
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009 607

Information-Driven Search Strategies
in the Board Game of CLUE�

Silvia Ferrari, Senior Member, IEEE, and Chenghui Cai, Member, IEEE

Abstract—This paper presents an information-driven sensor
management problem, referred to as treasure hunt, which is rele-
vant to mobile-sensor applications such as mine hunting, monitor-
ing, and surveillance. The objective is to infer a hidden variable
or treasure by selecting a sequence of measurements associated
with multiple fixed targets distributed in the sensor workspace.
The workspace is represented by a connectivity graph, where each
node represents a possible sensor deployment, and the arcs repre-
sent possible sensor movements. An additive conditional entropy
reduction function is presented to efficiently compute the expected
benefit of a measurement sequence over time. Then, the optimal
treasure hunt strategy is determined by a novel label-correcting
algorithm operating on the connectivity graph. The methodol-
ogy is illustrated through the board game of CLUE�, which is
shown to be a benchmark example of the treasure hunt problem.
The game results show that a computer player implementing the
strategies developed in this paper outperforms players implement-
ing Bayesian networks, Q-learning, or constraint satisfaction, as
well as human players.

Index Terms—Bayesian networks (BNs), computer game play-
ing, influence diagrams (IDs), label-correcting algorithms, mine
hunting, path planning, search theory, sensor planning, value of
information.

I. INTRODUCTION

IN THIS paper, the basic treasure hunt problem and al-
gorithms are developed and illustrated through the board

game of CLUE�. The same algorithms are applied in [1] to
manage a robotic sensor in a mine-hunting application. As
was recently pointed out in [2], games are ideal benchmarks
for testing computational intelligence theories and algorithms
because they provide challenging dynamic environments with
rules and objectives that are easily understood. CLUE� con-
stitutes an excellent benchmark for the treasure hunt problem
because the information obtained during the game depends on
the position of the pawn. The objective is to infer hidden cards
from suggestions made upon entering the rooms of the CLUE�
mansion. However, in order to make a suggestion involving a
particular room card, the pawn must occupy the corresponding

Manuscript received February 18, 2008; revised June 16, 2008, August 28,
2008, and August 29, 2008. This work was supported by the National Science
Foundation under CAREER Award ECS 0448906. This paper was recom-
mended by Associate Editor R. Lynch.

S. Ferrari is with the Department of Mechanical Engineering and Mate-
rials Science, Duke University, Durham, NC 27708 USA (e-mail: sferrari@
duke.edu).

C. Cai is with the Department of Electrical and Computer Engineering, Duke
University, Durham, NC 27708 USA (e-mail: cc88@duke.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2008.2007629

room in the mansion. Therefore, a game strategy must plan
the suggestions’ sequence and enabling pawn motions based
on the evidence that becomes available over time. By viewing
the suggestions as measurements and the rooms as targets, an
approach is developed for computing optimal strategies from an
influence diagram (ID) representation of the game.

As shown in [1] and [3], the treasure hunt is a basic
information-driven sensor management problem that is relevant
to several mobile-sensor applications, such as robotic mine
hunting [4], cleaning [5], and monitoring of urban environments
[3], manufacturing plants [6], and endangered species [7].
Recently, several authors have demonstrated that information-
driven sensor management is a general and effective framework
for planning a measurement sequence based on a proba-
bility mass function (PMF) that is referred to as sensor
model [8]–[13]. Relative entropy was used in [8] to solve a
multisensor–multitarget assignment problem and also in [9] and
[13] to manage agile sensors with Gaussian models for target
detection and classification. Entropy and the Mahalanobis dis-
tance measure were used in [10] for sensor selection in ad hoc
sensor networks. The theory of optimal experiments was im-
plemented in [11] to develop optimal adaptive-search strategies
for the detection and classification of buried targets. In [12],
the Rényi information divergence applied to the prior and
posterior joint multitarget probability density functions was
used to manage the trajectories of multiple aerial vehicles.

The objective of information-driven sensor management is to
decrease the uncertainty or entropy of one or more hypothesis
variables that are not observable or hidden. A basic difficulty
associated with the use of entropy-based functions is that they
are typically nonadditive and myopic, in that they do not
consider the effects of prior measurements on those that are
performed subsequently [8]–[10], [13]–[15]. In this paper, the
effect of prior measurements is taken into account by defining
the measurement benefit as the expected entropy reduction
(EER) conditioned on prior measurements, which is shown to
be additive over time in Section IV.

The sensor workspace is represented by a novel connectivity
graph with a subset of nodes that are referred to as obser-
vation cells. Each observation cell represents a deployment
or configuration that enables one sensor measurement. The
sensor can move between adjacent nodes by paying a penalty
or cost that is attached to the arc between them. The treasure
hunt can be viewed as an extension of the satisficing-search
problem of digging buried treasure chests [16]–[18] in which
the connectivity graph specifies the ordering constraints to be
satisfied by the search. As in [16]–[18], the measurements’
outcomes are unknown a priori and cannot be factored into the

1083-4419/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

608 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 1. CLUE� mansion and game pieces. CLUE� & 2006 Hasbro, Inc.
Used with permission.

decision problem. However, unlike satisficing searches, in the
treasure hunt, measurements are not necessarily binary and are
used to infer a hidden hypothesis variable. Existing dynamic
programming algorithms based on label-correcting [19] and
Viterbi searches [20] are not directly applicable to the connec-
tivity graph. Thus, a novel label-correcting pruning algorithm
is presented in Section VI-A to reduce the number of feasible
solutions based on distance while retaining the strategy with
maximum measurement profit. This label-correcting algorithm
generates a pruned connectivity tree that is folded into an ID
to obtain a compact representation of the treasure hunt problem
(Section VI-B).

The board game of CLUE�, described in Section II, is used
to illustrate the treasure hunt problem formulated in Section III.
The EER measurement-benefit function and its properties are
presented in Section IV. The ID representation of the treasure
hunt problem is obtained in Section VI and is demonstrated
through the board game of CLUE� in Section VII. The
game results presented in Section VIII show that a computer
player implementing the strategies obtained from the ID out-
performs computer players implementing Bayesian networks
(BNs) [21], Q-learning [22], or constraint satisfaction (CS),
as well as human players.

II. BOARD GAME OF CLUE�

The board game of CLUE� is chosen as a benchmark
example because its rules and objectives are easily understood,
and it exhibits all the basic challenges of the treasure hunt prob-
lem. The game’s objective is to determine the guilty suspect,
weapon, and room of an imaginary murder. However, in order
to gather evidence about the room of the murder, the player’s
pawn must be inside the room. Hence, the type of evidence that
may be gathered by the player depends on the position of the
pawn in the CLUE� mansion. The mansion has nine rooms
and is shown on the game board in Fig. 1. The six suspects
are represented by the pawns and may use any one of six toy
weapons. Each item in the game is also represented by an
illustrated card in the deck, for a total of 21 cards.

At the onset of the game, one card from each item category
(room, suspect, and weapon) is randomly selected, removed

from the deck, and hidden in an envelope for the remainder
of the game. The remaining cards are dealt to the players
who subsequently eliminate their own cards from their list of
possible hidden items. The players move their pawns about the
mansion by rolling the die, and when they enter a particular
room, they can make a suggestion that must include that room,
and any item from the suspect and weapon categories. The
following are the three ways for a pawn to enter a room: 1) a
door illustrated on the game board (Fig. 1); 2) a secret passage
connecting opposite corners (Fig. 1); or 3) being suggested as
the murder suspect by one of the other players. After a player
makes a suggestion involving the potential room, suspect, and
murder weapon, the next player must refute it by showing one
of these cards from his/her own deck, if possible. Otherwise, the
player must state that he/she has none of the suggested cards,
and other players must attempt to refute the suggestion. When
none of the players is able to refute it, it can be inferred that
the suggested cards are the hidden ones or that they belong
to the player who made the suggestion. By entering rooms
and making suggestions, players gather evidence about the
adversaries’ cards and infer the values of the hidden cards.

The problem of making decisions on the pawn movements
and suggestions that optimize the value of the information
gathered during the game can be viewed as an example of the
treasure hunt problem formulated in the next section.

III. TREASURE HUNT PROBLEM

The objective of the treasure hunt problem is to infer a hidden
variable or treasure y, referred to as hypothesis variable, from
the outcomes of multiple measurements. In this paper, y is a
discrete random variable with a finite range Y = {y1, . . . , yp},
where y� represents the �th possible value of y. A measurement
mi is a discrete random variable that represents a clue or feature
that is observable from a corresponding target. Every mea-
surement variable mi has a finite range Mi = {m1

i , . . . ,m
N
i },

where m�
i denotes the �th possible value of mi. Although y

is hidden, it can be inferred from one or more measurements
in an available set M = {m1, . . . ,mr} by means of a known
joint PMF P (y,M) = P (y,m1, . . . ,mr) that admits a BN
factorization (Section IV).

The set M represents all possible measurements that can be
obtained from r fixed targets located in the sensor workspace.
The sensor workspace is represented by a finite set of discrete
cells, K = {κ1, . . . , κq}, where each cell represents a possible
sensor deployment or configuration. The sensor may visit only
one cell at a time and obtain at most one measurement z(tk) =
mi ∈ M in each cell. An observation cell, denoted by (̄·), is
defined as a deployment that enables one sensor measurement,
while a deployment in a void cell does not enable any mea-
surements. The set of all cells that enable a measurement mi

is denoted by K̄i. After visiting a cell κi, the sensor can move
to an adjacent cell κj by incurring a cost dij = dji, referred to
as distance. In this paper, it is assumed that the distance and
adjacency relationships between cells are provided by a graph:

Definition 3.1 (Connectivity Graph With Observations): A
connectivity graph with observations, G, is a nondirected graph
where each node represents either an observation cell or a void

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 609

cell, and two nodes, κi and κj , are connected by an arc (κi, κj),
with the distance dij attached, if and only if the corresponding
cells are adjacent.

A systematic cell decomposition approach for computing
G in robotic-sensor applications is provided in [1]. Also, an
approach for obtaining the BN factorization of P (y,M) for
a variety of sensor types is presented in [23] and [24]. If
measurements are required from all r targets, then the search
for the minimum-cost complete-coverage path [25] can be
reduced to a traveling salesman problem in G [26]. However,
in many applications, complete coverage is infeasible, and only
a subset of the targets can be visited due to energy and time
considerations. Let the sensor movements between cells be
indexed by a discrete time tk. Then, if the sensor is in κi at time
tk, the cells that can be visited at a time tk+1 are all the cells
adjacent to κi in G. Thus, at every time tk, the sensor makes an
action decision, a(tk), on which cell to move to at time tk+1,
and a test decision, u(tk), on whether to make an available
measurement when in an observation cell (see Section V for
a review of test and action decisions). The sensor reward at tk
is the measurement profit defined as the measurement benefit,
B, minus the cost of the measurements, J , and of the sensor
movement or distance, D, i.e.,

R(tk) = wB · B(tk) − wJ · J(tk) − wD · D(tk) (1)

where wB , wJ , and wD are user-defined weights that are chosen
based on the units and relative importance of the respective
objective functions. B is shown to be an additive function of
P (y,M) in Section IV, and J and D are additive by definition.

