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Abstract—The quality of service of a network performing co-
operative track detection is represented by the probability of
obtaining multiple elementary detections over time along a target
track. Recently, two different lines of research, namely, distrib-
uted-search theory and geometric transversals, have been used
in the literature for deriving the probability of track detection
as a function of random and deterministic sensors’ positions,
respectively. In this paper, we prove that these two approaches
are equivalent under the same problem formulation. Also, we
present a new performance function that is derived by extending
the geometric-transversal approach to the case of random sensors’
positions using Poisson flats. As a result, a unified approach for
addressing track detection in both deterministic and probabilistic
sensor networks is obtained. The new performance function is
validated through numerical simulations and is shown to bring
about considerable computational savings for both deterministic
and probabilistic sensor networks.

Index Terms—Geometric transversals, Poisson flats, probabil-
ity, search theory, sensor networks, target tracking, track cover-
age, track detection.

I. INTRODUCTION

THE PROBLEM of track detection by cooperative sensor
networks arises in many applications, including security

and surveillance, environmental and atmospheric monitoring,
and tracking of endangered species. The performance of these
networks can be characterized by their area and track cov-
erage, both of which have received considerable attention in
the literature [1]–[10]. Area coverage is defined as the union
of the areas representing the sensors’ fields of view (FOVs),
divided by the area of the region of interest (ROI) [3]–[5].
Area coverage is related to the probability of obtaining single
independent target detections in the ROI [5]. Track coverage
is defined as a Lebesgue measure of the tracks that intersect
multiple FOVs, divided by the measure of all possible tracks
through the ROI [8]. As shown in [8], track coverage is related
to the probability of cooperatively detecting target tracks over
time. A track is said to be detected when it can be formed
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from multiple independent sensor detections using an assumed
prior spatiotemporal model. Multiple independent detections
are required by cost-effective sensors that have limited detec-
tion capabilities, and are subject to frequent false alarms. As
in previous formulations [1]–[10], in this paper, we consider
passive targets (e.g., aircraft and underwater vehicles) that can
be assumed to move at constant speed and heading throughout
a fixed ROI.

The probability of track detection of a uniformly distrib-
uted sensor network with constant detection ranges was first
obtained in [11], [12] by modeling the moving target as a two-
state Markov process. This approach, however, is not applicable
to sensor networks that are not uniformly distributed, such as
networks in which sensors’ positions are optimized or are a
function of time. Early studies in search theory obtained the
probability that a single platform will detect a moving target
at any time during a fixed and finite time horizon [13]–[16].
More recently, with the advent of wireless communication
technologies, distributed-search theory has been successfully
applied to cooperative sensor networks and has been used to
derive the probability of track detection of a nonuniformly
distributed sensor network [9]. The problem formulation in [9]
assumes that the targets move at constant speed and heading
through the ROI and that the sensors’ positions and the track
parameters are random and continuous in both space and time.
Along a different line of research, the track coverage and the
probability of track detection of a deterministic sensor network
were derived in [8] using a geometric-transversal approach. The
problem formulation in [8] assumes that the sensors’ positions
are deterministic and continuous in both space and time and
that the target’s speed and heading are uniformly distributed
over their ranges.

The advantage of geometric transversals over other ap-
proaches is that the resulting performance metrics are trigono-
metric functions of the sensors’ positions and detection ranges
and can thus be optimized using sequential quadratic program-
ming [8]. The advantage of the distributed-search approach
is that it can account for random sensors’ positions and for
track parameters that are not uniformly distributed [9]. In this
paper, we prove that the distributed-search approach presented
in [9] and the geometric-transversal approach presented in
[8] are equivalent under the same problem formulation and
assumptions. A new function representing the probability of
track detection is derived using Poisson flats, thereby extending
the geometric-transversal approach in [8] to the case of ran-
dom sensors’ positions and nonuniform track parameters. As a
result, a unified geometric-transversal approach is obtained for
analyzing track detection in both deterministic and probabilistic
sensor networks.
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This paper is organized as follows. The distributed-
search and geometric-transversal approaches are reviewed in
Section II. The problem formulation is described in Section III,
and a function representing the probability of track detection is
derived in Section IV. The analysis in Section V shows that the
distributed-search and geometric-transversal approaches differ
in the manner by which they construct the 3-D region of
integration for the joint probability density function (pdf) of
the sensors’ positions and track parameters. The theoretical
results are validated numerically in Section VI, demonstrating
that the new probability function also brings about considerable
computational savings.

II. BACKGROUND ON TRACK DETECTION

The problem of track detection is concerned with the prob-
ability that a target track is formed by a cooperative sensor
network using elementary detections over time [12]. A track
detection is declared at the data- or detection-report level when
the track is formed from a minimum of k detections, in an
approach known as track-before-detect [9]. By this approach,
the tracks of targets that are unknown in number can be formed
from data of multiple consecutive frames of observations using
multiple-hypothesis tracking [17] or geometric invariants [2].
Track detection also provides a natural mechanism for provid-
ing tracking information concurrently with detection reports
and for mitigating false alarms.

Then, the sensor network’s performance can be represented
by the probability of track detection, defined as the probability
of obtaining k independent detections when one or more targets
are present in the ROI. In [9], the probability of track detection
was obtained for a nonuniform probabilistic sensor network
using the theory of distributed search. Along a different line of
research, the track coverage of a nonuniform deterministic sen-
sor network was developed in [8] using geometric-transversal
theory. In a deterministic network, the sensors’ positions are
viewed as vectors in Euclidean space, whereas in a probabilistic
network, they are viewed as random variables sampled from a
pdf. Typically, the deterministic view is well suited to networks
of small to medium size, whose positions can be accurately
determined or controlled. The probabilistic view, on the other
hand, is well suited to large sensor networks and to networks
that are subject to greater uncertainty.

This paper proves that the distributed-search and geometric-
transversal approaches reviewed in the next sections are equiv-
alent under the same problem formulation and assumptions, as
described in Section III.

A. Review of Distributed-Search Approach

The distributed-search approach presented in [9] assumes
that the sensors’ positions and the target track’s parameters
are random variables and that the detection events may be
modeled by a spatial Poisson process. Assume that a network
of n ≥ k omnidirectional sensors is deployed in a square ROI,
A ⊂ R

2, in order to track and detect moving targets. A sensor
j positioned at xj ∈ A provides a detection report whenever a
target at xT ∈ R

2 comes within the sensor’s detection range, r.
The detection range is defined as the maximum range at which
the received signal exceeds a desired threshold. All n sensors
are assumed to have the same value of r and are represented

Fig. 1. Detection region for a straight target track over time interval Δt =
t − t0 (adapted from [9]).

by omnidirectional binary models. It follows that the FOV of
the jth sensor can be represented by a circle Cj = C(xj , r) that
is centered at xj , and has a constant radius r. Furthermore, the
jth sensor’s probability of detection is equal to one everywhere
in Cj and is equal to zero elsewhere. The targets are assumed
to move at constant speed V and heading θ and to maintain a
constant source amplitude.

