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Information-Driven Sensor Path Planning by
Approximate Cell Decomposition
Chenghui Cai, Member, IEEE, and Silvia Ferrari, Senior Member, IEEE

Abstract�A methodology is developed for planning the sensing
strategy of a robotic sensor deployed for the purpose of clas-
sifying multiple �xed targets located in an obstacle-populated
workspace. Existing path planning techniques are not directly
applicable to robots whose primary objective is to gather sensor
measurements using a bounded �eld of view (FOV). This paper
develops a novel approximate cell-decomposition method in which
obstacles, targets, sensor�s platform, and FOV are represented
as closed and bounded subsets of an Euclidean workspace. The
method constructs a connectivity graph with observation cells
that is pruned and transformed into a decision tree from which
an optimal sensing strategy can be computed. The effectiveness
of the optimal sensing strategies obtained by this methodology
is demonstrated through a mine-hunting application. Numerical
experiments show that these strategies outperform shortest path,
complete coverage, random, and grid search strategies, and are
applicable to nonoverpass capable robots that must avoid targets
as well as obstacles.

Index Terms�Demining, fusion, geometric sensing, information
theory, robotic sensors, sensor path planning.

I. INTRODUCTION

S ENSOR planning refers to the problem of determining
a strategy for gathering sensor measurements to support

a sensing objective, such as target classi�cation. When the
sensors are installed on robotic platforms an important part
of the problem is planning the sensor path [1]�[3]. Several
approaches have been proposed for planning the path of mobile
robots with on-board sensors to enable navigation and obstacle
avoidance in unstructured dynamic environments, e.g., [4]�[9].
However, these methods are not directly applicable to robotic
sensors whose primary goal is to support a sensing objective,
rather than to navigate a dynamic environment [10]. The reason
is that these methods focus on how the sensor measurements
can best support the robot motion, rather than focusing on the
robot motions that best support the sensing objective [10]. This
paper addresses the problem of planning the path and measure-
ments of a robotic sensor, in order to classify multiple targets
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distributed in an obstacle-populated workspace. This problem,
known as the treasure hunt [11], arises in many applications,
such as robotic mine hunting [12], cleaning [1], and monitoring
of urban environments [13], manufacturing plants [14], and
endangered species [15].

The most popular approaches to sensor path planning include
coverage path-planning [2], [10], random [2], grid [16], and
optimal search strategies [16], [17]. Optimal search strategies
typically outperform other approaches in applications where
a priori information is available, such as sensor models, envi-
ronmental conditions, and prior measurements [16]. However,
they do not yet provide a systematic and general approach
to geometric sensor planning. Geometric sensing problems
require a description of the geometry and position of the
targets and of the sensor�s �eld of view (FOV) [18]. Viewpoint
planning has been shown by several authors to be an effective
approach for optimally placing or moving vision sensors based
on the target geometry and sensor FOV, using weighted func-
tions or tessellated space approaches [18]�[20]. Probabilistic
deployment is an effective approach for detecting targets in
a region of interest (ROI) by computing a search path based
on the probability of �nding a target in every unit bin of a
discretized obstacle-free workspace [1], [21], [22].

In this paper, an approximate cell decomposition approach is
developed for solving the aforementioned treasure hunt prob-
lem. Its advantage over existing sensor path planning tech-
niques is that it takes into account the motion and geometry of
closed and bounded subsets of an Eucledian space representing
the sensor�s platform and FOV, as well as the geometry and
position of multiple �xed targets and obstacles in the ROI.
Traditionally, approximate cell decomposition has been used
to plan the motions of a robot with geometry A, in order to
avoid collisions with multiple �xed obstacles in a workspace
W (comprising the ROI). In this paper, the approximate-and-
decompose approach proposed in [23] is modi�ed to plan the
motions of a robotic sensor with FOV S and platform geometry
A, in order to make measurements from multiple targets in
W , while avoiding obstacles. Since the sensor is installed on-
board the robot, the con�guration of both A and S can be
speci�ed with respect to the same coordinate frame. Then, the
free con�guration space is decomposed to obtain a connectivity
graph with observation cells that each enable a unique set
of measurements from one or more targets in W . This novel
decomposition can be considered as a systematic approach for
constructing so-called detection cells, used for information-
driven sensor planning in [24] and [25].

Information-driven sensor planning has been shown by sev-
eral authors to be a general and effective framework for
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computing the expected measurements� bene�t in sensor plan-
ning problems [24]�[27]. While robot path planning typically
aims to optimize a deterministic additive function such as
Eucledian distance, sensor path planning aims to optimize a
stochastic sensing objective that is not necessarily additive.
Moreover, the sensor�s position and parameters (or mode) must
be planned prior to obtaining sensor measurements. Therefore,
while the measurements ultimately determine performance with
respect to the sensing objective (e.g., classi�cation), they cannot
be factored into the planning problem [24]�[28]. Recently,
the authors showed that using an additive expected entropy
reduction (EER) function leads to improved target classi�cation
in non-Gaussian sensor fusion [29]. In this paper, EER is used
to formulate the expected bene�t of the sensor measurements
in terms of a posterior probability mass function (PMF) ob-
tained from a priori information (Section III). A procedure is
presented for pruning and transforming the connectivity graph
into a decision tree that is used to determine the sensing strategy
with maximum expected measurement pro�t.