Then, an optimal sensor decision strategy can be obtained by
solving the following problem.

Problem 3.2 (Treasure Hunt Problem): Given a con-
nectivity graph with observations, G, and a joint PMF,
P (y,m1, . . . ,mr), of a hypothesis variable y and r measure-
ments, m1, . . . ,mr, find the strategy σ∗ = {u(tk), a(tk)| k =
0, . . . , f} that maximizes the total measurement profit

V =
f∑

k=0

R(tk) (2)

for a sensor that moves from a cell κ0 to a cell κf in G.
If the targets could be observed in any order, then the optimal

strategy would be to select the measurements in decreasing
order of their benefit-to-cost ratios [17]. However, in the trea-
sure hunt, measurements are obtained over time by visiting
observation cells according to the adjacency relationships in
G, which constitute a new class of ordering constraints [17].
Thus, the treasure hunt problem can be viewed as an extension
of the satisficing-search problem of digging treasure chests
buried at multiple sites, which must be searched in a specified
sequential order [17]. As in [17], the measurements’ outcomes
are unknown a priori and cannot be therefore factored into the
decision problem. Decisions on which cells to visit are made
based on the expected benefit of the measurements. However,
unlike the satisficing-search problem, the treasure hunt is not
limited to binary measurement variables or to AND–OR-tree
representations of the problem. By introducing a hidden hy-
pothesis variable and a nonmyopic additive measurement-

benefit function (Section IV), the treasure hunt problem can be
extended to mobile-sensor applications, as shown in [1].

The board game of CLUE� constitutes an excellent bench-
mark for the treasure hunt problem because the pawn’s position
determines the allowable suggestion (or measurement) about
the hidden room card, which is viewed as the hidden hypothesis
variable. Decisions on the pawn’s movements must be made
before the suggestion’s outcome becomes available. Therefore,
the game strategy σ∗ must optimize a tradeoff between the ex-
pected benefit of visiting a room and the cost, which consists of
the distance traveled and of the turn used to make a suggestion.
As shown in the next section, the measurement benefit B can
be formulated as an additive function of the joint PMF P (y,M)
that estimates the reduction in uncertainty on y, conditioned
on the evidence that may be obtained from one or more of the
available measurements.

IV. MEASUREMENT-BENEFIT FUNCTION

A basic difficulty in the treasure hunt and other sensor
management problems consists of assessing the benefit of per-
forming one or more measurements mi, . . . ,mj ∈ M prior to
obtaining them from the targets. The objective is to decrease
the uncertainty of the hypothesis variable y, which can be
represented by entropy. However, entropy-based functions are
typically nonadditive and myopic, in that they do not consider
the effect of prior measurements on those that are performed
subsequently [8]–[10], [13]–[15]. The effect of a prior mea-
surement, z, can be taken into account by considering the
conditional entropy function defined in terms of the variable’s
conditional PMF, P (y|z), i.e.,

H(y|z)= −
∑
zj∈Z

∑
y�∈Y

P (y=y�, z=zj) log2 P (y=y�|z=zj)

= − Ey,z {log2 P (y|z)} (3)

where, y� and zj denote values in the variables’ ranges, Y and
Z , respectively, and E denotes expectation with respect to its
subscript [27]. However, conditional entropy is not additive be-
cause H(y|zi, zj) �= H(y|zi) + H(y|zj). Consider instead the
conditional mutual information of three discrete and random
variables y, z1, and z2, defined as

I(y; z2|z1) =H(y|z1) − H(y|z1, z2) (4)

= Ey,z1,z2

{
log2

P (y, z2|z1)
P (y|z1)P (z2|z1)

}
. (5)

For simplicity, the shorthand notation zk = z(tk) is adopted
in the remainder of this section. The following result can be
used to define a nonmyopic and additive measurement-benefit
function.

Theorem 4.1: Let Ztf
= {z1, . . . , zf} be a sequence of mea-

surements about a hypothesis variable y that is performed
through a discrete-time Markov process defined over a set of
decision epochs {t1, . . . , tf}. Then, the entropy reduction

ΔH(tk) ≡H(tk−1) − H(tk)
= H(y|zk−1, . . . , z1) − H(y|zk, . . . , z1)
= I(y; zk|zk−1, . . . , z1) = I(y; zk|Ztk−1) (6)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

610 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

is a conditional mutual information, and represents the reduc-
tion in uncertainty in y that is incurred at time tk, when an
additional measurement zk is performed. The entropy reduction
is a reward function that is additive over time. Hence, the total
measurement benefit

Btot =
f∑

k=1

ΔH(tk) = I(y; z1, . . . , zf) (7)

is the reduction in uncertainty brought about by all measure-
ments in Ztf

. See Appendix I for the proof.
The following result is useful in obtaining a decision pol-

icy that selects an optimal measurement sequence Ztf
=

{z1, . . . , zf} from a set of r possible measurements, with f <r.
Remark 4.2: The measurement benefit at any time tk ∈

(t0, tf]

B(tk) =
k∑

i=1

ΔH(ti) (8)

obtained from a sequence of measurements whose individual
outcomes are independent of time, is independent of the order
in which the measurements are performed.

A proof is provided in Appendix II.
As shown in Section VI-A, using the aforementioned re-

sults, the connectivity graph can be pruned based solely on
distance, without eliminating strategies that optimize the total
measurement profit (2). As shown in (8), at any time tk, the
measurement-benefit function must account for the entropy re-
duction of all combinations of measurement outcomes that may
be obtained prior to tk. The results in the following section are
derived to demonstrate that for certain forms of the joint PMF,
P (y,M), the entropy reduction can be obtained efficiently
using a computation that is recursive with respect to time.

A. Efficient Computation of EER Over Time

BNs are a convenient paradigm for representing multivariate
joint PMFs obtained from data or expert domain knowledge,
such as sensor models [23], [24], [28]. Every random variable
in the BN universe X = {x1, . . . , xn} is assumed to have a
finite range and is represented by a node in the graph. Arcs be-
tween the nodes represent conditional probability relationships
between the variables and determine the form of the recursive
factorization

P (X) ≡ P (x1, . . . , xn) =
∏

xl∈X

P (xl|π(xl)) (9)

where π(xl) denotes the set of parents of node xl in X .
Factors in (9) are conditional PMFs given by the BN conditional
probability tables (CPTs). Assume that the joint PMF in the
treasure hunt problem, P (y,M), admits the BN factorization
in (9). From (6), the measurement benefit of an admissible
measurement zk = mj ∈ M at time tk is

I(y; zk = mj |Ztk−1)

=Ey,mj ,zk−1,...,z1

{
log2

P (y, zk =mj |Ztk−1)
P (y|Ztk−1)P (zk =mj |Ztk−1)

}
(10)

Fig. 2. Examples of (a) divergent and (b) feedforward BN factorizations of
the joint PMF P (y, M).

and must be computed for every admissible sequence of
measurements Ztk−1 ≡ {z1, z2, . . . , zk−1}, obtained before tk.
Then, the joint PMF P (y, zk = mj , Ztk−1) is obtained by mar-
ginalizing the remaining measurements out of the joint PMF
P (y,M), and the posterior PMFs in (10) are obtained from
P (y, zk = mj , Ztk−1) by a straightforward application of the
factorization in (9) and Bayes’ rule. If the joint PMF P (y,M)
admits a divergent or a feedforward factorization, as shown in
Fig. 2, the measurement-benefit function (8) can be computed
recursively over time, as shown in the remainder of this section.

Suppose that the joint PMF P (y,M) can be represented by
the divergent BN structure in Fig. 2(a), which represents the
factorization

P (y,M) = P (y)
∏

mi∈M

P (mi|y) (11)

where all factors are known from the BN CPTs [Fig. 2(a)]. At
time t0, the entropy of the hypothesis variable is H(t0) = H(y)
and can be obtained from the CPT P (y) in Fig. 2(a). If a
sequence Ztk

contains the subset of measurements Mk ⊂ M ,
and none of these measurements is ever repeated over the time
interval (t0, tf], then H(tk) = H(y|Ztk

) can be obtained from
(3) using the posterior PMF

P (y|Ztk
)=

P (y, Ztk
)

P (Ztk
)

=

∑
m�

i
∈Mi,mi �∈Mk

P (y,m1,. . .,mi =m�
i ,. . .,mr)

P (Ztk
)

.

For an admissible measurement zk = mj ∈ M at time tk, the
aforesaid posterior PMF can be written as (12), shown at the
bottom of the next page, and the joint PMF is given by

P (Ztk
) =

∑
y�∈Y

P
(
y = y�, Ztk

)

=
∑
y�∈Y

P
(
zk = mj |y = y�

)
P

(
y = y�, Ztk−1

)
(13)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 611

where P (zk = mj |y) is available from the BN CPT associated
with node mj . The aforementioned PMFs are both formulated
with respect to P (y, Ztk−1), which is available from the previ-
ous time step tk−1. This recursive entropy computation exploits
the BN factorization to gain computational efficiency compared
to a brute-force marginalization of P (y,M). A similar ap-
proach is also used in the arc-reversal method and in junction-
tree propagation algorithms [29].

Another case in which the entropy reduction can be com-
puted recursively is that of a BN structure with feedfor-
ward connections among the measurement nodes, as shown
in Fig. 2(b). The measurement nodes are ordered such that if
i < j, then there is an arc from mi to mj , and the joint PMF
exhibits the following factorization:

P (y,Mo) = P (y)
r∏

j=1

P (mj |y,mj−1, . . . ,m1) (14)

where the measurement set is now totally ordered M0 ≡
{m1, . . . ,mr}. This type of BN structure may be useful in
representing the probabilistic relationships between measure-
ments with the same range that are interchangeable and can thus
be ordered according to the time at which they are performed,
such that Mo

k = {m1, . . . ,mk} = Ztk
and Mo

k ⊂ Mo. The
entropy reduction is still computed from (6), but the posterior
PMF needed to compute H(tk) is now obtained by applying the
probability law P (y|z1, z2) = P (z2|y, z1)P (y|z1)/P (z2|z1)
as follows:

P (y|Ztk
) = P (y|zk = mk, Ztk−1)

=
P (zk = mk|y, Ztk−1)P (y|Ztk−1)

P (zk = mk|Ztk−1)
. (15)

Then, the new BN factorization (14) is exploited to compute the
posterior PMF at the denominator recursively

P (zk = mk|Ztk−1)

=
∑
y�∈Y

P
(
y = y�, zk = mk|Ztk−1

)

=
∑
y�∈Y

P
(
zk = mk|y = y�, Ztk−1

)
P

(
y = y�|Ztk−1

)
.