The distributed-search approach in [9] is based on the detec-
tion region ΩT ⊂ A that is grown isotropically from the target
track

xT (t) = x′
T0

+ V (t − t0)[cos θ sin θ]T (1)

over a time interval Δt, where t0 ≤ t ≤ t0 + Δt, and xT (t0) =
x′

T0
∈ A is the target’s initial position, as shown in Fig. 1. Then,

the probability of track detection is obtained as a function of
the pdf of the sensors’ positions fx(xj), the pdfs of the target
speed fV (V ), and heading fθ(θ), as well as the pdf of the initial
position fT (x′

T0
). Let event Dj = {1, 0} represent the set of all

possible mutually exclusive outcomes corresponding to sensor
j reporting (1) or not reporting (0) a target detection. Then,
assuming that the targets are distributed uniformly in A, the
probability of a detection being reported by the jth sensor is
given by a spatial Poisson process

Pr {Dj = 1 | xT (t) ∈ A} = 1 − e−φt (2)

where

φt

(
x′

T0
, V, θ

)
=

∫

ΩT

(
x′

T0
,θ,V Δt

) fx(xj) dxj (3)

is the coverage factor of a sensor with a detection region ΩT .
In a network of n sensors, the set of events {D1, . . . , Dn} is

reported to a central processor, and a successful track detection
is declared when

∑n
j=1 Dj ≥ k. Then, the probability of a track

detection by at least k sensors can be described using Bernoulli
trials [18, Section 3.1]. It is assumed that the individual detec-
tion events are statistically identical and independent and that
φt � 1, and n � 1. Using the Poisson theorem and the Taylor
series expansion of the exponential function, the probability of
successful track detection in A can be approximated by the
integral function

Pt = Pr

⎛
⎝ n∑

j=1

Dj ≥ k | xT (t) ∈ A

⎞
⎠

= 1 −
2π∫
0

Vmax∫
Vmin

∫
A

e
−nφt

(
x′

T0
,V,θ
)
fT

(
x′

T0

)

× fV (V )fθ(θ)
k−1∑
m=0

[
nφt

(
x′

T0
, V, θ

)]m
m!

dx′
T0

dV dθ (4)
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Fig. 2. Coverage cone of an omnidirectional sensor positioned at xj .

as shown in [9]. Vmin and Vmax are the target’s minimum and
maximum speeds, respectively, and function φt(x′

T0
, V, θ) is

defined in (3). Using (4), the probability of track detection
can be evaluated for different sensor distributions [9], and an
approximately optimal sensor distribution can be determined in
the form of a parameterized Gaussian mixture, as shown in [19].

An alternative performance function for cooperative track
detection was developed in [8] using the geometric-transversal
approach reviewed in the next section.

B. Review of Geometric-Transversal Approach

Geometric-transversal theory is concerned with the analysis
of the space of transversals to a family of compact convex
bodies in R

d [20], [21]. A set of convex bodies in R
d is said

to have a j-transversal when the objects are simultaneously
intersected by a j-dimensional flat, or translate, of a linear
space. A line transversal (j = 1), referred to as stabber, with
d = 2 and k ≥ 1, is a straight line that intersects at least k
members of a family of objects in R

2. When the target’s
heading θ remains constant in A, its track can be represented
by a 1-D flat in R

2. Therefore, a target track that is detected by
k sensors at time t ∈ Δt is a stabber of the family of n circles
of radius r representing the detection circles of the sensors at t.

In [8], the geometric properties of circles and cones were
used to construct efficient closed-form representations of sets
of stabbers for families of circles representing omnidirectional
sensors. These representations are based on the result that every
set of stabbers of a detection circle Cj is contained by a so-
called coverage cone generated by Cj and is measured by the
cone’s opening angle. Given a nonempty subset X of R

n, the
cone generated by X , denoted by cone(X), is the set of all
nonnegative combinations of the elements of X [22]. Place
an inertial xy-frame along two sides A, such that all target
tracks traverse A in the positive orthant R

2
+. Let K(Cj , by) =

cone(Cj) denote the coverage cone of the jth sensor, with origin
at the y-intercept by , as shown in Fig. 2. Then, as proven in
[8], the set of all tracks through by that are detected by the
jth sensor are contained by coverage cone K(Cj , by), which
is finitely generated by unit vectors

ĥj =
[

cos αj − sin αj

sinαj cos αj

]
vj

‖vj‖
≡ Q+(αj) v̂j (5)

l̂j =
[

cos αj sin αj

− sin αj cos αj

]
vj

‖vj‖
≡ Q−(αj) v̂j (6)

where vj ≡ xj − xT0 , xT0 = [0 by]T, αj = sin−1(r/‖vj‖),
and ‖ · ‖ denotes the L2-norm. Q+(·) and Q−(·) denote the
counterclockwise and clockwise rotation matrices, respectively,
and (̂·) denotes a unit vector. It follows that K(Cj , by) and its
opening angle

ψ(Cj , by) = 2αj = H
(
‖̂lj × ĥj‖

)
sin−1

(
‖̂lj × ĥj‖

)
(7)

are functions of r and xj , with H(·) being the Heaviside
function.

The unit vectors in (5) and (6) are also used to determine
the k-coverage cones containing stabbers of k members in
a family of n circles, S = {C1, . . . , Cn}. As proven in [8],
the set of stabbers through y = by for a family of k circles
Sk = {C1, . . . , Ck} ⊂ S is contained by a k-coverage cone
Kk(Sk, by) that is finitely generated by two unit vectors se-
lected from the set {ĥj , l̂j | j = 1, . . . , n} using linear op-
erations. It was also shown in [8] that the opening angle of
Kk(Sk, by), denoted by ψ(Sk, by), is a Lebesgue measure over
the set of stabbers of Sk.

Place a second inertial x′y′-frame of reference along the
remaining two sides of A. Then, Lebesgue measures on the
stabbers with intercepts x = bx, y′ = by′ , and x′ = bx′ can
be obtained from the opening angles of the corresponding
k-coverage cones, denoted by ζ, ξ, and ρ, respectively. The set
of stabbers traversing A and intersecting at least k members in
S is approximated by the union of the k-coverage cones over a
finite set of intercept values indexed by superscript 	. The inter-
cept values are obtained by discretizing the boundary of the ROI
using a constant interval δb. Finally, a Lebesgue measure can be
assigned to the space of line transversals through A = [0, L]2
to obtain the following track coverage performance measure:

T k
A =

1
2

L/δb∑
�=1

q∑
j=1

(−1)j+1
∑
Iq

{
ψ
(
S

i1,j
p , b�

y

)
+ξ
(
S

i1,j
p , b�

y′

)}

+
1
2

(L/δb−1)∑
�=0

q∑
j=1

(−1)j+1
∑
Iq

{
ζ
(
S

i1,j
p , b�

x

)
+ρ
(
S

i1,j
p , b�

x′

)}

(8)

where q = n!/(n − k)!k! is the binomial coefficient n
choose k, and Sil

p denotes the ilth p-subset of S (see
[23] for the definition of p-subset). Set Iq contains all
[q!/(q − j)!j!] distinct integer j-tuples (i1, . . . , ij) satisfying
1 ≤ i1 < ij ≤ q. The proof for (8) is based on the principle of
inclusion–exclusion and can be found in [8].