The sensor path planning methodology presented in
Section IV is demonstrated through a mine-hunting application
in Section V. The objective of modern demining systems is to
clear mines and unexploded ordnance (UXO) safely, rapidly,
and at low cost by �rst surveying the ROI with remote sensors
and, then, deploying a robotic sensor on the ground [12],
[30], [31]. As shown in Section VI, the proposed method
achieves better ef�ciency than complete coverage, random,
and grid searches (adapted from [2], [10], and [16]) in ROIs
exhibiting low-to-high densities of targets, obstacles and nar-
row passages, and nonuniform soils, weather, and vegetation.
Since the method includes obstacle-avoidance capabilities, it
can also be used to plan the path of sensors installed on non-
overpass capable platforms [12] that must avoid driving over
targets.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The objective of the robotic sensor is to infer hidden hy-
pothesis variables associated with multiple targets from fused
sensor measurements and environmental information. Let W �
R2 denote an Euclidean sensor workspace, or ROI, popu-
lated with r �xed targets T1, . . . , Tr and n �xed obstacles
B1, . . . , Bn, with geometries and positions estimated from prior
sensor measurements. Assume that with each target Ti, there
is associated one hypothesis variable yi that is discrete and,
possibly, random, with a �nite range Y = {y1

i , . . . , yp
i }, where

yk
i denotes the kth value of yi. yi cannot be directly measured

or observed, but it can be inferred from a set of test variables or
measurements, Mi = {mi1, . . . ,mi�}, through a known joint
PMF, P (yi,Mi), that is available from a probabilistic sensor
model (Section III-A). Every measurement variable mi� is ran-
dom and discrete, with a �nite range Mi� = {m1

i�, . . . ,m
N�
i� },

where mk
i� denotes the kth value of mi�, and � = 1, . . . , �. For

example, yi may represent the classi�cation of the ith target,
and the measurements in Mi may pertain � target features that
can be measured when the ith target lies in the sensor�s FOV.
The values of Mi are unknown a priori, and are uncertain due
to random measurement errors.

The geometry of the robotic platform is denoted by A, and
its con�guration q speci�es the position and orientation of a
moving Cartesian frame FA, embedded in A, with respect to a
�xed Cartesian frame FW . A sensor with an FOV represented
by S is mounted on A with a �xed position and orientation that
also is speci�ed through FA. The geometric objects S and A
are assumed to be closed and bounded subsets of W . This paper
addresses the problem of planning the path of the robotic sensor
in W for the purpose of enabling sensor measurements from the
targets, while avoiding collisions with the obstacles. A novel
cell decomposition methodology, presented in Section IV-A,
is used to discretize the robot con�guration space into cells
that each enable measurements over a unique set of tar-
gets in W . By this methodology, at every time index tk,
the sensor occupies one and only one cell, and makes a test
decision u(tk) on which mode to use to make the available
measurements, and an action decision a(tk) on which adjacent
cell to move to at time tk+1 (see [32, Ch. 4] for a review
of test and action decisions). Both u and a are discrete de-
cision variables, with �nite ranges Uk and Ak representing
admissible test and action decisions at time tk, respectively
[33, p. 13].

Several approximate information-theoretic functions have
been developed for assessing the measurement bene�t based
on sensor models and prior information in a manner that is
computationally tractable [26]. In this paper, the measurement
bene�t function B(tk) is de�ned as the EER of the mea-
surements, conditioned upon prior information (Section III-B).
The measurement cost depends on the energy or power required
to operate the sensor in a given sensor mode J(tk) and on the
distance traveled D(tk), which is assumed to be representa-
tive of the energy or power expended by the platform. Then,
the robotic sensor�s performance at tk is de�ned as the mea-
surement profit

R(tk) = wB • B(tk) � wJ • J(tk) � wD • D(tk) (1)

where wB , wJ , and wD are user-de�ned constant weights for
the respective objective functions, chosen based on their units
and on the desired tradeoff between measurement bene�t and
cost. As shown in [34], B is an additive reward function of
P (yi,Mi), and J and D are additive by de�nition. Thus, a
decision strategy for the robotic sensor can be obtained by
solving the following problem.

Problem 2.1 (Treasure Hunt Problem): Given a layout W
and a joint PMF P (yi,Mi), i = 1, . . . , r, �nd the sequence
of decisions or strategy �� = {u(tk), a(tk)|k = 0, . . . , f} that
maximizes the total expected measurement pro�t

V = E

� f�

k=0

R(tk)

�

(2)

and provides a motion plan � � � {a(t0), a(t1), . . . , a(tf )} for
a robotic sensor with FOV S and platform A between an initial
and a �nal con�guration in W .
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III. BACKGROUND ON INFORMATION-DRIVEN
SENSOR PLANNING

A basic dif�culty in sensor planning consists of assessing
the bene�t of the sensor measurements prior to obtaining them
from the targets. Several information-theoretic metrics have
been proposed for this purpose. Relative entropy was used in
[27] to solve a multisensor�multitarget assignment problem,
and in [24] and [25] to manage agile sensors with Gaussian
models for target detection and classi�cation. Information en-
tropy and the Mahalanobis distance measure were used in [26]
for sensor selection in ad-hoc sensor networks. Recently, the
authors showed that using entropy reduction leads to improved
target classi�cation and feature inference from multiple hetero-
geneous sensor measurements, when the sensor models are not
necessarily Gaussian [29]. Therefore, EER is used to formulate
the measurement bene�t function B in terms of a joint PMF
known as the sensor model, as explained in the following
sections.

A. Review of BN Sensor Modeling

A common approach for modeling the sensor measurement
process is to utilize a joint PMF of the relevant variables,
which may include target classi�cation and features, sensor
measurements and parameters (or mode), and environmental
conditions. The joint PMF of a particular sensor may be ob-
tained by means of estimation algorithms (e.g., [25], [26]), or
by learning algorithms using, for example, wavelets or mixtures
of Gaussians [16], [35]. In this paper, we adopt the method
presented in [36] and [37], in which the PMF is learned from
data and represented by a Bayesian network (BN) model. The
advantages of BN models are that they can easily deal with
many variables, they are accompanied by very ef�cient learn-
ing and inference algorithms, and they provide a convenient
factorization of the joint PMF that can be used to simplify
the computation of posterior PMFs required by information
theoretic metrics (Section III-B).