(16)

The joint PMF needed for computing the expectation in (10) is
also computed recursively as follows:

P (y, Ztk
) =P (y, zk = mk, Ztk−1)

=
∑

m�
i
∈Mi,mi �∈Mo

k

P
(
y,m1, . . . ,mi = m�

i , . . . ,mr

)

=
∑

m�
i
∈Mi,mi �∈Mo

k

P (y)

×
r∏

j=1

P
(
mj |y,mj−1, . . . ,mi = m�

i , . . . ,m1

)

=P (y)
k∏

i=1

P (mi|y,mi−1, . . . ,m1)

×
∑

m�
j
∈Mj

r∏
j=k+1

P
(
mj = m�

j |y,mj−1, . . . ,m1

)

=P (y)
k∏

i=1

P (mi|y,mi−1, . . . ,m1)

=P (zk = mk|y, Ztk−1)P (y, Ztk−1). (17)

Equations (12) and (15) are used to efficiently compute the
nonmyopic additive measurement-benefit function in (8) from
the PMFs obtained at the previous time step, P (y|Ztk−1) and
P (y, Ztk−1), and from the available BN CPTs (Fig. 2). Also, by
arc reversal [28], the joint PMF P (y, Ztk

) obtained from (17) is
the CPT of the hypothesis variable y in the ID representation of
the treasure hunt problem derived in Section VI. The definitions
of ID and related background material are reviewed in the next
section.

V. BACKGROUND ON IDs

IDs can be used to represent discrete-time decision processes
with limited information involving both action and test
decisions and are reviewed comprehensively in [28]. Although
other paradigms, such as decision trees [30] and independent
choice logic [31], are also applicable, IDs are used in this paper
because they provide a compact representation of the decision
problem underlying the treasure hunt and illustrate graphically
the domain structure [32]. The PMF P along with a chosen de-
cision policy determines the evolution of the system’s state, x.
Let tk index the time slices, and let x(tk) and a(tk) denote a
chance and an action decision variable at time tk, respectively.
Then, the decision nodes in the ID have the temporal order
a(t1) ≺ a(t2) ≺ · · · ≺ a(tf), and each chance node preceding

P (y|Ztk
) = P (y|zk = mj , Ztk−1)

=
P (y)

[∏
mi∈Mk

P (mi|y)
] [∑

m�
i
∈Mi

∏
mi �∈Mk

P
(
mi = m�

i |y
)]

P (Ztk
)

=
P (y)

∏
mi∈Mk

P (mi|y)
P (Ztk

)
=

P (zk = mj |y)P (y, Ztk−1)
P (Ztk

)
(12)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

612 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

an action node, e.g., x(ti−1) ≺ a(ti), is known by the time that
action is taken.

Definition 5.1: An ID is a tuple {U,A,Ω, P,R} representing
a directed acyclic graph (DAG) over a set of nodes, U , with the
following properties.

1) U is a set of nodes that can be partitioned into chance
nodes UC , decision nodes UD, and utility nodes UV . The
members of U are also referred to as variables of the ID.

2) A is a set of arcs defined over U such that {U,A} forms
a DAG. If the DAG contains an arc (xi, xj) ∈ A, then the
node xi is a parent of xj , and xj is a child of xi. Utility
nodes have no children.

3) Ω is the range of the chance and decision nodes, where
each node has a finite set of mutually exclusive states.
The utility nodes have no states.

4) P is a conditional PMF defined over the chance nodes,
given their parents. The CPT P (x|π(x)) is attached to
every chance node x in the DAG, and P (x=x�|π(x)=w)
is a positive number such that P (Ω(x)|π(x)=w)=1 ∀w.

5) R : Ω(π(v)) → R is the utility or reward function defined
over the parents of the utility node, v, and R is said to be
attached to v.

In an ID, a measurement variable can be represented by a
chance or test node, z. The decision on whether to perform an
admissible measurement is referred to as a test decision and
is denoted by u. While an action decision changes the state
of the system, x, a test decision affects the evidence that may
become available about the hidden variables [28, Ch. 4]. The
type of evidence obtained for the hidden variables may, in turn,
influence the action decisions, but it does not change the state
of the system directly, only our knowledge of it. From the ID
representation of a process, it is possible to compute an optimal
strategy for the sequence of action and test decisions between
an initial and a final time, t0 and tf , respectively.

Definition 5.2: A strategy is a class of admissible policies
that consists of a sequence of functions

σ = {c0, c1, . . . , cf}

where ck maps the state and test variables {x(tk), z(tk)} into
the admissible action and test decisions

{a(tk), u(tk)} = ck [x(t0), a(t1), u(t1), x(t1), . . . ,
a(tk−1), u(tk−1), x(tk−1)] (18)

such that ck[·] ∈ Ω(UD(tk)), for all x(tk) and z(tk).
Based on the results in Section IV, the treasure hunt reward

R can be represented as a measurement-profit function (1) that
is additive over time. Thus, given an ID representation of the
treasure hunt problem, an optimal strategy σ∗ that maximizes
the total reward (2) over the time interval (t0, tf] can be ob-
tained using variable-elimination and junction-tree algorithms
reviewed in [28, Ch. 7] and [33]. One difficulty associated with
the use of IDs is determining the structure and CPTs, which
are not easily learned from data due to the time-varying nature
of the problems they describe. Another difficulty is obtaining
tractable ID structures that capture the problem domain by
a minimal number of nodes and arcs, without giving rise to
complexity problems [28]. A systematic and effective approach

for obtaining an ID representation of the treasure hunt problem
is presented in the next section.

VI. ID REPRESENTATION OF THE

TREASURE HUNT PROBLEM

The treasure hunt problem addresses the coupled processes
of sensor motion and inference that arise when planning the
sensing strategy of a mobile sensor. The treasure hunt reward,
defined in (1), includes the measurement benefit (8) to be opti-
mized with respect to the measurement sequence Ztk

. However,
since each measurement is only enabled by a subset of obser-
vation cells, the sequence Ztk

depends on the sensor’s motion
in the connectivity graph G, which represents the search con-
straints. In the next sections, an approach is developed for ob-
taining an ID representation of G that includes a pruned subset
of admissible decisions. Then, the ID is augmented to include y
and the posterior PMF P (y|Ztk

) derived in Theorem 4.1,
in order to model the inference process, and compute the mea-
surement benefit over time. In the next section, a novel label-
correcting algorithm is presented to transform G into a pruned
connectivity tree that contains a subset of admissible paths,
including the one associated with the optimal strategy. It is
shown that by exploiting the definitions of void and observation
cells, pruning can be conducted based solely on distance while
still guaranteeing optimality with respect to the total reward (2).

A. Pruned Connectivity Tree

A tree representation of all admissible sensor paths from κ0

to κf in G can be obtained by an exhaustive search approach,
such as breadth-first search [14, pp. 73–74], which takes into
account the adjacency relationships in G. By this approach, the
number of cells that can be visited at a time tk grows exponen-
tially with k. Label-correcting algorithms employ the principle
of optimality [34] to reduce the amount of computation required
to search for the shortest path in a graph or network [19]. Since
the measurement profit (1) depends not only on distance but
also on the measurement sequence, existing graph-searching
algorithms are not applicable to the treasure hunt problem.
The novel pruning algorithm presented in this section takes
into account the objective of minimizing distance in order to
eliminate a significant number of suboptimal paths at every
time step tk based on the principle of optimality [34]. For
convenience, the following terminology is introduced.

Definition 6.1 (Connectivity Tree): The connectivity tree Tr

associated with a connectivity graph with observations, G, and
two nodes κ0, κf ∈ G, is a tree graph with κ0 as the root and
κf as the leaf. The tree nodes represent void or observation
cells, and the additive distance metric dij is attached to the
arc (κi, κj). A tree branch from the root to a leaf represents a
sequence of cells or channel joining κ0 to κf .Then, the pruning
algorithm shown in Appendix III transforms G into a pruned
connectivity tree with the following properties.

1) Two branches are said to be information equivalent if they
connect the same cells κi and κl and contain the same set
of observation cells, regardless of the order.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 613

2) Two branches that are information equivalent can co-
exist in Tr if and only if they represent the same
channel.

3) A branch in Tr connecting any two cells κi and κl has the
shortest total distance of any other information-equivalent
branch in G.

Assume that the nodes in G are provided as a list of integers
L = {0,±1, . . . ,±q} that are ordered by their absolute value
and represent the list of cells K = {κ0, κ1, . . . , κq}, such that
an integer n = ±i in L represents the cell κi, and n ≥ 0 if κi is
a void cell, or n < 0 if κi is an observation cell. The arcs in G
are represented by a q × q symmetric matrix A = {aij}, where
aij = 1 if κi and κj are connected in G, aij = 0 if they are
disconnected, and aii = 0 to ensure tree growth. Another q × q
symmetric matrix D = {dij} contains the distance attached to
every arc (κi, κj) in G. The pruning algorithm in Appendix III
takes L, A, D, κ0, and κf as the inputs and returns a pruned
connectivity tree Tr in the form of two 2-D arrays, TREE and
DIST. The element in the jth row and tth column of TREE,
denoted by TREE(j, t), is an integer n = ±i, representing the
cell κi that is encountered at time index t, along the jth branch
in Tr. The array DIST contains the distance associated with
each arc in TREE such that DIST(j, t) = dki if TREE(j, t) =
±i and TREE(j, t − 1) = ±k.

The pruning algorithm compiles the arrays TREE and DIST
incrementally, beginning at the root κ0 and growing branches
spatially (columnwise) and temporally (row-wise) one node at
a time. Similar to other label-correcting algorithms [19], [35],
pruning also takes place incrementally, eliminating branches
that are information equivalent and suboptimal with respect
to distance at every time index. For this purpose, the array
DISTtot is computed such that DISTtot(j, t) is the total distance
between κ0 and the cell in TREE(j, t). At every time index
t ∈ (t0, tf], the pruning algorithm updates the array VISITED,
which contains a list of integers representing the nodes that
have already been visited by the algorithm, and the array
DISTshort, which contains the corresponding distance from
κ0. As shown in Appendix IV, by applying the principle of
optimality, DISTshort is guaranteed to contain the shortest
distance of all information-equivalent branches connecting κ0

to every cell in VISITED. Since Tr contains all branches that
are not information equivalent, the same cells and channels can
appear in multiple branches that represent alternate paths for
obtaining subsets of measurements in M . However, as shown in
Appendix IV, Tr only contains the shortest of all information-
equivalent paths from κ0 to κf in G, including the shortest
path from κ0 to κf . Each of these paths enables a different
subset of measurements by means of the minimum distance.
By Remark 4.2, the measurement benefit does not depend on
the order of the measurements, but only on the chosen subset.
Thus, by retaining all information-equivalent paths in Tr, the
measurement benefit can be excluded by the transformation
G ⇒ Tr, without eliminating any candidate solutions to the
optimal strategy σ∗. A detailed proof of the properties of Tr

is provided in Appendix IV.
A simple example of connectivity tree obtained from G in

Fig. 3 is shown in Fig. 4. Another example, obtained from the

Fig. 3. Example of connectivity graph G with observation cells labeled in
gray, and distances attached to the arcs.