The track coverage measure (8) is a trigonometric function
of the sensors’ positions and detection ranges that can be
efficiently optimized via sequential quadratic programming,
as shown in [8]. Aside from assuming deterministic sensors’
positions, (8) differs from the performance function in (4) in
that it uses a sensor-centric approach instead of a track-centric
approach. This paper shows that, when applied to a common
problem formulation described in the next section, the track-
centric approach obtains the same probability of track detection
as the sensor-centric approach but is more computationally
efficient.
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III. PROBLEM FORMULATION AND ASSUMPTIONS

The track detection problem treated in this paper is to de-
termine the probability that a random target moving at con-
stant speed and heading through A will lead to k independent
detections in a network of n ≥ k omnidirectional sensors that
are randomly distributed in A. The problem formulation is in
2-D Euclidean space and relies on the following assumptions:
1) The target moves with constant speed V > 0 and heading
θ; 2) the ROI is a square, A = [0, L]2; 3) the sensors’ posi-
tions, xj ∈ R

2, j = 1, . . . , n are identically and independently
distributed (i.i.d.) random vectors; 4) the FOV of each sensor
can be represented by a circle, C(xj , r); 5) the probability of
detection everywhere in C(xj , r) is equal to one; and 6) the
sensors remain in A until the target has traversed A.

The sensor network is represented by the family of circles
S = {C1, . . . , Cn}, where Cj = C(xj , r), with r being a known
constant. The probability of the jth sensor being located at a
random position xj = [xj yj ]T is described by pdf fx(xj).
The complexity of the spatiotemporal track model is a function
of the size of the ROI and of the expected target dynamics.
Based on assumptions 1) and 6), every possible target track can
be represented by a ray or half-line Rθ(xT0) in R

2
+, with slope

θ, and intercept xT0 (Fig. 2). Because the track parameters, V ,
θ, and xT0 are typically uncorrelated, information about the
target track is provided by pdfs fV (V ), fθ(θ), and fT (xT0).
Without loss of generality, the initial target position can be
assumed to be an element of the boundary set of A in R

2,
denoted by ∂A. Thus, letting t = t0 when the target first enters
A, it follows that xT (t0) = xT0 ∈ ∂A. Then, a detection event
by the jth sensor, denoted by Dj = 1, occurs with probability
one when Rθ(xT0) ∩ C(xj , r) �= ∅.

In the next section, the probability of track detection in A
is derived by viewing target tracks as Poisson flats, thereby
extending the geometric-transversal approach to the case of
random sensors’ positions and random track parameters.

IV. PROBABILISTIC TRACK COVERAGE

Poisson flats are random arrangements of hyperplanes placed
in R

d according to a Poisson law. More precisely, a j-
dimensional flat in R

d is a j-dimensional linear manifold in
R

d, and a Poisson j-flat process with d/2 ≤ r < d − 1 in R
d

is a Poisson point process on the phase space of all j-flats in
R

d [24]. The mean j-content of j-flats per unit d-volume is the
intensity of the Poisson process. The properties of Poisson flat
processes are reviewed in [25]–[28], and of particular interest
are Poisson lines randomly placed in the plane, with j = 1 and
d = 2. Then, the Poisson line process is uniquely determined
by the process intensity and the chosen probability measure
on [0, π) [24]. The results more closely related to the problem
treated in this paper pertain to the probability that n (i.i.d.)
Poisson flats meeting a fixed ball in R

d have a common point
inside the ball [29].

In this section, we seek the probability that Poisson lines
in R

2 meet at least k circles in the family S = {C1, . . . , Cn},
which are randomly placed in A according to fx(xj). The
probability of track detection is obtained by formulating the
intensity of the Poisson line process in terms of the coverage
cones generated by the circles in S. In the next section, this
approach is used to derive the probability of having at least

one track detection when the y-intercept by is fixed and known.
Then, in Section IV-B, the probability of at least k detections
occurring for any random track in A is obtained using the the-
ory of Bernoulli trials and the geometric-transversal approach
reviewed in Section II-B.

A. Probability of Track Detection by a Single Sensor for a
Fixed Track Intercept

We first derive the probability that a single ray Rθ(xT0) with
a fixed and known intercept xT0 ∈ ∂A, and a random angle
θ ∈ [0, π/2] with pdf fθ(θ), will intersect a circle C(xj , r) that
is placed at a random position xj ∈ A with pdf fx(xj). The
approach presented in this paper builds on the novel observation
that the experiment of placing ray Rθ(xT0) in R

2
+ is analogous

to the experiment of placing random points on a line, because
Rθ(xT0) can be viewed as a point in θ-phase space. Based
on this observation, the theory of random Poisson points and
repeated trials can be applied to the target tracks, which can
be considered as Poisson flats. Subsequently, the approach in
Section II-B can be extended to the probabilistic track coverage
problem formulated in Section III.

From the theory of Poisson distributions, reviewed compre-
hensively in [14] and [30], if mI points are placed indepen-
dently and at random on a line of finite length I , denoted by
interval (0, I), then the probability that any one of these points
lies in an interval (i1, i2) of length l is l/I . By the binomial
distribution law, the probability that exactly k of the mI points
are found in the interval of length l is

Pr (k points in (i1, i2))=
(mI)!

k!(mI−k)!

(
l

I

)k(
1− l

I

)mI−k

(9)

and, as I → ∞, (9) approaches the Poisson distribution with
parameter φ

P (k, φ) =
φk

k!
e−φ (10)

where φ represents the expected value of k [30, p. 94]. The
Poisson distribution also holds for inhomogeneous processes,
such as the experiment of placing points that are not uniformly
distributed on a line [14, p. 28]. Letting z denote a coordinate
along the line and performing a one-to-one transformation, it
can be shown that (10) also holds for points distributed on a
line with a density f(z) [14, p. 28]. In this case, the expected
number of points that fall in an interval (z1, z2) is

φ =

z2∫
z1

f(z) dz (11)

which is the corresponding parameter for the Poisson distribu-
tion (10).