A BN model is comprised of a directed graph and a set of
conditional probability tables (CPTs) that together specify the
multivariate joint PMF of a set of discrete and random variables
known as the BN universe [32]. Every random variable in the
BN universe is assumed to have a �nite range, and is repre-
sented by a node in the graph. Arcs between the nodes represent
conditional probability relationships between the variables. As
shown in [36] and [37], the BN model of a sensor measurement
process is obtained by de�ning the universe XS as the set
of all variables that in�uence the sensor measurements, such
as, the sensor mode v, the set of environmental conditions E,
the set of measurements M , the set of actual target features
F to be inferred from M , and the target classi�cation y, i.e.,
XS � {v,E,M,F, y}, where nodes are denoted by lower case
letters, and upper case letters denote sets of nodes. The BN
structure and CPTs are determined from a database of prior
sensor measurements, using BN batch learning algorithms [38].
The database consists of several cases in which all nodes in
XS are sampled by obtaining sensor measurements over known
targets, under known operating and environmental conditions,
as shown in [36].

Fig. 1. Typical architecture of BN sensor model.

After the BN model is determined, it speci�es the joint PMF
underlying the sensor measurements in terms of the recursive
factorization

P (XS) � P (v,E,M,F, y) =
�

xl�XS

P (xl | pa(xl)) (3)

= P (M | v,E, F )P (F | y)P (y)P (v)P (E) (4)

where pa(xl) denotes the set of parents of node xl in XS , and
factors in (3) are conditional PMFs given by the BN CPTs.
Since the parents of a node xl are all the nodes in the BN with
an outgoing arc to xl, the factorization in (3) re�ects the BN
graph structure, which is learned from data and, thus, depends
on the sensor type. The factorization in (4), shown in Fig. 1, has
been shown to apply to various sensor types [36], [37].

By this approach, non-Gaussian sensor models can be ob-
tained and used for sensor planning. In the case of multiple
heterogeneous sensors, the BN models of each sensor type are
used in combination with the Dempster�Shafer rule of evidence
combination to obtain a fused posterior PMF [36]. In this paper,
the factorization (4) is used to compute the expected bene�t of
the measurements before they become available, as explained
in the next section.

B. Measurement Benefit Function

In this paper, the measurement bene�t function is derived
using the so-called EER, following an approach that was �rst
presented in [29]. Entropy reduction is formulated in terms
of conditional entropy, which can be used to represent the
uncertainty in a discrete and random variable y, given the value
of another discrete and random variable z, based on their joint
and conditional PMFs

H(y | z)=�
�

zj�Z

�

yk�Y

P (y=yk, z=zj) log2 P (y=yk |z=zj)

(5)

where
�

denotes marginalization, and yk denotes the kth
value in the �nite range of y, Y = {y1, . . . , yp} [39]. Al-
though entropy is not additive, it can be shown [34] that
the entropy reduction or mutual information I(y; zj | zi) =
H(y | zi) � H(y | zi, zj) is additive, and represents the reduc-
tion in uncertainty brought about by zj , given prior information
or evidence about zi.

Suppose the sensor measurements are sought to reduce the
uncertainty in the target classi�cation y. Then, entropy reduc-
tion can be used to represent the bene�t of a new (posterior)
set of measurements M = {m1, . . . ,m�}, given an a priori
evidence set E0 = {E0,M0, v0}, which may include known
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environmental conditions, as well as the measurements and
mode of a previously deployed sensor, where it is assumed that
every measurement m� � M is a discrete and random variable,
with a �nite range M� = {m1

� , . . . ,m
N�
� }. The superscript

(•)0 denotes one or more random variables whose values are
known a priori. Since the actual mutual information cannot be
determined prior to measuring M , the EER

�H(y; M | E0) � H(y | E0)

�
��

�=1

�

mk
� �M�

�
H

�
y | m� = mk

� , E0	
P

�
m� = mk

� | E0	

(6)

adopted from [29], is used to represent the expected reduction
in uncertainty in y that would be brought about by M , given E0.

The conditional entropy H(y | E0) in (6) is computed from
(5), and from the posterior PMF P (y | E0) obtained by a
junction-tree algorithm [40]. H(y | m� = mk

� , E0) is computed
from (5) using the posterior PMF in (7), shown at the bottom
of the next page. Where

�
fj�F and

�
f l

j�Fj
denote marginal-

ization over the �nite range Fj of every target feature fj � F ,
and P (F | y, E0) and P (M | F, E0) are obtained by evidence-
updating algorithms [40]. The relationship in (7) is derived
using the simpli�cation

P (M | y) =
�

fj�F

�

f l
j�Fj

P
�
M |f l

j , y
	
P

�
f l

j , y
	

=
�

fj�F

�

f l
j�Fj

P
�
M |f l

j
	
P

�
f l

j , y
	

(8)

obtained by noting that y and M are d-separated given
F [40]. Finally, the last term in (6) is P (M | E0) =�

fj�F
�

f l
j�Fj

P (M |fj =f l
j)P (fj =f l

j |E0), where P (F |E0)
is obtained using a junction-tree algorithm [40].

In the presence of multiple targets, let yi, Mi, and E0
i

denote the classi�cation, measurement set, and evidence set
corresponding to target i. Then, the bene�t of performing a set
of multiple measurements Z = {Mj ,Mk, . . . ,Ml}, in order to
classify targets j, k, . . ., and l, is the cumulative EER

B(Z) � �H
�
yj , yk, . . . , yl;Z | E0

j , E0
k , . . . , E0

l
	

=
�

Mi�Z

�H
�
yi;Mi | E0

i
	
. (9)

Since the BN sensor model (4) holds for any target, every term
in the above summation can be computed using the BN CPTs,
as shown by (5)�(8). The methodology presented in the next
section decomposes the robotic sensor con�guration space into
discrete cells that each enable one set of measurements Z.
Then, the measurement bene�t of each cell can be computed
from (9), and the sensor movements from cell to cell can be
planned based on the most pro�table measurement sequence.