CLUE� connectivity graph (Fig. 10), is shown in Appendix VI
and discussed in Section VII-B. As shown in Tables I and
II, pruning brings about considerable computational savings
and significantly reduces the size of the connectivity tree. The
size of the connectivity graph that can be transformed into
a connectivity tree in approximately the same amount time
is considerably larger for the pruning algorithm than for an
exhaustive search (Table I). By pruning information-equivalent
branches of longer distance, the branches of Tr display a higher
density of observation cells and may thus lead to a higher
measurement benefit in later steps. For example, Tr obtained
by the pruning algorithm in Table I contains a 1:1 ratio of void
to observation cells, while Tr obtained by exhaustive search
(which does not consider cell labels) contains a 3:1 ratio of void
to observation cells.

As shown in Appendix III, the computation of Tr can be fur-
ther simplified by means of a user-specified parameter dM that
represents the maximum allowable distance from the shortest
path between κ0 and κf . When G is very large, the user can
use dM to limit the size of Tr at the expense of eliminating
candidate solutions to σ∗. A comparison of the computation
times required by the pruning algorithm and by exhaustive
search is shown in Table II for the same connectivity graph with
20 nodes, 45 arcs, and 12 observation cells, and different values
of dM , using a Pentium 4 computer with a 3.06-GHz processor.
Our numerical simulations also show that the pruning algo-
rithm requires only a few hours, or even minutes, to generate
Tr from graphs with thousands of nodes, arcs, and observa-
tion cells, which cannot be reasonably handled by exhaustive
search.

As reviewed in [28, p. 228], it is always possible to trans-
form a tree into an ID and vice versa. After applying the
pruning algorithm to G, an ID representation of the pruned
connectivity tree Tr can be obtained by means of the following
assignments.

1) Let the chance node x(tk) denote the set of all cells that
the sensor can visit at time tk. For example, Ω(x(t2)) =
{κ1, κ2} in Fig. 4.

2) Let the action decision node a(tk) denote the set
of admissible action decisions at time tk, where μ�

denotes the action decision to move to cell κ� ∈ K. For
example, Ω(a(t2))={μ3, μ4, μ6} in Fig. 4, and
Ω(a(tf))={μf}.

3) Let the reward function be the negative distance R(tk) =
−D[x(tk), a(tk)] = −di� for ∀κi ∈ Ω(x(tk)) and ∀μ� ∈
Ω(a(tk)).

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 4. Connectivity tree Tr obtained by the pruning algorithm from G in Fig. 3 for κ0 = κ18 and κf = κ17 (observation cells are labeled in gray, and distances
are attached to the arcs).

TABLE I
PRUNING ALGORITHM PERFORMANCE

TABLE II
COMPUTATION TIME COMPARISON

Then, the ID in Fig. 5 represents the connectivity tree Tr,
provided that the CPT

P (x(tk+1) = κj |x(tk) = κi, a(tk) = μ�)

=

⎧⎨
⎩

1, if (κi, κj) ∈ Tr and j = �
0, if (κi, κj) ∈ Tr and j �= �
0, if (κi, κj) �∈ Tr ∀j, �

(19)

is attached to node x(tk), where κi ∈ Ω(x(tk)), κj ∈
Ω(x(tk+1)), and μ� ∈ Ω(a(tk)) if and only if (κi, κ�) ∈ Tr

and κ� ∈ Ω(x(tk+1)). The cells in the chance nodes’ ranges
determine the admissible measurements and test decisions at
every time slice. The ID representation of the treasure hunt
problem is derived in the next section, by combining the ID
representation of the sensor motion constraints (Fig. 5) with that
of the inference process, which includes test variables and de-
cisions, and utility nodes representing the measurement profit.

B. ID With Test Variables and Decisions

In the treasure hunt problem, the measurement variables are
distributed throughout the sensor workspace and are obtained

Fig. 5. ID representation of Tr .

through the Markov process in Fig. 5, representing the sensor
motion. The sensor position x(tk) determines the subset of
admissible measurements at time tk ∈ (t0, tf], and the outcome
of a measurement mi ∈ M is known only after the sensor
visits an observation cell κ̄j ∈ K̄i. It also follows that the
cells that can be visited by the sensor at tk (based on Fig. 5)
specify the range of the test variable z at tk. As reviewed in
[28, Ch. 7], a test variable in an ID can be represented by a
chance node. Let the chance node z(tk) denote the set of all
measurements that can be performed by the sensor at time tk.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 615

Fig. 6. ID representation of sensor motion and measurements with action
decisions.

Then, its range is specified by the observation cells in the range
of x(tk)

mi ∈ Ω(z(tk)) , iff Ω (x(tk)) � κ̄j ∈ K̄i. (20)

With the aforementioned assignment, the ID in Fig. 6 represents
the sensor motion and measurement process, provided that
the CPT

P (z(tk) = mi|x(tk) = κ̄j)

=
{

P (mi), if κ̄j ∈ Ω(x(tk)) and κ̄j ∈ K̄i

0, otherwise
(21)

is attached to node z(tk), and the utility node v(tk) represents
the measurement benefit minus the distance traveled at time tk.

Test decision nodes u(tk) represent the option of performing
one or none of the available measurements. In addition to the
distance traveled, the measurement process may involve a cost
J(tk) representing energy or computational power consump-
tion. Then, through the test decision u, a sensor in an observa-
tion cell may decide to perform the corresponding measurement
only if its benefit exceeds its cost. Following an approach
presented in [28, Ch. 7], u is included in the ID in Fig. 6 by
including the value unobserved, denoted by mun, in the range of
the chance nodes z’s and by using the following assignments.

1) Let the chance node z′(tk) denote the set of all measure-
ments that can be performed by the sensor at time tk, plus
the value mun: Ω(z′(tk)) = {Ω(z(tk)),mun}.

2) Let the decision node u(tk) denote the set of admissi-
ble test decisions at time tk, where ϑi denotes the test
decision to make measurement mi ∈ Ω(z′(tk)) at time
tk, and ϑun denotes the decision of not performing any
measurements.

Then, the following CPT is attached to node z′(tk)

P (z′(tk) = mi|x(tk) = κ̄j , u(tk) = ϑl)

=
{

P (mi), if κ̄j ∈ K̄i and i = l
0, if κ̄j �∈ K̄i, i �= l, or l = un

P (z′(tk) = mun|x(tk) = κ̄j , u(tk) = ϑl)

=
{

1, if l = un ∀j
0, if l �= un ∀j.

(22)

In Fig. 7 and in the remainder of this paper, the chance node
z′(tk) is denoted simply by z(tk).

The reward function R attached to the utility node v(tk)
in Fig. 7 is the measurement profit (1), which includes the

Fig. 7. ID representation of the treasure hunt problem.

measurement-benefit function (8). Since (8) is a function of the
PMF P (y,M), y must be included in the ID. First, the ID is
augmented with a hidden node y(tk) that has the same range as
y, and the parent set π(y(tk)) = {z(t1), . . . , z(tk)}, as shown
in Fig. 7. Then, based on arc reversal [28], at every time slice tk,
the CPT attached to y(tk) is P (y|Ztk

), and may be computed
by one of the recursive formulas derived in Section IV-A [(12)
or (15)], depending on the BN factorization of P (y,M). Since
y(tk) is parent only to the utility node, the ID in Fig. 7
does not have a complexity problem, provided that x(tk) is
observable. If x(tk) is hidden, or if the set M1 ∪ · · · ∪Mr

is very large, the solution of this ID may require information
blocking or the use of a limited memory ID (LIMID) [33].
The ID representation (Fig. 7) and solution are demonstrated
through the game of CLUE�, as explained in the next section.
The game results obtained in Section VIII show that a computer
player implementing the optimal strategies obtained from the
ID solution outperform previous computer players designed, for
example, via Q-learning and CS, as well as human players.

VII. IMPLEMENTATION

Although there exist several computerized CLUE� games,
so far, the mathematical development of game strategies has
been limited to the works in [21] and [22]. In this section, the
methodology presented in Section VI is implemented to obtain
an ID representation of CLUE� and to compute optimal game
strategies for moving the pawn and making suggestions based
on the information that becomes available during the game. The
suggestions are viewed as measurements that depend on the
room occupied by the pawn, and the hidden cards are the hy-
pothesis variables. The BN factorization of the PMF P (y,M)
is obtained in the next section, and the connectivity graph is
derived in Section VII-B using an exact cell decomposition
approach.

A. CLUE� BN

This section reviews the BN model of the CLUE� cards,
which was first presented in [21] to automate inference of
the hidden cards. Assume that there are three players in the
game, namely, p1, p2, and p3. After the three hidden cards
are drawn, the remaining 18 cards are randomly distributed
into groups of six cards per player. Every card in the deck
is represented by one node in the CLUE� BN and has a

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 8. Structure of approximate BN model for the CLUE� cards (taken
from [21]).

range that depends on its category. A room card Cr can take
one of nine values, Ω(Cr) = {rd, rl, rb, rh, rk, rg, ra, rs, rc},
representing the dining room (rd), library (rl), billiard room
(rb), hall (rh), kitchen (rk), lounge (rg), ballroom (ra), study
(rs), and the conservatory (rc). A weapon card Cw can take
one of six values, Ω(Cw) = {wk, wr, wc, wp, wv, wh}, repre-
senting the knife (wk), rope (wr), candlestick (wc), lead pipe
(wp), revolver (wv), and the wrench (wh). A suspect card Cs

can take one of six values, Ω(Cs) = {sm, st, sp, sg, sw, sk},
representing Col. Mustard (sm), Ms. Scarlett (st), Prof. Plum
(sp), Mr. Green (sg), Mrs. White (sw), and Mrs. Peacock (sk).
In [21], the exact BN model of the game cards was shown to
have a complexity problem and CPTs of dimensions O(1025).
A tractable CLUE� BN structure was obtained by introducing
an assumption on the categories of the cards that are dealt to
each player. The cards are dealt uniformly among the three
players such that the following are observed: 1) p1 has two
suspect cards, one weapon card, and three room cards; 2) p2 has
one suspect card, two weapon cards, and three room cards; and
3) p3 has two suspect cards, two weapon cards, and two room
cards.