It was also shown in [14, p. 86] that the Poisson distribution
in (10) can be used to determine the probability that points
distributed in a plane, or a volume, fall in a given small region,
based solely on coverage factor φ. The coverage factor of a
spatial Poisson process can be defined as the expected value
of the number of points that fall in a small region or subset
of a Euclidean space [14, p. 29]. Based on assumptions 4)



1496 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 6, DECEMBER 2010

and 5) in Section III, every point that falls in this region
corresponds to a detection event Dj = 1. Therefore, by defining
a suitable coverage factor, the Poisson distribution can be used
to determine the probability of hitting a static target or that
of detecting a moving target in an ROI based on the covered
area, as shown in [9] and [14], respectively. Let E denote the
experiment of placing a circle Cj at xj . We next determine
the probability of the subsequent success of a detection event
(Dj = 1), such that multiple detections by n sensors can be
viewed as independent trials of E, as shown in Section IV-B.

Target tracks through xT0 are viewed as Poisson flats that
are placed in the open cone or half-space {(x, y)|x > 0} ∪
{xT0} with a density fθ(θ). In θ-phase space, coverage cone
K(Cj ,xT0) can be viewed as an interval of length ψ(Cj ,xT0) =
2αj , randomly placed in [0, π]. Because ψ is a function of ran-
dom variable xj , the coverage cone is a random interval. Thus,
the expected number of Poisson flats that fall in K(Cj ,xT0)
can be obtained by writing its endpoints, or extremals, in
rectangular coordinates through a change of variables, and by
taking the expectation with respect to xj , using pdf fx(xj).
Then, from (11), the probability of a detection event Dj = 1
can be obtained from a Poisson distribution with coverage
factor

φs (xT0) = Exj

⎡
⎢⎣

γj+αj∫
γj−αj

fθ(θ) dθ

⎤
⎥⎦

=
∫
A

fx(xj)

g2(xj ,xT0)∫

g1(xj ,xT0)

fθ(θ) dθdxj (12)

where the limits of integration in rectangular coordinates

g1,2 (xj ,xT0) ≡ γj ± αj = sin−1 [(yj − by)/‖xj‖]

± sin−1 (r/ ‖xj − xT0‖) (13)

are the extremals of K(Cj ,xT0) and are derived from the cov-
erage cone equations in Section II-B. The coverage factor (12)
represents the expected number of rays that fall in K(Cj ,xT0),
as well as the approximate probability that at least one ray
Rθ(xT0) will both fall in K(Cj ,xT0) and intersect Cj . In fact,
from (10), the probability of having at least one track detection
can be approximated as follows:

Pr

⎛
⎝ n∑

j=1

Dj > 0 | xT0 ∈ ∂A

⎞
⎠

=
∞∑

k=1

P (k, φs) = 1 − P (0, φs) = 1 − e−φs

= 1 −
∞∑

i=0

(−φs)i

i!
≈ φs, for φs � 1 (14)

using the Maclaurin series. The results in this section are
utilized in the next section to obtain the probability of multiple
track detections using Bernoulli trials.

B. Probability of Multiple Track Detections by a Probabilistic
Sensor Network

In the theory of probability, the concept of repeated trials
can be interpreted as the creation of an experiment defined as
E = E1 × · · · × En, where × denotes the Cartesian product
and E is obtained by combination of n experiments E1, . . . , En

[30]. Then, E is a new experiment whose event consists of all of
the Cartesian products between all events of all n experiments,
E1, . . . , En, as well as their unions and intersections. A special
case of repeated trials is that in which the same experiment
is repeated n times through n independent trials [30]. In this
case, suppose that E denotes a Bernoulli experiment that has
only two possible mutually exclusive outcomes, i.e., B is an
event of E such that if Pr(B) = p and Pr(B̄) = q, then p +
q = 1, where B̄ denotes the complement of B in E. Then, if
E is repeated n independent times, the product space of the
resulting experiment is En = E × · · · × E, and the probability
that event B occurs exactly k times is given by

Pr(B occurs k times in any order) =
(

n

k

)
pkqn−k

=
n!

k!(n−k)!
pkqn−k (15)

which is a fundamental result in Bernoulli trials (see [30, p. 53]
for the proof).

Assuming that all n sensors in S are independently and
identically sampled from the same distribution fx(xj), multiple
detections can be viewed as repeated trials of the same exper-
iment E (defined in Section IV-A). Then, the probability that
a detection event occurs exactly k times, in any order, can be
obtained from (14) and (15) and is given by

Pr

⎛
⎝ n∑

j=1

Dj = k | xT0 ∈ ∂A

⎞
⎠ =

(
n

k

)
φk

s(1 − φs)n−k (16)

where φs is defined in (12). Because the probability of having
at least k detections is the complementary probability of having
0, 1, . . . , k − 1 detections, it follows that

Pr

⎛
⎝ n∑

j=1

Dj ≥ k | xT0 ∈ ∂A

⎞
⎠

= 1 −
k−1∑
m=0

Pr

⎛
⎝ n∑

j=1

Dj = m | xT0 ∈ ∂A

⎞
⎠

= 1 −
k−1∑
m=0

n!
m!(n − m)!

φm
s (1 − φs)n−m. (17)

If n and k are large, the aforementioned equation may be hard to
compute numerically because of the repeated factorials inside
the summation. In this case, Poisson’s theorem can be used to
derive a convenient approximation to (17) for networks with
φs � 1 and n � 1. As reviewed in more detail in [30, p. 113],
Poisson’s theorem states that if p → 0 and n → ∞, such that
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np → λ, where λ is a constant, then the probability in (15) can
be approximated by the limit

n!
k!(n − k)!

pkqn−k → e−λ λk

k!
, as n → ∞,

and k = 0, 1, 2, . . . . (18)

Thus, by substituting (12) in (15) and by rewriting (18) in terms
of m, the probability of having at least k detections in (17) can
be approximated by

Pr

⎛
⎝ n∑

j=1

Dj ≥ k | xT0 ∈ ∂A

⎞
⎠ ≈ 1 − e−nφs

k−1∑
m=0

(nφs)m

m!

(19)
assuming that φs and n diverge to the two extremes, i.e., φs →
0 and n → ∞, such that nφs remains constant.

So far, all probabilities are conditioned on the target entering
A at a fixed and known position xT0 ∈ ∂A. Consider now
the case in which xT0 is also a random variable, and the
probability that the target enters A at xT0 is described by a pdf
fT (xT0) defined over boundary set ∂A. Then, the probability
that a target in A is detected at least k times is obtained by
marginalizing (19) over all possible values of xT0 , i.e.,

Ps = Pr

⎛
⎝ n∑

j=1

Dj ≥ k | xT (t) ∈ A

⎞
⎠

= 1−
∫

∂A

fT (xT0) e−nφs(xT0)
k−1∑
m=0

[nφs (xT0)]
m

m!
dxT0 (20)

The aforementioned performance function represents the track
coverage of a probabilistic sensor network with pdf fx(xj),
computed in terms of coverage cones with extremals g1 and
g2, as shown in (12) and (13). Its deterministic counterpart
in (8) represents the track coverage of a sensor network as a
function of deterministic sensor positions in A. While (8) as-
sumes that track parameters xT0 and θ are uniformly distributed
over their ranges [8], the newly derived performance function
in (20) is applicable to random tracks with nonuniform pdfs
fT (xT0) and fθ(θ). The performance function in (20) can also
be applied to multiple targets, provided that all targets have
track parameters characterized by the same pdfs, and that all
detections are assigned to the corresponding targets by means
of a multisensor–multitarget data association algorithm [31]–
[33]. Furthermore, the approach presented in this section can be
extended to maneuvering targets using a Markov target model,
as will be shown in a separate paper.