IV. METHODOLOGY: INFORMATION-DRIVEN ROBOTIC
SENSOR PATH PLANNING

Existing robot path planning methods have been devised to
account for the presence of obstacles that the robot must avoid
to reach a goal con�guration in W [41]. Cell decomposition is
a well-known obstacle avoidance method that decomposes the
obstacle-free robot con�guration space into a �nite collection
of nonoverlapping convex polygons, known as cells, within
which a robot path is easily generated. Although it is computa-
tionally intensive, its advantage over other robot path-planning
approaches, such as roadmap or potential �eld methods, is
that, under proper assumptions, cell decomposition is resolution
complete. Exact cell decomposition, which has been applied to
restricted classes of robot geometries, such as planar objects,
3-D convex polytopes, and polyhedral objects [42]�[44], is
guaranteed to �nd a free path in W , whenever one exists, and
otherwise to return failure. Approximate cell decomposition
[45]�[52] requires all cells to have the same prede�ned shape in
order to simplify the implementation and reduce the sensitivity
to numerical approximations, and has a precision that can be
made arbitrarily small at the expense of the running time.

Let the con�guration space C denote the space of all possible
robot con�gurations. A C-obstacle is a subset of C that causes
collisions with at least one obstacle in W , i.e., CBi � {q � C |
A(q) � Bi �= �}, where A(q) denotes the subset of W occupied
by the platform geometry A when the robot is in the con�gura-
tion q [41]. Then, the union

�n
j=1 CBj is the C-obstacle region,

and the obstacle-free robot con�guration space is de�ned as

Cfree � C \
n�

j=1

CBj =



�

�
q � C | A(q) �

�

�
n�

j=1

Bj

�

� = �

�
�

�
.

(10)

The approximate rectangloid decomposition method, referred
to as approximate-and-decompose [23], can be utilized to ob-
tain an approximate cell decomposition of Cfree for a robot A
that is capable of translating and rotating in W . In this method,
cells of a prede�ned rectangloid shape are used to decompose
the bounding and bounded approximations of the obstacles,
until the connectivity of Cfree is properly represented [23].
Then, the union of the cells that are strictly outside the C-
obstacle region is used to construct a connectivity graph rep-
resenting the adjacency relationships between the cells. Finally,
the connectivity graph is searched for the shortest path between
the two cells containing the initial and �nal con�gurations,
q0 and qf .

A. Approximate Cell Decomposition in the Presence of Targets

In this section, a method based on the approximate-and-
decompose approach [23] is developed for robotic sensor path
planning in the presence of targets. It is assumed that the
sensor�s position and orientation are �xed with respect to A
and, therefore, can be speci�ed by the con�guration vector q.
In the presence of targets, q must avoid intersections between
the platform geometry and the obstacles to prevent collisions,
and must enable intersections between the FOV and the targets
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Fig. 2. Example of (b) C-obstacle and (c) C-target (solid lines) obtained for
(a) a sensor with FOV S that is installed on a platform with geometry A, at a
�xed orientation �s.

to make sensor measurements. The method developed in this
section plans the robot motion based on the targets that can
be measured by the on-board sensor, by treating the targets
as the dual of the obstacles. Without loss of generality, the
method is presented for C = W × �, where W � R2 and � =
[�min, �max] is the range of possible robot orientations. Then,
the con�guration vector is de�ned as q � [x y �]T, where
(x, y) and � denote the robot coordinates and orientation in FW ,
respectively.

As shown by the following de�nitions, the subset of C
that enables intersections with Ti to make the set of sensor
measurements Mi can be de�ned similarly to a C-obstacle.

Definition 4.1 (FOV): The FOV of a sensor mounted on
A is a closed and bounded subset S(q) � W such that the
measurement set of a target located at any point p � S(q)
can be obtained by the sensor when the robot occupies the
con�guration q � C.

Definition 4.2 (C-Target): The target Ti in W maps in the
robot�s con�guration space C to the C-target region CT i =
{q � C | S(q) � Ti �= �}.

The relationship between a C-target and a C-obstacle is
shown in Fig. 2. For simplicity, in this simple example it is
assumed that A is a platform that can translate freely but cannot
rotate. S is a triangle with a �xed orientation �s with respect
to FA. For this robotic sensor [Fig. 2(a)], the C-obstacle CB
corresponding to an L-shaped obstacle B (black) is shown in
Fig. 2(b), and the C-target CT corresponding to a rectangular
target T (diagonal pattern) is shown in Fig. 2(c).

In classical cell decomposition, Cfree is decomposed into
cells that are represented by nodes in the connectivity graph.
Then, the graph is searched by minimizing an Euclidian dis-
tance function: D : C × C 	 R. However, the robotic sensor�s

performance (1) also depends on the measurement set, as shown
in (9). Thus, in order to obtain a single-valued performance
function, R : C × C × Z 	 R, the decomposition presented in
this section obtains cells with the following properties:

Definition 4.3: A void cell is a convex polygon � in Cfree
with the property that none of the targets are observable from
any of the con�gurations in �.

Definition 4.4: An observation cell is a convex polygon
fl� in Cfree with the property that every con�guration in fl�
enables a nonempty set of measurements Z(fl�) = {Mi | q �
fl�, q � CT i}.

Additionally, in order to construct a conservative but ef-
�cient representation of Cfree, cells are required to have a
simple prede�ned shape, e.g., a rectangloid. This leads to an
approximate decomposition that is obtained by repeated simple
computations, regardless of the shape of the target and obstacle
geometries, or of the dimensions of C. From hereon, � denotes a
rectangloid, i.e., a closed region in C de�ned as � = [x�, x


�] ×
[y�, y


�] × [��, �

�], with dimensions (x


� � x�), (y

� � y�), and

(�

� � ��) chosen by the user to achieve the desired tradeoff

between precision and running time. The size of the rectan-
gloids is adapted based on the local geometry of the C-obstacle
region, constructing successively smaller decompositions until
an obstacle-free path is found in the corresponding connectivity
graph.