Let Cs
ji, Cw

ji, and Cr
ji denote the jth suspect, weapon, and

room cards, respectively, which belong to the ith player, with
i = 1, 2. The ID player is always chosen to be p3, who has the
disadvantage of having less room cards than p1 and p2. After the
cards are dealt by the simulation, the range of yr is determined
as follows:

Ω(yr) = Ω(Cr) \ Ω(Cr
l3) = {rι : ι = 1, . . . , 7}

where i, l = 1, 2, and A \ B denotes the complement set of B in
A. A similar operation is used to determine Ω(yw) and Ω(ys).
Since cards of different categories are independent, when a card
is hidden or dealt to a player, it only influences cards of the
same category that are dealt subsequently. Thus, the hidden
cards and the cards dealt to p1 and p2 can be represented by
the CLUE� BN in Fig. 8, for which inference is feasible. The
BN CPTs are obtained by noting that cards of the same category
never acquire the same value, and cards of different categories
are independent. Let a binary function υ be defined over a set
of discrete variables X = {x1, . . . , xn} that all have the same

finite range Ω(x) = {x1, . . . , xn}, with n mutually exclusive
values, such that

υ(X) =
∏

l

∏
k �=l

(1 − δij), for xl = xi, xk = xj ,

∀(xl, xk) ∈ X,xi, xj ∈ Ω(x). (23)

Then, the CPTs of the CLUE� BN shown in Fig. 8 are
given by

P
(
C�

ji|π(C�
ji)

)
=

υ
(
C�

ji ∪ π
(
C�

ji

))
∣∣Ω (

C�
ji

)∣∣ − ∣∣π (
C�

ji

)∣∣ (24)

P
(
y� = �j

)
=

1
|Ω(y�)| ∀�j ∈ Ω(y�). (25)

The symbol | · | denotes the cardinality of a set, ∪ denotes the
union of sets, and � = s, w, r denotes the card category.

During the game, new evidence for the CLUE� BN may
become available during every player’s turn in which a sug-
gestion is proven or refuted. Game evidence is organized into
three independent tables, namely, Es, Ew, and Er, which are
used to store hard and soft evidence about each card category.
Hard evidence refers to perfect knowledge of a variable’s value,
whereas soft evidence refers to an observed PMF [28]. Jeffrey’s
rule is used to update soft evidence in a BN with a hidden
node, given soft evidence about its children, ch(·) [36]. Jeffrey’s
rule can also be used for updating hard evidence by means of
a PMF in which the observed variable’s value has probability
one, and all other values in the variable’s range have probability
zero. Let E� denote a |ch(y�)| × |Ω(y�)| matrix of known
probabilities for all children of y�, such that every row in E�

contains the observed PMF of C�
ji, for ∀C�

ji ∈ ch(y�). At the
onset of the game, all cards have uniform probability over their
range. Hence, all evidence tables are initialized according to the
following equation:

E� =
{
e�
kl

}
=

{
1

|Ω(y�)|

}
, at t0 (26)

where e�
kl represents the element in the kth row and lth column

of E�. After t0, the evidence tables are updated at every player’s
turn, indexed by ti. Evidence is obtained through the players’
suggestions according to the following rules.

1) By the unity law, all probabilities in the same row must
sum to one, i.e.,

∑|Ω(y�)|
l=1 e�

kl = 1.
2) Hard evidence negating a card’s value is constant over

time. Therefore, if C�
ji �= �ı at tι, then P (C�

ji = �ı) = 0
∀ti > tι.

3) Hard evidence supporting a card’s value is constant over
time and also negates all other card values in the same
category. Thus, if C�

ni = �m ∈ Ω(y�) at tι, then e�
nm = 1

and e�
nl = e�

km = 0 for ∀k �= n, ∀l �= m, and ∀ti > tι.

During the game, the evidence tables are updated at every
player’s turn using a rule-based system derived from the
CLUE� game rules, and shown in Appendix V. The CLUE�
BN (Fig. 8) is used to make suggestions and provides a con-
venient factorization of P (yr,M), which is used to compute
the measurement-benefit function, as explained in Section IV.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 617

Fig. 9. Convex polygonal decomposition of the pawn’s workspace, where void cells are shown in white, observation cells in gray, and obstacles in black.

Using the approach presented in Section VI, the ID represen-
tation of the game is obtained from P (yr,M) and from the
connectivity graph G, as shown in the next section.

B. ID Representation of CLUE�

A connectivity graph for the game of CLUE� is obtained
via convex polygonal decomposition [37], using the approach
presented in [1]. During the game, the pawn can translate in
the horizontal or vertical directions inside a 2-D grid in the
CLUE� mansion, which is viewed as the pawn’s workspace
and is shown in Fig. 1. Since the rooms can only be accessed
through doors or secret passages, these locations represent the
set K̄i of all observation cells that enable the measurement (or
suggestion) mi, associated with room ri. The decomposition
of this workspace is shown in Fig. 9, with void cells shown in
white and observation cells shown in gray. The corresponding
connectivity graph G is shown in Fig. 10. Using the pruning
algorithm presented in Section VI-A, G is transformed into a
pruned connectivity tree Tr using the pawn’s initial position
κ0 and the desired final position κf , as shown by the example
in Appendix VI. At the onset of the game, κ0 is given by the
starting position of the character impersonated by p3. During
the game, when the pawn is moved to a room by a player
suggesting its character as the potential suspect, a new Tr is
generated using its new position as κ0. Also, a new Tr is
required when κf changes as a consequence of the evidence
obtained during the game.

Following the approach presented in Section VI, an ID
representation of the game is obtained by folding Tr and by
introducing test variables and decisions. The CLUE� ID has
the structure shown in Fig. 7, where x(tk) represents the cells
that can be visited at time tk, and tk is the time index for the
turns of p3. z(tk) represents the set of suggestions that can be
performed at time tk. The action decision a(tk) determines the
cell to which the pawn moves at time tk+1, and the test decision

Fig. 10. Connectivity graph with observations corresponding to the decom-
position in Fig. 9, with dashed lines indicating the room that can be entered
through each observation cell, and with dij provided by the taxicab metric [38].

u(tk) determines whether one of the admissible suggestions
will be performed. Since the turn ends every time a suggestion
is made, the measurement cost J(tk) is the median distance
that can be traveled in one turn, i.e., three bins. The desired
tradeoff between the three objective functions, i.e., B, D,
and J , is specified through the weights wB , wD, and wJ ,
respectively. A player that favors moving quickly about the
board versus entering the rooms is obtained by choosing wB �
wD, wJ and vice versa. The set of CLUE� measurements
consists of the suggestions that can be performed inside the
nine rooms in the mansion and do not belong to p3, i.e.,
M = {mi : i = 1, . . . , 7, ri ∈ Ω(yr)}, where mi can only be
performed in ri. Each suggestion in M has four the following
mutually exclusive outcomes: m1

i = {ri belongs to p1}, m2
i =

{ri belongs to p2}, m3
i = {ri belongs to neither p1 nor p2},

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

618 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 11. BN factorization of the joint PMF P (yr, M) for CLUE�.

and m4
i = {ri is unobserved}. Each outcome corresponds to a

possible reply by p1 or p2 in response to a suggestion by p3

in room ri. Thus, the CPT of a suggestion mi ∈ M in the BN
model shown in Fig. 11 is

P
(
mi = m1

i |Cr
l1 = ri, C

r
ji

)
= 1,

if υ (π(mi)) = 1, for l = 1, 2, 3
P

(
mi = m2

i |Cr
l2 = ri, C

r
ji

)
= 1,

if υ (π(mi)) = 1, for l = 4, 5, 6
P

(
mi = m3

i |Cr
ji �= ri

)
= 1,

if υ (π(mi)) = 1, for ∀j, i

P
(
mi = m4

i |Cr
ji

)
= 1,

if υ (π(mi)) = 0 (27)

and is defined ∀Cr
ji ∈ ch(yr), where υ(·) is given by (23), and

all other CPT entries are set equal to zero. Although the hidden
weapon and suspect cards are also inferred using the CLUE�
BN in Fig. 8, they need not be included in the ID because their
suggestions can be made in any room and thus do not depend
on the pawn’s position x(tk).

The exact LIMID algorithm [33] is implemented using the
MATLAB BN Toolbox [39] to obtain an optimal game strategy
σ∗ from the CLUE� ID. During the game, σ∗ is updated when-
ever the pawn is moved to a room by one of the other players or
when the evidence table Er is updated. Some examples of opti-
mal strategies are provided in Table III for various combinations
of κ0 and κf and weights wB and wD, where wJ = 1, and Btot

and Dtot denote the total measurement benefit and distance
traveled over (t0, tf], respectively. It can be seen from Table III
that when wD � wB , the cell sequence specified by σ∗ has
fewer observation cells, unless entering a room shortens the
distance traveled by means of a secret passage (test decisions
not shown for simplicity). When wB = 0, the optimal strategy
includes u∗(tk) = mun ∀k, and the resulting cell sequence
includes mostly void cells (Table III). On the other hand, when
wD � wB , σ∗ includes several observation cells and frequent
decisions to enter rooms and make suggestions. Also, based on
σ∗, when the expected measurement benefit is low, the pawn
moves through a room without making a suggestion in order to
use a secret passage to another room.

VIII. GAME RESULTS

A computer player implementing the optimal strategies ob-
tained from the CLUE� ID was tested by making it compete
against human and computer players implementing BNs [21],

Q-learning [22], and CS [14] in order to demonstrate the ID
representation and solution of the treasure hunt problem. Since
humans are very effective at winning the game of CLUE�
[21], [22], an interactive simulation of the game is developed
through the MATLAB Graphical User Interface Toolbox [40]
to allow the human players to confront the computer players.
After a character and a pawn are assigned to each player, the
simulation deals the cards. At any time during the game, the
human players can see their cards on the screen at the command
of a button. The die is replicated by a random number generator
that produces an integer between one and six. The mansion is
illustrated on an interactive board where the players can move
the pawns, and enter rooms through doors or secret passages,
as in the real game. Humans refute and make suggestions
by means of pull-down menus, while the computer players
exchange data in the MATLAB environment and display cards
on the screen to the humans. The same simulation is also used
to compare different computer players.