The next section shows that the approach presented in this
section obtains the same probability of track detection obtained
by the distributed-search approach reviewed in Section II-A.

V. RELATIONSHIP BETWEEN GEOMETRIC-TRANSVERSAL

AND DISTRIBUTED-SEARCH APPROACHES

The geometric-transversal approach in Section IV can be
considered as sensor centric because it is based on a cone

Fig. 3. Transformation from x′
T0

to xT0 and from ΩT to Ω′
T .

representation of the tracks detected by each sensor in the
network. The distributed-search approach presented in [9], on
the other hand, is based on an area representation of the sensors’
positions that detect each target track in A. Therefore, it can
be considered as a track-centric approach. In this section, we
show that the two approaches are equivalent under the same
problem formulation and assumptions described in Section III.
In particular, we prove that the probability of track detection in
(20) is equivalent to the probability of track detection derived
from (4) using the distributed-search approach in [9].

As a first step, the performance function in (4) is applied to
the problem formulation in Section III, in which sensors can
detect the target at any time t0 ≤ t ≤ tf in A. Then, (4) can be
used to represent the probability of track detection by letting
(tf − t0) >

√
L2/2Vmin, and by imposing the condition that

the initial target position is on the ROI boundary. The new prob-
ability of track detection is obtained by performing a change
of variables from the initial position x′

T0
∈ A, as defined in

Section II-A, to the initial position xT0 ∈ ∂A, as defined in
Section IV. When xT0 is on the y-axis, as shown by the example
in Fig. 3, this change of variables amounts to the transformation
xT0 = [0 (x′

0 − y′
0 tan θ)]T, where x′

T0
= [x′

0 y′
0]

T and θ
are sampled from pdfs fT (x′

T0
) and fθ(θ), respectively. Similar

transformations can be obtained for all xT0 ∈ ∂A. In every
case, xT0 is independent of V . Thus, the joint pdf of xT0 and
θ, denoted by gT (xT0 , θ), is a derived distribution that can be
computed from fθ(θ) and fT (x′

T0
), using the aforementioned

transformations to express xT0 in terms of x′
T0

. The standard
procedure for deriving a distribution using the Jacobian of the
transformation is described in [18, Section 1.7].

Based on assumption 6), the detection region
ΩT (x′

T0
, θ, V Δt), defined in Section II-A, is transformed

into a new detection region that is independent of V and Δt,
and is denoted by Ω′

T (xT0 , θ), as shown in Fig. 3. Where,
Ω′

T (xT0 , θ) is obtained by growing the entire track isotropically
by r from the target’s point of entry to its exit point in A. As
a result, the coverage factor in (3) is integrated over the new
detection region and can be written as

φ′
t (xT0 , θ) =

∫

Ω′
T (xT0 ,θ)

fx(xj) dxj . (21)

When the coverage factor (21) and the derived distribution
gT (xT0 , θ) are substituted in (4), the probability of track
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detection obtained by the distributed-search approach can be
simplified to

Pt = 1 −
2π∫
0

∫
∂A

e−nφ′
t(xT0 ,θ)gT (xT0 , θ)

×
k−1∑
m=0

[nφ′
t (xT0 , θ)]

m

m!
dxT0dθ

Vmax∫
Vmin

fV (V ) dV

= 1 −
2π∫
0

∫
∂A

e−nφ′
t(xT0 ,θ)gT (xT0 , θ)

×
k−1∑
m=0

[nφ′
t (xT0 , θ)]

m

m!
dxT0dθ (22)

because the integral of the pdf fV (V ) over its limits is always
equal to one.

Now, let φ′′
t (xT0) denote the expected coverage factor as a

function of intercept xT0 , which is obtained by applying the
expected value rule [34, p. 145] to the function (21), i.e.,

φ′′
t (xT0) =

2π∫
0

φ′
t (xT0 , θ) fθ(θ)dθ

=

2π∫
0

fθ(θ)
∫

Ω′
T (xT0 ,θ)

fx(xj) dxjdθ (23)

where θ ∈ [0, 2π] when Rθ(xT0) ∈ R
2
+. Then, (22) can be

rewritten as

Pt = 1 −
∫

∂A

e−nφ′′
t (xT0 ,θ)

×
k−1∑
m=0

[nφ′′
t (xT0 , θ)]

m

m!

2π∫
0

gT (xT0 , θ) dθdxT0

=1 −
∫

∂A

fT (xT0) e−nφ′′
t (xT0 ,θ)

k−1∑
m=0

[nφ′′
t (xT0 , θ)]

m

m!
dxT0

(24)

because the inner integral in (24) amounts to marginalizing
the joint pdf gT (xT0 , θ) over θ, which results in the marginal
distribution fT (xT0).

Comparing (24) to (20), it can be seen that the distributed-
search and geometric-transversal approaches lead to the same
equation for the probability of track detection, provided
φs(xT0) = φ′′

t (xT0). Without loss of generality, we prove that
this equality holds for the case of xT0 = 0. The same proof can
be applied to any xT0 ∈ ∂A by translating the xy-coordinate
frame such that its origin coincides with xT0 . When xT0 = 0,
the coverage factors φs and φ′′

t are two constants that can be
evaluated from the triple integrals (12) and (23), respectively.
Because the sensors’ positions are independently and identi-

Fig. 4. Detection region Ω′
T (θ) and coverage cone K(Cj) for xT0 = 0.

