SIAM J. Control Optim., 45 (2006),
pp. 1657–1679.

[23] J. E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in New Trends
in Discrete and Computational Geometry, J. Pach, ed., Springer-Verlag, New York, Berlin,
1991, pp. 163–198.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

320 FERRARI, FIERRO, PERTEET, CAI, AND BAUMGARTNER

[24] V. Isler, S. Kannan, and S. Khanna, Randomized pursuit-evasion in a polygonal environ-
ment, IEEE Trans. Robotics, 21 (2005), pp. 875–884.

[25] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, Energy efficient
computing for wildlife tracking: Design tradeoffs and early experiences with zebranet, in
Proceedings of the 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-X), 2002, ACM, New York, pp. 96–108.

[26] V. Klee, Can the measure of ∪[ai, bi] be computed in less than O(n log n) steps?, Amer. Math.
Monthly, 84 (1977), pp. 284–285.

[27] S. Koenig, C. Tovey, and Y. Smirnov, Performance bounds for planning in unknown terrain,
Artificial Intelligence, 147 (2003), pp. 253–279.

[28] A. S. LaPaugh, Recontamination does not help search a graph, J. ACM, 40 (1993), pp. 224–245.
[29] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 1991.
[30] J. C. Latombe, A. Lazanas, and S. Shekhar, Robot motion planning with uncertainty in

control and sensing, Artificial Intelligence, 52 (1991), pp. 1–47.
[31] S. M. LaValle, Planning Algorithms, Cambridge University Press, London, 2006.
[32] A. Lazanas and J. C. Latombe, Motion planning with uncertainty—A landmark approach,

Artificial Intelligence, 76 (1995), pp. 287–317.
[33] J. Leonard, H. Durrant-Whyte, and I. Cox, Dynamic map building for an autonomous

mobile robot, Internat. J. Robotic Res., 11 (1992), pp. 286–298.
[34] J. J. Moré and M. Y. Cosnard, Numerical solution of nonlinear equations, ACM Trans.

Math. Software, 5 (1999), pp. 64–85.
[35] G. Oriolo, G. Ulivi, and M. Vendittelli, Real-time map building and navigation for au-

tonomous robots in unknown environments, IEEE Trans. Syst. Man Cyber., 28 (1995),
pp. 316–333.

[36] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, London, 1987.
[37] J. Paik, Image processing-based mine detection techniques using multiple sensors: A review,

Subsurface Sensing Technol. Appl., 3 (2002), pp. 203–252.
[38] T. D. Parsons, Pursuit-evasion in a graph, in Theory and Applications of Graphs, Y. Alavi and

D. R. Lick, eds., Lecture Notes in Math. 642, Springer-Verlag, Berlin, 1978, pp. 426–441.
[39] A. B. Poore and N. Rijavec, A numerical study of some data association problems arising

in multitarget tracking, Comput. Optim. Appl., 3 (1994), pp. 27–57.
[40] M. Qian and S. Ferrari, Probabilistic deployment for multiple sensor systems, in Proceedings

of the 12th SPIE Symposium on Smart Structures and Materials: Sensors and Smart Struc-
tures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5765, San Diego,
2005, pp. 85–96.

[41] N. Rao, Robot navigation in unknown generalized polygonal terrains using vision sensors,
IEEE Trans. Syst. Man Cyber., 25 (1995), pp. 947–962.

[42] N. Rao, S. Hareti, W. Shi, and S. Iyengar, Robot Navigation in Unknown Terrains: In-
troductory Survey of Non-heuristic Algorithms, Technical Report ORNL/TM-12410, Oak
Ridge National Laboratory, Oak Ridge, TN, 1993.

[43] S. M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, Orlando, FL,
1983.

[44] S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, Prentice–Hall, Upper
Saddle River, NJ, 2003.

[45] T. Shermer, Recent results in art galleries, Proc. IEEE, 80 (1992), pp. 1384–1399.
[46] S. Thurn, Learning metric-topological maps for indoor mobile robot navigation, Artificial In-

telligence, 99 (1998), pp. 21–71.
[47] J. Urritia, Art gallery and illumination problems, in Handbook on Computational Geometry,

J. Sack and J. Urritia, eds., Elsevier Science, New York, 1992, pp. 387–434.
[48] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, Probabilistic pursuit-evasion

games: Theory, implementation, and experimental evaluation, IEEE Trans. Robotics Au-
tomat., 18 (2002), pp. 662–669.

[49] T. A. Wettergren, Performance of search via track-before-detect for distributed sensor net-
works, IEEE Trans. Aerospace Electronic Systems, 44 (2008), pp. 314–325.

[50] T. A. Wettergren, R. L. Streit, and J. R. Short, Tracking with distributed sets of proximity
sensors using geometric invariants, IEEE Trans. Aerospace Electronic Systems, 40 (2004),
pp. 1366–1374.

[51] P. Yang, R. Freeman, and K. Lynch, Distributed cooperative active sensing using consensus
filters, in Proceedings of the IEEE International Conference on Robotics and Automation,
Rome, 2007, IEEE Press, Piscataway, NJ, pp. 405–410.

[52] D. Zhu and J.-C. Latombe, New heuristic algorithms for efficient hierarchical path planning,
IEEE Trans. Robotics Automat., 7 (1991), pp. 9–20.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