All of the computer players are fully autonomous. The ID
player implements the action decisions in σ∗ to move its pawn,
and uses the test decisions, together with the CLUE� BN in
Fig. 8, to make suggestions. The BN player uses a CLUE�
BN to make suggestions and a heuristic rule described in [21]
to navigate the board without implementing the ID presented
in this paper. The CS player implements the heuristic rule
in [21] to move the pawn but uses the approach in [14, Ch.
5] to make suggestions based on the following constraints:
C1) y� �= C�

ji ∀�, i, j and C2) C�
ji �= C�

nm for i, m=2, 3, j,
n=1, 2, 3, and i �= m or j �= n. Suppose that the CS player
makes a suggestion G = {sG, wG, rG} regarding the hidden
suspect, weapon, and room cards. When the ith player refutes
it by showing a card �G, C�

ji = �G is obtained for some � = s,
w, r and j = 1, 2, 3, and C1) and C2) are updated accordingly.
Thus, in order to make a future suggestion, the CS player
searches a new assignment for sG, wG, and rG that satisfies
the updated constraints [C1) and C2)].

The simulations in Table IV verify that when three players
of the same type play against each other, they have an approx-
imately equal chance of winning. As shown by the results of
100 games in Tables V and VI, both the ID and BN players
outperform the CS player. It can be seen that, on average, the
ID player determines the room card yr in the smallest number
of turns and wins more often against the CS players because it
optimizes the total reward (2) representing a tradeoff between
measurement benefit and distance. The effectiveness of the ID
approach compared to the BN approach is confirmed by the
results in Table VII that are obtained from 50 games in which
the ID player confronts two BN players and wins approximately
three times as many games as each BN player does. The ID
player is found to always outperform the BN player and to
display a higher winning rate not only against two CS players
(Table VI) but also against two humans (Table VIII). It can be
seen that the two humans perform differently against both the
BN and ID players. As shown by the studies presented at the
end of this section, this difference is caused by the different
levels of skill and experience with the game.

Recently, a neural-network (NN) CLUE� player imple-
menting Q-learning was presented in [22]. In this approach, a

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 619

TABLE III
EXAMPLES OF OPTIMAL CLUE� PATHS

TABLE IV
GAME RESULTS FOR THREE PLAYERS OF THE SAME TYPE

TABLE V
PERFORMANCE OF BN PLAYER COMPETING AGAINST TWO CS PLAYERS

TABLE VI
PERFORMANCE OF ID PLAYER COMPETING AGAINST TWO CS PLAYERS

TABLE VII
PERFORMANCE OF ID PLAYER COMPETING AGAINST TWO BN PLAYERS

sigmoidal NN is used to approximate the measurement-benefit
function, or Q function, based on previous game histories. The
PMF of the hidden cards is viewed as the state of a Markov
decision process with an unknown transition probability func-
tion. Then, during the game, optimal stationary policies are

TABLE VIII
WINNING RATE OF ID AND BN PLAYERS COMPETING

AGAINST TWO HUMAN PLAYERS

TABLE IX
GAME RESULTS FOR ID, NN, AND BN PLAYERS

computed via Q-learning and used by the NN player to move
the pawn and make suggestions. The results obtained from
50 games in Table IX show that the ID player is the most
effective at winning the game, when compared to the NN and
BN players, and that the NN player is more effective than the
BN player. The NN player determines the room card yr in the
smallest number of turns, indicating that it may be the most
effective at approximating the measurement-benefit function.
However, its winning rate is lower than that of the ID player
because it is less effective at navigating the mansion based
on the available suggestions, i.e., at solving the treasure hunt
problem. Thus, the NN player may win, for example, when the
hidden room is near its initial position or is entered by chance.
The results also show that when more skilled players, such as
humans, are involved, the games tend to be shorter because
more useful evidence about the hidden cards is obtained from
other players’ suggestions (Appendix V). For example, when
the ID player plays against experienced humans, most games
are won after approximately eight turns, whereas against CS

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

620 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

TABLE X
GAME RESULTS FOR INEXPERIENCED HUMAN PLAYERS

TABLE XI
GAME RESULTS FOR EXPERIENCED HUMAN PLAYERS

players, all games last for at least ten turns, and 30% of the
games are won after approximately 14 turns.

A total of nine human players between the ages of 15 and
30 years old, and with different levels of experience, was
recruited to confront the computer players. These players are
referred to as experienced and inexperienced, based on whether
they have previously played the board game or not, respectively.
In this paper, the total number of games played varies based
on the availability of the human players, and the results are
averaged to obtain comparable performance metrics across
trials. The final results summarized in Tables X and XI show
that by utilizing the ID, the computer player wins more often
than both inexperienced and experienced humans. Without an
ID, the BN player wins more often than the CS player and
the inexperienced humans, but less often than the experienced
humans. The game records show that the player who first
determines the hidden room card yr wins the game and that the
ID player typically does so before the other players. However,
in games won by the experienced humans (Table X) and by
the NN player (Table IX), on average, the winning players
took less turns to determine yr than the winning ID player.
Moreover, by comparing Table X with Table XI, it can be seen
that the use of an ID in the computer player is more important
against the experienced players, whereas the ID and BN players
perform similarly against the inexperienced human players
(Table X). From these results, it can be concluded that the ID
player’s effectiveness is due to its strategy for deciding the pawn
movements and suggestions that optimize the inference process
for yr while minimizing the distance traveled by the pawn in
order to determine yr and win the game as quickly as possible.

IX. SUMMARY AND CONCLUSIONS

The objective of the treasure hunt problem is to infer a hidden
hypothesis variable or treasure from an available set of mea-

surements or clues that are accessible only through observation
cells in a given connectivity graph. Using the novel pruning
algorithm and the measurement-benefit function presented in
this paper, a reduced subset of feasible paths is obtained in the
form of a pruned connectivity tree, which can be folded into a
tractable ID. Also, under proper assumptions, the measurement-
benefit function can be computed efficiently over time, without
marginalizing over all possible measurements. The board game
of CLUE� is found to be an excellent benchmark for illus-
trating the treasure hunt problem’s formulation and solution.
The game results show that a computer player implementing the
optimal search strategies obtained from the ID representation of
the game outperforms existing computer players implementing
BNs, Q-learning, or CS, as well as human players. More
importantly, the same algorithms can be used to manage robotic
sensors in mine-hunting and pursuit-evasion applications, as
shown in [1] and [3]. In these applications, the connectivity
graph can be obtained by an approximate cell decomposition
approach, which is presented in [1], and the BN factorization
of the sensor model can be obtained from prior sensor data,
as shown in [23] and [24]. Then, the measurement-benefit
function and pruning algorithm presented in this paper are used
to compute optimal sensing strategies that include the sensor’s
motion, mode, and measurement sequence [1].

APPENDIX I
PROOF OF THEOREM 4.1

At time t0, before any measurements are taken, the un-
certainty in the hypothesis variable y is the entropy H(y),
computed from the prior probability P (y). At time t1, when
the first measurement z1 is obtained, the uncertainty in y is
given by H(y|z1) and using the result that conditioning reduces
entropy [27]

H(y|z1) ≤ H(y) (28)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 621

where the equality holds if and only if y ⊥ z1. At time t2, when
a second measurement z2 is obtained, the chain rule for entropy
[27] is applied such that

H(y, z1, z2) =H(y, z1|z2) + H(z2)
=H(y|z2, z1) + H(z1|z2) + H(z2) (29)

H(y, z1) =H(z1) + H(y|z1). (30)

Then, the conditional entropy at t2 can be written as

H(y|z1, z2)=H(y, z1|z2)−H(z1|z2)≤H(y, z1)−H(z1|z2)
(31)

where the inequality applies because conditioning reduces en-
tropy. Using (30), the aforesaid inequality is

H(y|z1, z2) ≤ H(y|z1) + H(z1) − H(z1|z2). (32)

Furthermore, H(z1|z2) ≤ H(z1), so [H(z1) − H(z1|z2)] ≥
0, and it follows from (32) that conditioning the probability
of y upon both z1 and z2 must reduce entropy with respect to
conditioning y upon z1 alone, regardless of the outcome of z2

H(y|z1, z2) ≤ H(y|z1). (33)

Let zi and zj be any two measurements taken at times ti
and tj , respectively, during the time interval (t0, tf]. Then, by
induction

H(y|z1, . . . , zf)≤H(y|z1, . . . , zj)≤H(y|z1, . . . , zi)≤H(y)
(34)

provided that tj > ti. Thus, the conditional entropy is a
decreasing function of the measurements, and when y �⊥
z1, . . . , zf , it is a monotonically decreasing function, since the
aforementioned inequalities all become strict inequalities.

If we let H(tk) be the entropy of the hypothesis variable y
conditioned upon all of the measurements obtained up to tk, the
entropy reduction during a time step in which zk is obtained

ΔH(tk) ≡ H(tk−1) − H(tk) = I(y; zk|zk−1, . . . , z1) ≥ 0
(35)

is the reduction in entropy brought about by zk, and from (34),
it is always a nonnegative quantity. From the definition in (4), it
can be seen that the entropy reduction between two time steps is
the mutual information between y and the latest measurement
zk, given all previous measurements up to zk−1. The entropy
reduction is an additive function over time because, for any two
time instants ti, tj ∈ (t0, tf], with ti < tj , the total reduction
in entropy incurred over the time interval [ti, tj] is equal to the
sum of the entropy reductions during all time steps in [ti, tj]

j∑
k=i

ΔH(tk)=ΔH(ti)+ΔH(ti+1)+· · ·

+ΔH(tj−1)+ΔH(tj)
=H(y|z1, . . . , zi−1)−H(y|z1, . . . , zi)

+H(y|z1, . . . , zi)−H(y|z1, . . . , zi+1)
+· · ·+H(y|z1, . . . , zj−2)−H(y|z1, . . . , zj−1)
+H(y|z1, . . . , zj−1)−H(y|z1, . . . , zj)

=H(y|z1, . . . , zi−1)−H(y|z1, . . . , zj)
=I(y; zj , . . . , zi|zi−1, . . . , z1). (36)

The total entropy reduction simplifies to a mutual information
because all of the intermediate terms cancel each other out

f∑
k=1

ΔH(tk) =H(y) − H(y|z1, . . . , zf)

= I(y; z1, . . . , zf) = Btot (37)

and represents the reduction in the uncertainty of y due to all of
the measurements obtained over (t0, tf]. �

APPENDIX II
PROOF OF REMARK 4.2

Let Mk = {m�, . . . ,ml} ⊂ M denote a subset of k mea-
surements in M = {m1, . . . ,mr}, with k < r, which are per-
formed during the time interval (t0, tk] ∈ (t0, tf], leading to the
measurement sequence Ztk

= {z1 = m�, . . . , zk = ml}. Then,
the total measurement benefit up to time tk is

B(tk) =
k∑

i=1

ΔH(ti) = I(y; z1, . . . , zk) = I(y;m�, . . . ,ml)

(38)

according to Theorem IV-A. Where, Mk and M are unordered
sets, while Ztk

is a totally ordered set or sequence. Con-
sider a different sequence of the same tests Mk, such that
another totally ordered set is defined, for example, Z ′

tk
= {z1 =

ml, . . . , zk = mj}. Then, the total measurement benefit up to
time tk is

B′(tk) =
k∑

i=1

ΔH(ti) = I(y; z1, . . . , zk) = I(y;ml, . . . ,mj).