Fig. 5. Region of integration of φ′′
t (xT0 ).

cally sampled from fx(xj), the coverage factor in (12), ob-
tained by the geometric-transversal approach, can be written as

φs =
∫
A

g2(xj)∫
g1(xj)

fx(xj)fθ(θ) dθdxj , for xT0 = 0. (25)

Because xj and θ are independent random variables, the
coverage factor in (23), obtained by the distributed-search
approach, can be written as

φ′′
t =

2π∫
0

∫
Ω′

T
(θ)

fθ(θ)fx(xj) dxjdθ, for xT0 = 0. (26)

Furthermore, the integrands of (25) and (26) each represent
the joint pdf of xj and θ because fx,θ(xj , θ) = fx(xj)fθ(θ).
It follows that coverage factors φs and φ′′

t each represent the
probability mass of xj and θ in the 3-D regions of integration
of (25) and (26), respectively. Specifically, the probability mass
of two random variables xj and θ in a 3-D region V ⊂ R

3 is
defined as the probability that point (xj , θ) is in V , given the
density fx,θ(xj , θ) [30, p. 172]. From (13) and (25), the region
of integration of φs is the region spanned by the coverage cone
K(Cj ,xT0 = 0)≡ K(Cj) for all xj ∈ A. Thus, the projection
of this region of integration onto A at a sample value of xj

is the coverage cone K(Cj) shown in Fig. 4. From (21) and
(26), the region of integration of φ′′

t is the region spanned by
Ω′

T (θ) for all θ ∈ [0, π/2]. Thus, the projection of this region
of integration onto A at a sample value of θ is the detection
region Ω′

T (θ) shown in Fig. 4. As an example, the region of
integration of φ′′

t is shown in Fig. 5 for L = 105 and r = 5.
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From the probability masses in (25) and (26), it can be
seen that φs and φ′′

t are equivalent, provided that the region of
integration in (25) is equivalent to that in (26). This last step
of the proof is carried out by showing that the volume of the
region of integration in (25), defined as

vs =
∫
A

g2(xj)∫
g1(xj)

dθdxj (27)

is equivalent to the volume of the region of integration in
(26), defined as

vt =

2π∫
0

∫
Ω′

T
(θ)

dxjdθ (28)

In order to avoid singularities, the aforementioned volumes are
evaluated by assuming that Cj ∈ A, i.e., letting r ≤ xj and
yj ≤ L − r. Using the notation in Fig. 4, the limits in (27) can
be expressed in polar coordinates, and (27) can be simplified as
follows:

vs =
∫
A

γj+ψj/2∫
γj−ψj/2

dθdxj =
∫
A

2 arcsin
(

r

‖xj‖

)
dxj . (29)

Because the geometry of Ω′
T (θ) changes with θ, (28) is

evaluated by dividing the range of θ into five intervals, such
that

θ ∈ [0, π/2] = [θ0, θ1] ∪ [θ1, θ2] ∪ [θ2, θ3] ∪ [θ3, θ4] ∪ [θ4, θ5]
(30)

where θ0 = 0, θ5 = π/2, and

θ1 ≡ arcsin
r√

(L − r)2 + r2
+ arctan

r

(L − r)

θ2 ≡ π

4
− arcsin

r√
2(L − r)

θ3 ≡ arcsin
r√

(L − r)2 + r2
+

π

4

θ4 ≡ arctan
(L − r)

r
− arcsin

r√
r2 + (L − r)2

.

Then, the volume in (28) can be written as

vt =
4∑

i=0

θi+1∫
θi

∫
Ω′

T
(θ)

dxjdθ =
4∑

i=0

θi+1∫
θi

fi+1(θ) dθ (31)

where

f1(θ) ≡
1
2

(
L tan θ+

2r

cos θ
−2r

)
(L−2r)

f2(θ) ≡(L−2r)2− 1
2

{(
L−r− r cos θ + r

sin θ

)

×
[
(L−r) tan θ− r

cos θ
−r
]
+(L−2r)

×
[
2(L−r)−L tan θ− 2r

cos θ

]}
(32)

f3(θ) ≡(L−2r)2− 1
2

{[
(L−r)− r cos θ + r

sin θ

]

×
[
(L−r) tan θ− r

cos θ
−r
]

+
[
(L − r) cos θ − r

sin θ
−r

](
L−r−r tan θ− r

cos θ

)}

f4(θ) ≡(L−2r)2− 1
2

{
(L−2r)

(
L cos θ + 2r

sin θ
−2r

)

+
[
(L − r) cos θ − r

sin θ
−r

](
L−r−r tan θ− r

cos θ

)}

f5(θ) ≡
1
2
(L − 2r)

(
L cos θ + 2r

sin θ
− 2r

)
. (33)

Finally, vt in (31) is integrated analytically (the analytic so-
lution is omitted for brevity), and its value is shown in Fig. 6(a)
for representative values of parameters L and r. The volume vs

in (29) is first integrated analytically with respect to yj . Then,
because an explicit solution for the outer integral in xj could
not be determined, vs is computed using the recursive adaptive
Lobatto quadrature, which approximates the outer integral to
within an error of O(10−6) [35]. For comparison, the value of
vs is shown in Fig. 6(b) using the same parameter values used
for vt in Fig. 6(a). For all parameter values considered in the
simulations, the difference between vs and vt is on the order of
the Lobatto quadrature error. Thus, it can be concluded that the
two volumes are equivalent and that φs = φ′′

t . It follows that
the probabilities of track detection in (20) and (24), obtained
by the geometric-transversal and distributed-search approaches,
respectively, are equivalent. The two approaches differ in the
manner by which they integrate the joint sensor–target pdf over
the space of all possible target tracks and sensors’ positions.
As illustrated by the corresponding regions of integration, the
distributed-search approach considers the area containing all
sensors’ positions that detect a single track, and then integrates
the joint pdf over all possible target tracks. The geometric-
transversal approach considers the cone containing all target
tracks that are detected by a single sensor position, and then
integrates the joint pdf over all possible sensors’ positions in A.

In the next section, the theoretical results are validated
through numerical simulations. These simulations confirm that
the two approaches lead to the same probability of track detec-
tion and can thus be reliably utilized to optimize the design and
deployment of cooperative sensor networks.

VI. NUMERICAL SIMULATIONS AND RESULTS

The theoretical results obtained in the previous sec-
tions are demonstrated through numerical simulations in-
volving probabilistic and sampled networks, for different
sensor parameters and pdfs. In Section VI-A, the new perfor-
mance function derived by the geometric-transversal approach
in Section IV is evaluated numerically and is compared to
the performance function obtained by the distributed-search
approach in Section V. The numerical results show that the two
performance functions and corresponding coverage factors are
always equivalent but require different computation times. As
shown in [8], the track coverage function in (8) can be used
to efficiently deploy small- to medium-size networks. When
the sensor network is very large or subject to significant errors



1500 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 6, DECEMBER 2010

Fig. 6. (a) Volume vt is compared to (b) vs for a range of parameters
L and r.

and uncertainties, the pdf fx(xj) can be used to deploy sensor
networks via sampling [36]. In this case, an optimal pdf can be
obtained by optimizing the probabilistic track coverage func-
tion in (20) with respect to a parameterized Gaussian mixture.
This approach is demonstrated in Section VI-B by considering
several examples of sensor deployments obtained by sampling
fx(xj) using finite mixture sampling [37, Section 1.4] and
entropic sampling [36] techniques. For each deployment, the
probability of track detection is evaluated numerically using the
geometric-transversal and distributed-search approaches.