Due to their prede�ned shape, the cells� boundaries in an
approximate decomposition do not always coincide with the
boundaries of C-obstacles/targets. Therefore, a subset of cells,
referred to as mixed, may contain con�gurations from Cfree,
as well as from the C-obstacle/target region. Mixed cells are
excluded from the connectivity graph because they may lead to
collisions with the obstacles, or to missed target measurements.
Their volume can be minimized by approximating C-obstacles
and C-targets as unions of nonoverlapping rectangloids, before
performing the decomposition [23]. The C-obstacles� approx-
imations are used to determine which rectangloids to exclude
from the connectivity graph. The C-targets� approximations are
decomposed into observation cells that are labeled by their
measurement set, and then inserted in the connectivity graph.
Therefore, two different approximations are used to obtain
conservative representations of C-obstacles and C-targets:

Definition 4.5: A bounding rectangloid approximation of
CBj [�] = CBj � �, denoted by RBj [�], is a collection of
nonoverlapping rectangloids Rjv , v = 1, . . . , p, whose union
contains CBj [�].

Definition 4.6: A bounded rectangloid approximation of
CT i[�] = CT i � �, denoted by R
Ti[�], is a collection of
nonoverlapping rectangloids R


iv , v = 1, . . . , p
, whose union
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Fig. 3. Simple example of workspace W populated with (a) both C-obstacles (b) and C-targets and corresponding bounded and bounding approximations.

is contained in CT i[�]. Examples of bounding and bounded
approximations for the C-obstacle and C-targets in Fig. 3(a) are
shown in Fig. 3(b).

The following procedure obtains an approximate rectan-
gloid decomposition K = Kvoid

�
Kz , comprised of a set of

void cells Kvoid and a set of observation cells Kz , for a
workspace W populated with n obstacles B1, . . . , Bn, and r
targets T1, . . . , Tr.

1) Cut � = [�min, �max] into � nonoverlapping subintervals
Iu = [	u, 	u+1], where u = 1, . . . , �, � � 1, 	1 =�min,
and 	�+1 = �max; then, let �u =[x�, x


�] × [y�, y

�]× Iu.

2) Compute CBj [�u], j = 1, . . . , n and CT i[�u], i =
1, . . . , r, for every u = 1, . . . , �, by discretizing Iu into
ku �xed values 	u + l��, where 0 
 l 
 ku, and �� =
(	u+1 � 	u)/ku.

3) For every u = 1, . . . , � and j = 1, . . . , n, compute the
outer projection

OCBj [�u] = {(x, y) | �� � Iu : (x, y, �) � CBj [�u]}
(11)

and generate bounding rectangloid approximation
RBj [�u] of OCBj [�u] × Iu; then, for every u =
1, . . . , � and i = 1, . . . , r, compute the inner projection

ICT i[�u] = {(x, y) | �� � Iu : (x, y, �) � CT i[�u]}
(12)

and generate bounded rectangloid approximation
R
Ti[�u] of ICT i[�u] × Iu.

4) For every u = 1, . . . , �, generate a rectangloid decompo-
sition Ku

void of the void con�guration space

Cu
void � �u \



�

�

n�

j=1

RBj [�u] �
r�

i=1

R
Ti[�u]

�
�

�
(13)

and let Kvoid = ��
u=1Ku

void.
5) For every u = 1, . . . , � and i = 1, . . . , r, generate a rec-

tangloid decomposition Ku
z,i of Cu

z,i \
�

l �=i Cu
z,l, where

Cu
z,i = R
Ti[�u] \

n�

j=1

RBj [�u] (14)

and, for every u = 1, . . . , �, generate a rectangloid de-
composition Ku

z,l of
�r

i=1{Cu
z,i �

�
l �=i Cu

z,l}; then, let
Kz =

��
u=1{Ku

z,i � Ku
z,l}.

As an example, the approximate cell decomposition K ob-
tained for the workspace in Fig. 3 is shown in Fig. 4. As shown
in Appendix I, the above decomposition is not signi�cantly
harder than one involving only obstacles. Let nB and nT denote
the number of edges of all obstacles and all targets, respectively.
It was shown in [23] that if all geometric objects, including
A and S, can be approximated by convex polygons, an ap-
proximate cell decomposition involving only obstacles can be
performed in time O(nB log(nB)). We prove in Appendix I that
the above decomposition, involving both obstacles and targets,
can be performed in time O((nB + nT )2). By accounting for
the targets, every observation cell obtained in step 5) is labeled
by the index set of Z(fl�) (De�nition 4.4), which can be used
to compute the robotic sensor�s performance (1) for every cell,
and to search for the optimal sensor path, as shown in the next
section.

B. Connectivity Graphs and Optimal Sensing Strategy

In this section, a methodology is presented for representing
the treasure hunt problem (Problem 2.1) by a decision tree that
is used to compute the optimal sensing strategy ��. As a �rst
step, a connectivity graph is obtained from the approximate
cell decomposition presented in the previous section. Then, the
connectivity graph is pruned and transformed into a decision
tree, reducing the number of feasible channels and the time
required to compute ��. The connectivity graph is used to
represent the robotic sensor as a point in con�guration space,
and is de�ned as follows.

Definition 4.7: A connectivity graph with observations G
is a nondirected graph where the nodes represent either an
observation cell or a void cell, and two nodes �i and �j in G are
connected by an arc (�i, �j) if and only if the corresponding
cells are adjacent in Cfree.

Several approaches can be used to search G for a sequence
of adjacent cells, or channel, � � connecting q0 to qf . In this
section, we present an ef�cient approach for computing �� from
G, based on the formulation in Problem 2.1. The search for
�� can be simpli�ed by pruning the connectivity graph with
observations based solely on distance, using a label-correcting
algorithm presented in [34]. The Euclidean distance in C

D(�i, �j) � max �A(�qi) � A(�qj)� = dij = dji. (15)

taken from [53], is attached to every arch (�i, �j) in G, where
�qi denotes the geometric centroid of �i, and � • � denotes
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Fig. 4. Approximate rectangloid decomposition of W in Fig. 3 into (a) Kvoid, and (b) K = Kvoid
�

Kz , where only cell indices are shown for simplicity.

Fig. 5. Connectivity graph G obtained from the approximate rectangloid decomposition in Fig. 4 (observation cells are labeled in gray).

the Eucledian norm. An example of the resulting connectivity
graph is shown in Fig. 5, for the decomposition in Fig. 4.