(39)

From the definition of mutual information [(4)]

I(y;m�,mj , . . . ,ml)

= Ey,m�,mj ,...,ml

{
log2

P (y|m�,mj , . . . ,ml)
P (y)

}

= Ey,ml,m�,...,mj

{
log2

P (y|ml,m�, . . . ,mj)
P (y)

}

= I(y;ml,m�, . . . ,mj) (40)

where the expectation Ey,m�,mj ,...,ml
is computed by

marginalizing its argument multiplied by the joint PMF
P (y,m�,mj , . . . ,ml). Since both the marginalization opera-
tion and the union of sets (denoted by a comma in the PMFs)
are commutative, the mutual information of y and Ztk

can
be written as in (40). Thus, I(y; z1, . . . , zk) = I(y;Mk), or
B(tk) = B′(tk), for any ordered sequence Ztk

containing the
set of measurements Mk. �

APPENDIX III
LABEL-CORRECTING PRUNING ALGORITHM

The variable structures introduced in Section VI-A support
the following operations.

1) ADJACENT(n, nroot, ns): Obtain all of the nodes adja-
cent to n in G that are within a distance dM of ns, and do
not include nroot.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

622 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

2) CUT(branch, t): Remove all nodes that follow the last
observation cell in branch columnwise, and return the
time index t of the last observation cell.

3) GROW(TREE, n, ng): Add the arc n → ng to the tree
structure in TREE.

4) GETOBSERV(branch): Extracts all observation cells in
branch and sorts them in ascending-order number (i.e.,
absolute value).

5) INSERT(LIST, n): Adds an item n at the end of the list
in LIST.

6) PRUNE(TREE, n): For any branch in TREE with n as
a leaf, cut the branch down to but not including its first
joint, which is the last node going forward in time that
generates other branches not ending in n (i.e., is repeated
along the same column).

Then, the following algorithm produces the connectivity tree
Tr associated with G, κ0, and κf , for a parameter dM that is
chosen by the user:

Pruning Algorithm {
procedure Tr(G, κ0, κf , dM)

begin
initialize TREE = {κ0}, and all other variables as
empty
while ¬ END(TREE) do

in ← index of first, shortest row in TREE that does
not end in κf

ivoid ← index of first observation-free branch of
shortest overall distance
n = TREE(in, end), nroot = TREE(in, end − 1),
ns = TREE(ivoid, end)
adjacent ← ADJACENT(n, nroot, ns)
for every node na ∈ adjacent do

ng = nil
branchnew ← GROW(TREE(in, ·), n, na)
distancenew = DISTshort(n) + D(n, na)
if na �∈ VISITED then

begin
ng = na

VISITED ← INSERT(VISITED, na)
DISTshort ←
INSERT(DISTshort, distancenew)

end;
else if na > 0[na ∈ Kvoid] and distancenew <
DISTshort(na) then

begin
TREE ← PRUNE(TREE, na)
ng = na

end;
else if na < [na ∈ Kz] then

begin
observnew = GETOBSERV(branchnew)
j ← index value that gives
OBSERV(j, ·) = observnew

if j = nil then ng = na

else [observnew ∈ OBSERV]
begin

(branchold, t) ← CUT(TREE(j, ·))
if distancenew < DISTtot (j, t)

begin
TREE ← PRUNE (TREE, TREE
(j, t))
ng = na

end;
end;

end;
TREE ← GROW(TREE, n, ng)
Update DIST, DISTtot, DISTshort, and
OBSERV based on n and ng

nchild ← INSERT(nchild, ng)
end; [for loop]
if nchild = nil then TREE ← PRUNE (TREE, n)
nchild = nil

end; [while loop]
end; [procedure]

}

APPENDIX IV
PROPERTIES OF PRUNED CONNECTIVITY TREE

The pruning algorithm applies the principle of optimality
[34] to paths connecting two cells κ0 and κf in G. First,
we demonstrate that Tr contains the path of shortest overall
distance d0f = df0. Since κf is fixed, we seek the shortest
path from κf to κ0 by means of dynamic programming, work-
ing backward from κ0 to κf . At the second-to-the-last stage,
(t0, t1], the admissible cells, denoted by the set N (t1), are those
adjacent to κ0, and they are all kept by the algorithm, along with
their distance, and marked “visited.” At t1, all paths are already
optimal because there is only one path to each admissible cell.
At t2, however, the set of admissible cells N (t2) contains all
cells adjacent to every cell in N (t1). Suppose that a void cell κa

is revisited, then only the path with the shortest overall distance
d∗0a is kept by the pruning algorithm. Thus, at any time index tk,
with t0 ≤ tk ≤ tf , the set N∗(tk) > 0 of admissible and void
cells that are kept in Tr lies on the path of minimum distance
between t0 and tk. Suppose that N∗(tk) = {κa, κb, κc}, then
the paths kept are those with the optimal distances d∗0a, d∗0b, and
d∗0c, respectively. By the principle of optimality, it follows that
for each of these paths

d∗fa0 = d∗0a + daf

d∗fb0 = d∗0b + dbf

d∗fc0 = d∗0c + dcf

where d∗fa0 corresponds to the path of minimum distance from
κf to κ0, through κa. Thus, if any of the cells in N∗(tk),
for example, κb, lie on the path of minimum overall distance,
i.e., d∗f0 = d∗fb0, then the optimal path kept between κ0 and
κb also lies on the optimal path between κf and κ0 (which is
found when the algorithm terminates). Since the shortest path
connecting κf to κ0 is equivalent to the shortest path connecting
κ0 to κf , and d∗f0 = d∗0f , then the pruning algorithm keeps the
optimal path, provided that all cells are void.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 623

Now, suppose that some of the cells in G are observation cells
and are thus not always eliminated based solely on distance. If
an observation cell κ̄e is visited for the first time, or is revisited
through a noninformation-equivalent branch (j = nil), then it
is always kept regardless of distance. Since this step does not
eliminate but only adds paths, it cannot eliminate the overall
optimal path, with distance d∗0f . Instead, suppose that κ̄e is
visited twice by the algorithm: once at time ti by a path
through a cell κa and once at time tj ≥ ti by a path through
κb that is characterized by a shorter distance, i.e., d∗0e = d∗0be <
d∗0ae. Then, if the two paths are information equivalent, the
observation cell is treated like a void cell, and the path κ0 . . . →
κb . . . → κ̄e is kept such that

d∗fe0 = d∗0e + def .

Thus, if κ̄e lies on the shortest path from κf to κ0, then so
does the path through κb, with distance d∗0be, which is kept
by the pruning algorithm. The same argument applies to any
subsequent time when κ̄e is revisited through an information-
equivalent branch that is shorter than the one stored in TREE.
Hence, the branch that remains when the tree is complete is the
shortest of all information-equivalent branches connecting κ0

and κf through κ̄e.
The final case is that of an observation cell, for example,

κ̄g , which is revisited through an information-equivalent branch
through a cell κa. Suppose that the existing information-
equivalent branch in TREE, through κb, contains κ̄g (by de-
finition of information-equivalent branches) but terminates in
another cell κc. In other words, the two branches are distinct
and information equivalent, but the paths connecting κ0 and
κ̄g along them are not information equivalent. In this case, the
shortest branch can still be eliminated. Consider the existing
branch up to the last observation cell in it, for instance, κ̄e,
such that the new branch κ0 . . . → κa . . . → κ̄g can be com-
pared to the shortest information-equivalent path in the existing
branch, namely, κ0 . . . → κb . . . → κ̄g . . . → κ̄e (which has
been pruned of the path connecting κ̄e to κc but may still
contain κb as well as any other cells anywhere along the path). If
d0ge > d0ag , then d0ag < d0bg because dge cannot be negative.
By the principle of optimality d∗0g = d0ag , and if κ̄g lies on the
overall optimal path from κf to κ0, so does the path κ0 . . . →
κa . . . → κ̄g . Since the existing path through κb to κ̄g is distinct
and suboptimal with respect to the former, then it cannot lie
on the shortest path from κf to κ0. Thus, this existing branch
can be eliminated because it is information equivalent and
longer in distance than the new branch. Moreover, eliminating
this branch does not eliminate another possibly optimal path
because if such a path went through the existing branch, then it
would go through κ̄g , and if κ̄g lies on the optimal path, then,
by the principle of optimality, the optimal path must include
κ0 . . . → κa . . . → κ̄g , or d∗f0 = d∗0ag + dgf .

Finally, through the operation ADJACENT, the pruning al-
gorithm disallows the parent of a cell to be its direct child
because this branch always leads to a suboptimal path. Consider
a branch κ0 . . . → κp → κc in TREE that can be grown through
the cells adjacent to its last cell κc. By definition, the parent κp

is always adjacent to the child cell in TREE (in this case, κc).

Also, if κp is in TREE, it implies that its branch contains
the shortest information-equivalent path from κ0 to κp with
the shortest distance d∗0p, and d∗f0 = d∗0p + dpf . Thus, if κc is
added to the branch along with κp as its direct child, producing
κ0 . . . → κp → κc → κp . . . → κf , the resulting total distance
is d∗0p + 2 · dpc + dpf > d∗0p + dpc + dpf and is thus subopti-
mal, even when κp lies on the optimal path from κf to κ0.
Moreover, since the order of the measurements is irrelevant
(Remark 4-2), if κp is an observation cell, then revisiting it at
a later time never adds information benefit to the path, and the
branch remains information equivalent to itself.

APPENDIX V
EVIDENCE-TABLE UPDATE PROCEDURE

Let the set of values G = {sG, wG , rG} denote the sugges-
tion of a player whose pawn is in room rG, where sG ∈ Ω(Cs),
wG ∈ Ω(Cw), and rG ∈ Ω(Cr). The following are the two
cases that allow p3 to obtain soft evidence from the suggestion
of another player: 1) One or more players are not able to refute
the suggestion of pi (∀i), revealing that they do not possess
any of the three cards, or 2) a player refutes the suggestion
made by a player other than p3. In these cases, p3 obtains
soft evidence about G that must be placed in the context of
prior hard evidence. Hard evidence is obtained only when a
player refutes a suggestion made by p3. The evidence tables
are updated by steps 1) and 2) hereinafter, which update the
probabilities and guarantee that rules (1)–(3) in Section VII-A
are satisfied, respectively.