A. Probability of Track Detection by Probabilistic
Sensor Networks

In this section, the proof in Section V is validated by demon-
strating that the probability of track detection Ps in (20) and
the probability of track detection Pt in (24) are equivalent for
a given pdf fx(xj). It is assumed that the track parameters are
unknown and can thus be described by uniform pdfs, fT (xT0)
and fθ(θ) [38]. The ROI is given by A = [0, 100]2, and all
sensors have a constant detection range r = 5. The pdf fx(xj)
is set equal to zero outside the region [r, (L − r)]2 = [5, 95]2
to ensure that all FOVs are contained in A. The number of
sensors, n, is varied from 0 to 150, and the number of required
detections, k, is varied from zero to ten. The maximum number
of sensors (i.e., 150) is chosen such that a network could be
contained in A with little or no overlapping between FOVs.
The support of random vector xj , given by [5, 95]2, and the
support of xT0 , given by ∂A, are discretized by constant inter-
vals Δxj = ΔxT0 = [1 1]T . The pdf fx(xj) is first modeled

as a uniform distribution over [5, 95]2 and then as a mixed
normal pdf

fx(xj)=
1

600π
e−

(xj−20)2

200 − (yj−20)2

200 +
1

600π
e−

(xj−60)2

200 − (yj−40)2

200

+
1

600π
e−

(xj−75)2

200 − (yj−75)2

200 . (34)

For every pdf model, the probability of track detection Ps

in (20) is computed numerically by evaluating the coverage
factor in (12) for every discrete value of xT0 , denoted by
x�

T0
, summing over all discrete values of xj , denoted by xı

j ,
such that

φs

(
x�

T0

)
≈
∑
xı

j
∈A

ψ
(
xı

j ,x
�
T0

)
fx

(
xı

j

)
Δxj (35)

where opening angle ψ(·) is computed using (7). From (20), the
probability of track detection is approximated by

Ps ≈ 1−
∑

x�
T0

∈∂A

fT

(
x�

T0

)
e
−nφs

(
x�

T0

)k−1∑
m=0

[
nφs

(
x�

T0

)]m
m!

ΔxT0 .

(36)

For comparison, the probability of track detection in (24)
is also computed numerically by discretizing the range of θ,
given by [0, π/2], using the constant interval Δθ = 0.01 rad.
The coverage factor in (23) is evaluated by summing over all
discrete values of θ, denoted by θj, such that

φ′′
t

(
x�

T0

)
≈

∑
θj∈[0,π/2]

Ω′
T

(
x�

T0
, θj
)
fθ(θj)Δθ (37)

where Ω′
T (·) is evaluated using f1 through f5 in (31). Then,

from (24), the probability of track detection is approximated by

Pt≈1 −
∑

x�
T0

∈∂A

fT

(
x�

T0

)
e
−nφ′′

t

(
x�

T0

)k−1∑
m=0

[
nφ′′

t

(
x�

T0

)]m
m!

ΔxT0 .

(38)

The probabilities of track detection obtained from (36) and
(38) are shown in Fig. 7 as a function of n, for a uniform pdf
model and k = 2. It can be seen that the difference between Pt

and Ps is negligibly small. The coverage factors in (35) and (37)
are evaluated numerically and compared in Fig. 8. Although
the accuracy could be further improved by decreasing the
discretization intervals in (36) and (38), it can be concluded that
the two approaches provide equivalent probability functions
and coverage factors for a uniform pdf. The same conclusion
can be drawn for the mixed normal pdf in (34), which leads to
the probabilities of track detection shown in Fig. 9. Although
the two performance functions Pt and Ps lead to the same
value of probability of track detection, Ps typically requires
smaller computation times. For example, for a network with
(n, k) = (80, 2) and a uniform pdf, Ps in (36) was computed
in approximately 0.4 s, while Pt in (38) required approximately
30 s on a Pentium-4 CPU 3.06-GHz computer with 1-GB RAM.
For the mixed normal pdf in (34) and (n, k) = (80, 2), Ps and
Pt required approximately 0.8 s and 32 s, respectively, on the
same computer.
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Fig. 7. Comparison between the probability of track detection obtained by
the geometric-transversal approach, Ps in (36), and that obtained by the
distributed-search approach, Pt in (38), for a uniform pdf and k = 2.

Fig. 8. Comparison between the coverage factor obtained by the geometric-
transversal approach, φs in (35), and that obtained by the distributed-search
approach, φ′′

t in (37), for a uniform pdf and k = 2.

Fig. 9. Comparison between the probability of track detection obtained by
the geometric-transversal approach, Ps in (36), and that obtained by the
distributed-search approach, Pt in (38), for a mixed normal pdf and k = 2.

B. Probability of Track Detection by Sampled Sensor
Networks

An effective approach to deploying a large sensor network in
an uncertain environment is to sample the pdf fx(xj) to obtain
n sensor positions in A. In this case, the probability of track
detection can be optimized with respect to the parameters of a
finite mixture model of fx(xj), which is then sampled and used
to deploy the sensor network. Because the sampling process
greatly influences the configuration of the network, we compare
two methods, namely, finite mixture sampling [37, Section 1.4]
and entropic sampling [36]. Let vectors X1, . . . ,Xn ∈ R

2

denote the n sensor positions in A that are sampled randomly
from the finite mixture model

fx(xj) =
m∑

i=1

wifi(xj), 0 ≤ wi ≤ 1 ∀ i,

m∑
i=1

wi = 1.

(39)

The weights w1, . . . , wm are called the mixing proportions, and
f1(xj), . . . , fm(xj) are the component densities of the mixture.

In this section, normal mixture models with up to three com-
ponents are simulated and sampled as follows. In the first tech-
nique, referred to as finite mixture sampling [37, Section 1.4],
every position Xj is obtained from the hierarchical model
defined as

g(xj |w) ≡

⎧⎪⎨
⎪⎩

f1(xj), if w ≤ w1

f2(xj), if w1 < w ≤ w2

. . .
fn(xj), if w > wn−1

(40)

for a random parameter w with a uniform pdf over its range
[0, 1]. Then, the marginal pdf g(xj) has the same distribution
as fx(xj), because

g(xj) =

1∫
0

g(xj |w)fw(w) dw

=

w1∫
0

f1(xj)fw(w) dw +

w1+w2∫
w1

f2(xj)fw(w) dw

+ · · · +
1∫

w1+w2+···+wn−1

fn(xj)fw(w) dw

=w1f1(xj) + w2f2(xj) + · · · + wnfn(xj) = fx(xj)

(41)

where fw(w) = 1 if 0 < w < 1, and fw(w) = 0 otherwise.
If the sensor positions are sampled directly from (39), the
majority of the sensors cluster near the centers (means) of the
pdf components. In order to avoid intersecting FOVs and to
obtain independent detections, the new sensors are sampled
after biasing the probability using the hierarchical model in
(40). Assume that X1, . . . ,Xj−1 have already been sampled,
and let W denote a sample of w obtained from fw(w) using
a uniform pseudorandom number generator [39]. Then, for
wk−1 < w ≤ wk, a new sample Xj is sampled from component
fk(xj), which is typically a normal pdf. In order to avoid
intersections, the new position Xj is discarded whenever it
results in Cj(Xj , r) ∩ [C1(X1, r) ∪ · · · ∪ Cj−1(Xj−1, r)] �= ∅.