Suppose at time tk the robotic sensor occupies a cell in G.
Then, based on the adjacency relationships, the number of cells
that can be visited at tj > tk grows exponentially with j. If
the objective of minimizing the distance metric (15) is taken
into account, however, the connectivity graph can be pruned to
eliminate a signi�cant number of suboptimal channels based
on the principle of optimality [54]. We adopt the following
de�nition from [34].

Definition 4.8: The connectivity tree Tr associated with G
and two cells �0 � q0 and �f � qf is a tree graph with �0
as the root and �f as the leaves. The nodes represent void or
observation cells, and an additive distance metric D(�i, �j)
is attached to each arc (�i, �j). A branch from the root to a
leaf represents a channel � joining �0 and �f , and obeys the
following properties.

P1) Two branches are said to be information equivalent if they
join the same cells and contain the same set of observation
cells, regardless of the order.

P2) Two branches that are information equivalent can coexist
in Tr if and only if they represent the same channel.

P3) A branch in Tr represents a channel with the shortest
overall distance of any other information-equivalent
branch in G.

The label-correcting algorithm presented in [34] prunes G and
transforms it into a connectivity tree that is guaranteed to
contain the shortest channel between �0 and �f , as well as
a subset of channels that are not information equivalent and
connect a subset of observation cells by the minimum distance.
As an example, the connectivity tree obtained from the graph in
Fig. 5 for �0 = �1 and �f = �11, is shown in Fig. 6.

Finally, the connectivity tree Tr is transformed into a de-
cision tree that is searched for �� by maximizing the total

expected measurement pro�t V , de�ned in (2). Decision
trees can be used to describe discrete-time discrete-state de-
cision processes by representing decision variables as decision
nodes (rectangular boxes), hypothesis variables as chance nodes
(circles), and the value of the objective function as utility nodes
or leaves (diamonds). A decision tree is solved by a rolling-back
procedure that determines the optimal strategy by recursively
estimating the utility of each branch (see [32, Sec. 4.4] for
a comprehensive review). The decision tree used to represent
Problem 2.1 is a tuple DT = {C,D, V,A}, with a set of chance
nodes C, a set of decision nodes D, the measurement pro�t V
as the leaves, and a set of directed arcs A, which is obtained by
the following assignments.

1) The root is �0, and every node preceding a leaf is �f .
2) Every chance node �i � C represents a void or an obser-

vation cell.
3) An arc (�i, �j) � A represents the action decision to

move from �i to �j .
4) Every decision node u(tk) � D represents the test deci-

sion on the mode used to make measurements Z(tk) =
Z(fl�j), where fl�j is the node preceding u(tk).

5) An arc (fl�j , u(tk)) is labeled with the test decision of
highest pro�t.

6) The utility node V at the end of each branch repre-
sents the total measurement pro�t of the corresponding
strategy �.

The pseudocode for the above assignments is provided in
Appendix II. As an example, the decision tree obtained from
the connectivity tree in Fig. 6 is shown in Fig. 7. Every
chance node representing an observation cell has attached an
index set representing the targets that can be measured by the
robotic sensor in that cell. For instance, fl�15 in Fig. 7 enables
measurements over targets T1 and T2 [based on Figs. 3 and
4(b)], thus Z(fl�15) = {M1,M2}. Along this branch, fl�15 can
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Fig. 6. Connectivity tree Tr obtained from G in Fig. 5 for �0 = �1 and �f = �11, with the time index label shown at the bottom of each column.

Fig. 7. Decision tree DT obtained from Tr in Fig. 6, where vl represents the decision of making measurements using the lth sensor mode, and uun represents
the decision of not making any measurements.

be visited at time t2 (Fig. 6), therefore Z(t2) = Z(fl�15) and,
from (9), the pro�t of the test-decision u(t2) is the measurement
bene�t B[Z(t2)] minus the cost J [u(t2)] of using the sensor
in a particular mode. Arc (fl�15, u(t2)) is labeled with the test-
decision value that has the highest pro�t, which, in this case, is
uun (Fig. 6) because the EER is low compared to the cost of
operating the sensor in any mode.

In Section VI, the optimal policy ��, computed from
DT , is applied to plan the path of a robotic sensor used
for landmine classi�cation, as explained in the following
section.

V. APPLICATION: SENSOR PATH PLANNING FOR
LANDMINE CLASSIFICATION

A modern paradigm for demining systems is to deploy a
remote infrared (IR) sensor on an airborne platform to obtain
cursory measurements over the entire mine�eld [12], [31].
Subsequently, a ground-penetrating radar (GPR) is deployed
on-board a ground robot to obtain additional measurements

which are fused with IR measurements to estimate the features
of objects buried in heterogeneous soils, and to classify them
as either landmines or clutter [30]. Because of their different
operating principles and modes, the effectiveness of IR sensors
is heavily in�uenced by environmental conditions and can be
signi�cantly improved through fusion with GPR measurements
[36]. Thus, deploying a robotic GPR sensor can reduce classi-
�cation errors, such as false alarms, which cause cans or other
debris to be mistaken for mines, thereby preventing needless
excavation costs. At the same time, its path must be planned to
safely avoid obstacles and, possibly, mines, in case the robotic
platform is not overpass capable [12]. The distance traveled
by the GPR must be minimized to reduce time and energy
consumption, in order to clear mines safely, rapidly, and at
low cost.

A. Demining System Simulation and BN Sensor Models

The sensor path planning methodology presented in
Section IV is tested on the simulation of a demining sensor

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:07 from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

680 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS�PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

TABLE I
GPR AND IR BN NODES

system developed in [36]. The simulation generates a rectangu-
lar mine�eld of chosen dimensions, or workspace W � R2, that
includes several buried mines, clutter objects (CLUT), obsta-
cles, and heterogenous environmental conditions. A 2-D grid is
superimposed on the mine�eld dividing it into unit-square bins.
Soil characteristics, vegetation, and time-varying meteorologi-
cal conditions, modeled according to [31] and [55], are assigned
to each bin, either at random or at user-speci�ed positions.
Targets consist of antitank mines, antipersonnel mines (APM),
UXO, and CLUT that are sampled and reproduced using the
Ordata Database [56], which contains over 5000 explosive
items and 3000 metallic and plastic objects that resemble
APMs. Each target occupies one or more bins in the mine�eld
depending on its size z, and is characterized by a depth d, and
shape s (Table I). Thus, Ti � W represents the geometry of the
set of bins from which prior IR measurements of the ith target
are obtained in W .