1) The evidence tables are updated to reflect the evidence
gathered from the latest turn tι.
a) Soft evidence: Let G denote a suggestion by pi that

cannot be refuted by a player. Then, for any pk(k �= i,
k �= 3) that cannot refute G, set

e�
jm = 0, for ∀�G ∈ G, and C�

jk ∈ ch(y�)∀j (41)

where �G = �m ∈ Ω(y�).
b) Soft evidence: Let G denote a suggestion by pi that is

refuted by pk(i, k �= 3, i �= k), using a card CG that is
unknown to p3, but such that Ω(CG) = G. Let φ� =
Ω(y�) \ {�m : e�

nm = 1,∀C�
ni ∈ ch(y�)} denote the

set of free values for cards of the �th category,
based on E�

old. The set φG ≡ G ∩ (φs ∪ φw ∪ φr)
contains the free values in G, and the evidence table is
updated by

e�
ln =Pnew

(
C�

lk =�G

)
=P

(
C�

lk =�G|CG =�G

)
P (CG =�G)

+P
(
C�

lk =�G|CG �=�G

)
[1−P (CG =�G)]

≈P (CG =�G)+Pold

(
C�

lk =�G

)
[1−P (CG =�G)] (42)

where �G = �n ∈ Ω(y�), Pold(·) is available
from E�

old

l = max
j

P
(
C�

jk = �G

)

P (CG = �G) =
{

1/|φG|, if �G ∈ φG

0, if �G �∈ φG.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

624 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

c) Hard evidence: Let G denote a suggestion by p3 that
is refuted by pk (k = 1 or 2), using a card �G =
�m ∈ Ω(y�). Let h = maxj H(C�

jk), where H is the
entropy. Then, e�

hm = 1 and e�
hl = 0 for ∀l �= m in

table E�.
2) Normalize the row and column containing the element e�

ij

updated in Step I:
a) Let |Ω(y�)| be the number of columns in E�. Then, if

e�
il = 1, set e�

im = 0 for ∀m �= l. Otherwise, let

Δe�
i = 1 −

|Ω(y�)|∑
m=1

e�
im

e�
il = e�

il +
Δe�

i

|Ω(y�)| , for ∀l �= j and ∀e�
il �= 0.

Set all negative elements e�
il equal to zero, and re-

peat the aforementioned procedure until they all are
nonnegative.

b) Consider the column in E� that contains e�
ij . If e�

kj =
1, set e�

nj = 0 for ∀n �= k and n �= i. Otherwise, leave
the column unaltered.

APPENDIX VI
EXAMPLE OF CONNECTIVITY TREE IN THE

GAME OF CLUE�

NODES OF Tr OBTAINED FROM G IN FIG. 10 FOR dM = 5, κ0 = κ1, AND

κf = κ51 (ARCS AND COSTS ARE SHOWN IN FIG. 10)

ACKNOWLEDGMENT

The authors would like to thank Prof. R. Parr at Duke
University and Prof. S. Russell at UC Berkeley for their helpful
guidance and suggestions.

REFERENCES

[1] C. Cai and S. Ferrari, “Information-driven sensor path planning by
approximate cell decomposition,” IEEE Trans. Syst., Man Cybern. B,
Cybern., vol. 39, no. 3, Jun. 2009.

[2] S.-M. Lucas and G. Kendall, “Evolutionary computation and games,”
IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 10–18, Feb. 2006.

[3] S. Ferrari, C. Cai, R. Fierro, and B. Perteet, “A multi-objective optimiza-
tion approach to detecting and tracking dynamic targets in pursuit-evasion
games,” in Proc. Amer. Control Conf., New York, 2007, pp. 5316–5321.

[4] R. Siegel, “Land mine detection,” IEEE Instrum. Meas. Mag., vol. 5, no. 4,
pp. 22–28, Dec. 2002.

[5] J. Colegrave and A. Branch, “A case study of autonomous household
vacuum cleaner,” in Proc. AIAA/NASA CIRFFSS, Houston, TX, 1994.

[6] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
Computer, vol. 37, no. 8, pp. 41–49, Aug. 2004.

[7] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,
“Energy efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet,” in Proc. 10th Int. Conf. ASPLOS,
San Jose, CA, 2002, pp. 96–107.

[8] W. Schmaedeke, “Information based sensor management,” in Proc. SPIE
Signal Process., Sensor Fusion, Target Recognit. II, Orlando, FL, 1993,
vol. 1955, pp. 156–164.

[9] K. Kastella, “Discrimination gain to optimize detection and classifica-
tion,” IEEE Trans. Syst., Man Cybern. A, Syst., Humans, vol. 27, no. 1,
pp. 112–116, Jan. 1997.

[10] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor
collaboration,” IEEE Signal Process. Mag., vol. 19, no. 2, pp. 61–72,
Mar. 2002.

[11] X. Liao and L. Carin, “Application of the theory of optimal experi-
ments to adaptive electromagnetic-induction sensing of buried targets,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 961–972,
Aug. 2004.

[12] C. Kreucher, K. Kastella, and A. Hero, “Multi-platform information-
based sensor management,” in Proc. SPIE Defense Transformation
Netw.-Centric Syst. Symp., Orlando, FL, 2005, vol. 5820, pp. 141–151.

[13] C. Kreucher, K. Kastella, and A. Hero, “Sensor management using an
active sensing approach,” Signal Process., vol. 85, no. 3, pp. 607–624,
Mar. 2005.

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ: Prentice-Hall, 2003.

[15] S. Ji, R. Parr, and L. Carin, “Nonmyopic multiaspect sensing with partially
observable Markov decision processes,” IEEE Trans. Signal Process.,
vol. 55, no. 1, pp. 2720–2730, Jun. 2007.

[16] M. R. Garey, “Optimal task sequencing with precedence constraints,”
Discrete Math., vol. 4, pp. 37–56, 1973.

[17] H. A. Simon and J. B. Kadane, “Optimal problem-solving search: All-or-
none solutions,” Artif. Intell., vol. 6, no. 3, pp. 235–247, 1975.

[18] D. Castañon, “Optimal search strategies in dynamic hypothesis test-
ing,” IEEE Trans. Syst., Man Cybern., vol. 25, no. 7, pp. 1130–1138,
Jul. 1995.

[19] D. P. Bertsekas, “A simple and fast label correcting algorithm for shortest
paths,” Networks, vol. 23, no. 7, pp. 703–709, Jul. 1993.

[20] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-32, no. 2,
pp. 260–269, Apr. 1967.

[21] C. Cai and S. Ferrari, “On the development of an intelligent computer
player for CLUE: A case study on preposterior decision analysis,” in Proc.
Amer. Control Conf., Minneapolis, MN, 2006, pp. 4350–4355.

[22] C. Cai and S. Ferrari, “A Q-learning approach to developing an automated
neural computer player for the board game of CLUE,” in Proc. Int. Joint
Conf. Neural Netw., Hong Kong, 2008, pp. 2347–2353.

[23] S. Ferrari and A. Vaghi, “Demining sensor modeling and feature-level
fusion by Bayesian networks,” IEEE Sensors J., vol. 6, no. 2, pp. 471–
483, Apr. 2006.

[24] C. Cai, S. Ferrari, and Q. Ming, “Bayesian network modeling of acoustic
sensor measurements,” in Proc. IEEE Sensors, Atlanta, GA, 2007,
pp. 345–348.

[25] H. Choset, “Coverage for robotics—A survey of recent results,” Ann.
Math. Artif. Intell., vol. 31, no. 1–4, pp. 113–126, Oct. 2001.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERRARI AND CAI: INFORMATION-DRIVEN SEARCH STRATEGIES IN THE BOARD GAME OF CLUE� 625

[26] E. Lawer, J. Lenstra, A. Kan, and D. Shmoys, The Traveling Salesman
Problem. New York: Wiley, 1985.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[28] F. V. Jensen, Bayesian Networks and Decision Graphs. Berlin,
Germany: Springer-Verlag, 2001.

[29] M. I. Jordan, Learning in Graphical Models. Cambridge, MA: MIT
Press, 1998.

[30] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory.
Cambridge, MA: MIT Press, 1961.

[31] D. Poole, “The independent choice logic for modelling multiple agents
under uncertainty,” Artif. Intell., vol. 94, no. 1/2, pp. 7–56, Jul. 1997.

[32] M. Diehl and Y.-Y. Haimes, “Influence diagrams with multiple objectives
and tradeoff analysis,” IEEE Trans. Syst., Man Cybern. A, Syst., Humans,
vol. 34, no. 3, pp. 293–304, May 2004.

[33] S. L. Lauritzen and D. Nilsson, “Representing and solving decision prob-
lems with limited information,” Manage. Sci., vol. 47, no. 9, pp. 1235–
1251, Sep. 2001.

[34] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming.
Princeton, NJ: Princeton Univ. Press, 1962.

[35] L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis, “Implementation
of efficient algorithms for globally optimal trajectories,” IEEE Trans.
Autom. Control, vol. 43, no. 2, pp. 278–283, Feb. 1998.

[36] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Los Altos, CA: Morgan Kaufmann, 1988.

[37] J. C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[38] S. Thurn, “Learning metric-topological maps for indoor mobile robot

navigation,” Artif. Intell., vol. 99, no. 1, pp. 21–71, Feb. 1998.
[39] K. Murphy. (2004). How to Use Bayes Net Toolbox. [Online]. Available:

http://www.ai.mit.edu/ murphyk/Software/BNT/bnt.html
[40] Mathworks, Matlab, 2004. [Online]. Available: http://www.

mathworks.com

Silvia Ferrari (S’01–M’02–SM’08) received the
B.S. degree from Embry–Riddle Aeronautical Uni-
versity, Daytona Beach, FL, and the M.A. and Ph.D.
degrees from Princeton University, Princeton, NJ.

She is an Assistant Professor of mechanical engi-
neering and materials science with the Department
of Mechanical Engineering and Materials Science,
Duke University, Durham, NC, where she directs
the Laboratory for Intelligent Systems and Controls.
Her principal research interests include robust adap-
tive control of aircraft, learning and approximate

dynamic programming, and optimal control of mobile sensor networks.
Dr. Ferrari is a member of ASME, SPIE, and AIAA. She is the recipient of

the ONR Young Investigator Award (2004), the NSF CAREER Award (2005),
and the Presidential Early Career Award for Scientists and Engineers Award
(2006).

Chenghui Cai (S’02–M’08) received the B.S. and
M.S. degrees from Tsinghua University, Beijing,
China, in 2000 and 2003, respectively, and the Ph.D.
degree from Duke University, Durham, NC, in 2008.

He is currently a Postdoctoral Research Associate
of electrical and computer engineering with Duke
University. His research interests include robotic
sensor planning and management, machine learn-
ing and data mining, multiagent systems, Bayesian
statistics, decision making under uncertainty, and
computational intelligence in games.

Dr. Cai is a member of ASME, Sigma Xi, and SIAM.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.