Unless n is significantly large, the aforesaid procedure may
not produce a sensor distribution that closely represents all
of the features of the pdf fx(xj) [36]. A heuristic sampling
method was developed in [36] to place sensors sequentially
based on the entropy of the posterior pdf in a manner that avoids
intersections between the FOVs while capturing the main
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features of fx(xj). In this method, every sensor j is placed at
the position of maximum conditional entropy, defined as

Xj = arg max
x

Hπj (x) ≡ −
∑
x∈A

πj(x|Xj−1) log πj(x|Xj−1)

(42)

for j = 1, . . . , n. Where,

πj(x|Xj−1) ∝ bj−1(x)πj−1(x|Xj−2) (43)

is the posterior pdf updated after placing the (j − 1)th sensor,
and bj(x) is a binary operator that is equal to zero for all x ∈ Cj ,
and is equal to one elsewhere. As in Bayes recursion, at every
iteration, the posterior of a previous sensor placement becomes
the prior, and the new posterior is used to place an additional
sensor, thereby decreasing the probability that multiple sensors
are placed at the same location.

Because the sensors’ positions are not identically and inde-
pendently sampled in entropic sampling, the exact probability
of track detection cannot be determined by the performance
metrics in (20) and (24). After the network is sampled, however,
its probability of track detection can be accurately determined
from the deterministic track coverage function T k

A in (8), as
reviewed in Section II-B. Using geometric transversals, it was
shown in [8] that the probability of track detection of a network
deployed at X1, . . . ,Xn is given by

PA =
δb

π(L + δb)
T k
A . (44)

Thus, PA can be considered as the deterministic counterpart
of Ps in (20). Because there currently exists no deterministic
counterpart for Pt in (24), PA is compared to the probability
obtained by direct evaluation of detection events Dj’s, denoted
by Pk. A logical array or truth table, denoted by Bj , is
evaluated such that every element corresponds to a pair of
discretized track parameters (x�

T0
, θj) (obtained as explained

in Section VI-A), and is set equal to one or zero, depending on
whether the track has been detected (one) or missed (zero) by
the jth sensor. After the array Bj is obtained for every sampled
sensor, the logical array

Tk =

⎧⎨
⎩

n∑
j=1

Bj ≥ k

⎫⎬
⎭ (45)

indicates whether each possible track in A has been detected by
at least k sensors. Then, the number of ones in Tk divided by its
number of elements provides the estimate Pk for the probability
of track detection.

In the first example, n = 40 sensors’ positions are sampled
from a uniform pdf, fx(xj) using finite mixture and entropic
sampling, as shown in Fig. 10(a) and (b), respectively. The
probabilities of track detections, PA and Pk, are shown in
Fig. 11 for r = 5 and A = [0, 100]2. From these results, it can
be seen that the two approaches lead to the same probability
of track detection for both sampling techniques across various
values of k. Fig. 11 also shows that, in this case, the network ob-
tained via finite mixture sampling displays better performance
than the one sampled via entropic sampling. In the second
example, the sensor networks in Fig. 12 are sampled from the
normal mixture density in (34). The corresponding probabilities

Fig. 10. Sensor networks obtained from a uniform pdf via (a) finite mixture
sampling and (b) entropic sampling.

Fig. 11. Probability of track detection for the sensor networks obtained from
a uniform pdf via (a) finite mixture sampling and (b) entropic sampling.

of track detection, PA and Pk, are shown in Fig. 13. As in the
previous examples, PA ≈ Pk, and the performance obtained
via finite mixture sampling in Fig. 13(a) is higher than that
obtained via entropic sampling in Fig. 13(b). However, entropic
sampling typically leads to fewer intersections, i.e., higher
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Fig. 12. Sensor networks obtained from a normal mixture pdf via (a) finite
mixture sampling and (b) entropic sampling.

Fig. 13. Probability of track detection for the sensor networks obtained from
a normal mixture pdf via (a) finite mixture sampling and (b) entropic sampling.

area coverage, than finite mixture sampling. Similar results are
obtained for other pdfs but are omitted here for brevity.

Finally, the computation times required by PA and Pk are
compared in Table I for increasing values of k, and in Table II
for increasing values of n. These simulations were conducted
on a Pentium-4 CPU 3.06-GHz computer with 1-GB RAM.

TABLE I
COMPUTATION TIME REQUIRED BY PA AND Pk WHEN n = 40 AND r = 5

TABLE II
COMPUTATION TIME REQUIRED BY PA AND Pk WHEN k = 2 AND r = 5

The sensor networks are obtained via entropic sampling from
the normal mixture density in (34). It can be seen from Tables I
and II that the time to compute PA by the geometric-transversal
approach is less than 1% of the time required to compute Pk

via direct evaluation. Therefore, it can be concluded that the
geometric-transversal approach presented in this paper leads to
performance functions that are computationally very efficient
for both probabilistic and sampled (or deterministic) sensor
networks.

VII. SUMMARY AND CONCLUSION

The quality of service of networks performing cooperative
track detection, also referred to as track coverage, can be
represented by the probability of obtaining multiple elemen-
tary detections over time along a target track. Distributed-
search theory and geometric transversals have been used in
the literature for representing the quality of service of these
networks as a function of random and deterministic sensors’
positions, respectively. Using Poisson flats, this paper extends
the geometric-transversal approach, previously used to analyze
the case of deterministic sensor positions and uniform target
tracks, to the case of random sensor positions and nonuniform
target tracks. A new performance function has been derived
using a new approach that views the experiment of placing
a Poisson flat in a Euclidean half-space as the experiment of
placing points in a random interval in phase space. Through
this approach, a new coverage factor has been defined in terms
of the coverage cones generated by circles that are randomly
placed in the ROI, representing the sensors’ FOVs. The novel
Poisson flat approach presented in this paper provides a unified
framework for analyzing track coverage in both determinis-
tic and probabilistic sensor networks. Furthermore, this paper
proves that the distributed-search and geometric-transversal
approaches previously presented in the literature are equivalent
under the same problem formulation.

This paper also proves that these two approaches differ in
the manner by which they integrate the joint sensor-target pdf
over the space of all possible sensors’ positions and target
tracks. The theoretical results are demonstrated numerically
in Section VI by simulating the deployment of probabilistic
and sampled sensor networks. These simulations show that
the Poisson flat approach presented in this paper leads to
performance functions that are computationally very efficient
for both types of networks and are equivalent to performance
functions previously obtained via distributed search or direct
evaluation.
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