In the simulation, as soon as the FOV of the GPR sensor,
S, intersects a bin containing a target, measurements are repro-
duced and deteriorated based on the target features, the sensor�s
mode and working principles, and the environmental conditions
in the bin [36], [57]. IR sensors detect anomalies in infrared
radiation and, based on their height above the ground, build
an image of a horizontal area, obtaining cursory measurements
of z and s for shallow-buried objects. Because they rely on
temperature variations, their performance is highly in�uenced
by illumination, weather, vegetation, and soil properties. GPR
sensors emit radio waves that penetrate the ground and process
their re�ections at the boundaries of materials characterized by
different refraction indexes producing images of underground
vertical slices over S [58]. The frequency of the radio wave
and its bandwidth determine the GPR mode vGPR. Since pen-
etration depth increases at lower frequencies and image reso-
lution improves at higher frequencies, the optimal GPR mode
depends on target features and on environmental conditions. For
example, very high frequencies may be required in the presence
of ground discontinuities to overcome the so-called ground-
bounce effect [31].

The BN models of GPR and IR sensors, obtained in [36]
and shown in Fig. 8, are implemented in this paper. These
models are used to infer the features Fi = {di, zi, si} of the ith
target from the evidence set Ei = {vi, Ei,Mi}, which includes
measured target features Mi = {dmi , zmi , smi} extracted from
sensor images, the mode vi, and the environmental conditions
Ei [36], [57]. Moreover, the GPR BN model [Fig. 8(b)] is
used to compute the GPR measurement bene�t, as explained
in Section III-B. The ground robot is simulated using the
nonholonomic unicycle model in FW [59], [60], and a geometry
A � W speci�ed by the user. On-board the ground robot is a
GPR sensor with an FOV S � W speci�ed by the user, that
moves with A in FW . When the sensor is turned on, S appears
on the screen and the simulation produces measurements for
all bins intersected by S. When the sensor is turned off, S
disappears and no measurements are made.

B. GPR Sensor Path Planning Implementation

After a mine�eld is simulated, the methodology presented in
Section IV is implemented to deploy the robotic GPR sensor.
The weights in the performance function (1) are chosen to be
wB = 20, wJ = wD = 1, based on tests and heuristics. The
obstacle-free channel � � � �� is transformed into a free path
contained in the interior of � � using a well-known methodology
taken from [41, pp. 204�207], which connects the midpoints
of 
�i � 
�j between every two adjacent cells �i and �j
in � � (where 
�i denotes the boundary of �i). Then, �� is
executed by moving the robotic sensor along the free path, and
by turning the sensor on or off based on the sequence of test
decisions in ��.

Various sources of uncertainty cause the expected measure-
ment pro�t (2) to differ from the actual measurement pro�t.
First, the actual GPR measurements are unknown prior to
deploying the sensor. Second, both IR and GPR measurements
are subject to errors, which may cause some targets to go
undetected, and other targets to be misclassi�ed even after
all measurements are obtained and fused. Thus, the method�s
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Fig. 8. Architectures of IR and GPR BN sensor models (taken from [36]), with nodes de�ned in Table I.

effectiveness is evaluated by computing four ef�ciency metrics
a posteriori, i.e., after �� is executed and the fused GPR�IR
measurements are processed. The �rst metric �y represents the
classi�cation improvement per unit distance brought about by
the GPR. Let �Ny denote the difference between the number
of targets that are properly classi�ed using fused GPR�IR mea-
surements, and the number of targets that are properly classi�ed
using only IR measurements. Then, �y(��) = �Ny(��)/Dtot,
where Dtot is the total distance traveled by the GPR.

The metric �N (��) = Nm(��)/Dtot represents the number
of targets detected by the GPR, Nm, per unit distance. Thus,
it is useful for assessing the effectiveness of the approxi-
mate cell decomposition approach presented in Section IV-A,
which is devised to construct and identify observation cells.
Although the EER in (6) is used to estimate the entropy re-
duction, the actual entropy reduction can be determined only
after obtaining the GPR measurements. From Section III-B,
the actual entropy reduction brought about by the GPR mea-
surements Mi over Ti, given prior evidence about E0

i , is
I(yi;Mi | E0

i ) � H(yi | E0
i ) � H(yi | E0

i ,Mi). Then, Btot ��tf
tk=t0

�
Mi�Z(tk) I(yi;Mi | E0

i ) is the actual entropy reduc-
tion brought about by all GPR measurements obtained by
��, and the metric �H(��) = Btot/Dtot represents the actual
measurement bene�t per unit distance.

After the GPR measurements are obtained, BN inference is
used to obtain the most likely target classi�cation, denoted by
�yi, and its con�dence level (CL), P (yi = �yi | E0

i ), using the
approach in [36]. Since in many applications a misclassi�cation
with a high CL is far worse than one with a low CL, the
following error metric has been proposed in [36]:

e
�
yi, y�

i | E0
i
	

= pi • gi (16)

to adjust the classi�cation error by the posterior PMF, where
gi is a p × 1 vector representing the error between the true
value y�

i and all possible values in Y , pi � [P (y1
i | E0

i ) • • •
P (yp

i | E0
i )]T, and (•) is the dot product. In applications where

the values in Y are not numeric, gi is de�ned based on heuris-
tics and expert knowledge [36], [57]. Let �e(��) denote the
total reduction in the error (16) that is brought about by ��.
Then, the classification gain �CL(��) = �e(��)/Dtot is used
to quantify the improvement in classi�cation accuracy per unit
distance, given E0

i .

VI. RESULTS

The implementation of the sensor path planning method-
ology presented in Section IV was tested on a variety of

Fig. 9. In�uence of targets in W on the optimal sensor path ��, which is
plotted by sample sensor con�gurations.

mine�elds exhibiting low-to-high densities of targets, obstacles,
and narrow passages, as well as nonuniform soils, weather, and
environmental conditions. In the next section, a few simple
examples are used to illustrate the in�uence that the geometries
of the workspace and of the robotic sensor have on the optimal
sensor path. These examples show that both prior information
and geometric characteristics must be taken into account when
planning the sensor path. The results in Section VI-B demon-
strate that the proposed method outperforms complete cover-
age, random, and grid searches (adapted from [2], [10], [16]
using G) and, unlike existing approaches, it also is applicable to
nonoverpass capable platforms.

A. Influence of Prior Information and Sensor Geometries on
the Sensor Path

In this section, the optimal sensor path � � � �� obtained
by the approximate-and-decompose methodology is shown by
plotting sample sensor con�gurations on the workspace. Other
hypothetical paths are schematized by dashed lines for compar-
ison. The �rst example in Fig. 9 shows that both the location
and geometry of targets and obstacles in W must be accounted
for in planning the path of a robotic sensor. Suppose the sensor
must travel from q0 to qf , and W contains one obstacle (black
trapezoid) and four equally important targets (gridded squares)
(Fig. 9). Although two obstacle-free paths of approximately the
same distance can be found from q0 to qf , �1 allows the sensor
to visit only one target, while � � allows the sensor to visit three
targets. It can be seen that by traveling along �1 the sensor could
not have obtained measurements over these three targets, and
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Fig. 10. In�uence of EER on the optimal sensor path ��, which is plotted by blue and yellow robot (A) and sensor (S) geometries, respectively.

Fig. 11. In�uence of soil moisture sr on the optimal sensor path ��, which is plotted by blue and yellow robot (A) and sensor (S) geometries, respectively,
where T1 = T3 (circle), T2 = T6 (square), and T5 = T7 (diamond).

that � � must be planned at the on-set of the sensor motion in
order to minimize distance.

Consider another simple example in which there exist two
paths �1 and � � of approximately equal distance that visit the
same number of targets (Fig. 10). Based on prior IR measure-
ments, the EER of individual targets is either high (EER �
0.2), medium (0.1 < EER < 0.2), or low (EER 
 0.1), where
the EER is discretized for illustration purposes. If only the
targets� locations and geometries were taken into account, �1
and � � would be considered equivalent. Instead, by maximizing
the measurement bene�t (Fig. 10), the optimal path � � obtains
a much higher classi�cation improvement than �1. The EER
in (6) also accounts for the in�uence of known environmental
conditions on the sensor measurements. Consider an example
in which the same three targets (represented by the same
symbol) are buried in different soils, leading to different values
of EER depending on how favorable the conditions are to
the GPR sensor (Fig. 11). As before, by visiting targets with
higher EER (plotted by the same color-pattern scheme used in
Fig. 10), the sensor obtains improved classi�cation ef�ciency
along � �, as shown in Fig. 11. Although there exist three
paths of approximately equal distance that visit the same three

targets, the EER is highest along � � (Fig. 11), because the fused
GPR�IR performance, particularly for the target represented by
a diamond, is better in dry soils.

The example in Fig. 12 shows that the platform geometry
A must be accounted for in planning the sensor path. In this
workspace, there exist three candidate paths (�1, �2, and �3)
that visit targets of approximately equal measurement bene�t
(Fig. 12). Suppose two robots of different geometries, A1 and
A2, with the same on-board GPR are deployed in the mine�eld
shown in Fig. 12. The �rst robot A1 is small enough to ma-
neuver inside the narrow passage and visit high-EER targets by
traveling a shorter distance than �2 or �3, namely, Dtot = 20.47
[Fig. 12(a)], whereas A2 is too large for �1 and, thus, must
take a longer path � � = �2, with Dtot = 27.50 [Fig. 12(b)].
Finally, the example in Fig. 13 shows that the FOV geometry
must be accounted for in planning the sensor path. As shown
by � � in Fig. 13(a), the sensor with a larger FOV, S1, can make
measurements over T1, a target with high EER, without entering
the narrow passage. First, the sensor performs a rotation to
enable the measurements over T1 (S1 intersects T1). Then, it
proceeds to make measurements over T4 and T5, and �nally it
performs a second rotation to reach qf . Instead, for the sensor
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Fig. 12. In�uence of platform geometry A on the optimal sensor path ��, which is plotted by sample con�gurations.

Fig. 13. In�uence of FOV geometry S on the optimal sensor path ��, which is plotted by sample sensor con�gurations.

with FOV S2, � � is inside the narrow passage because S2 is
too small for the sensor to make measurements over T1 without
entering the passage [Fig. 13(b)], and the measurement bene�t
of �2 is comparatively very low.

B. Information-Driven Sensor Path Planning
Efficiency Results

The sensor path planning method developed in this paper was
tested on a variety of mine�elds with various sizes, geometries,
and environmental conditions. A representative example of
optimal sensor strategy ��, and corresponding path � � � ��, is
shown in Fig. 14 for a 40 × 30 (bin) mine�eld with 98 targets,
30 obstacles, and heterogeneous soils, vegetation, weather, and
illumination. Here, S is a triangle that is plotted in yellow

whenever the test decision is to make measurements in one of
the available GPR modes (the mode chosen is not shown for
simplicity). A is a rectangle that is plotted in blue at sample
con�gurations along the free path obtained from � �. The index
i of each target that is measured by the GPR is shown next to
the target geometry Ti in Fig. 14. The EER of the targets is
plotted using the notation in Fig. 10 rotated by ninety degrees,
and the environmental conditions are not shown for simplicity.
This result shows that the sensor avoids obstacles and navigates
through narrow passages in order to reach targets with high
EER using a minimum distance.

For comparison, shortest path, complete coverage, random
search, and grid search strategies are also obtained and imple-
mented for the robotic GPR sensor. Since these methods do
not account for the sensor�s and targets� geometries [2], [10],
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