
Spike-Based Indirect Training of a Spiking Neural
Network-Controlled Virtual Insect

X. Zhang∗, Z. Xu∗, C. Henriquez∗, S. Ferrari∗

Abstract— Spiking neural networks (SNNs) have been
shown capable of replicating the spike patterns observed
in biological neuronal networks, and of learning via
biologically-plausible mechanisms, such as synaptic time-
dependent plasticity (STDP). As result, they are commonly
used to model cultured neural network, and memristor-
based neuromorphic computer chips that aim at replicating
the scalability and functionalities of biological circuitries.
These examples of SNNs, however, do not allow for the
direct manipulation of the synaptic strengths (or weights)
as required by existing training algorithms. Therefore, this
paper presents an indirect training algorithm that, instead,
is designed to manipulate input spike trains (stimuli) that
can be implemented by patterns of blue light, or controlled
input voltages, to induce the desired synaptic weights
changes via STDP. The approach is demonstrated by train-
ing an SNN to control a virtual insect that seeks to reach
a target location in an obstacle populated environment,
without any prior control or navigation knowledge. The
simulation results illustrate the feasibility and efficiency of
the proposed indirect training algorithm for a biologically-
plausible sensorimotor system.

I. INTRODUCTION

This paper presents a spike-based indirect training
approach that is applicable to spiking neural networks
(SNNs), such as in vitro biological neuronal networks,
and memristor-based neuromorphic computer chips, that
do not allow for the direct manipulation of the synaptic
strengths, or weights, that is instead required by existing
SNN training algorithms [1]–[5]. The proposed training
approach is said to be spike-based, because instead of
manipulating the synaptic weights, it manipulates input
spike trains that can be implemented by patterns of
blue light, or controlled input voltages, to induce the
desired the synaptic weights changes via synaptic time-
dependent plasticity (STDP).

The spike-based indirect training approach is demon-
strated by training the simulated sensorimotor system
of a virtual insect in a path planning and control
problem. The virtual insect is controlled by an SNN
that receives sensory inputs from terrain and vision
sensors (antennas), and that seeks to reach a random
target located in a terrain with varied roughness. Unlike
typical implementations of feedback control in path
planning problems, which require models of the vehi-
cle (insect) dynamics and environment, and can suffer
from inefficiencies due to online obstacle detection, the

indirect training algorithm presented in this paper always
produces feasible trajectories under dynamic constraints.
Because of its ability to control the insect without any
prior modeling, control, or navigation knowledge, the
SNN controller presented in this paper is also applicable
to mobile sensors and autonomous robots [6]–[10].

Recent work has shown that SNNs are capable of
solving nonlinear function approximation problems in
few dimensions [1], [2], [11]. Furthermore, due to their
ability to simulate biological neuronal networks, they
are used in a variety of neuroscience and neurobiol-
ogy applications, such as the study of multi-cortical
computational models [12], in vitro biological neuronal
networks [13], and CMOS/memristor devices [14], [15].
The effectiveness of SNN training algorithms to date
remains very limited compared to artificial neural net-
works, and is yet to be demonstrated on challenging
control problems. One of the main challenges to be over-
come is that the response of an SNN is not available in
closed-form and, typically, must be obtained numerically
by solving a system of differential equations. Another
challenge is that the SNN response consists of complex
spike patterns that need to be decoded into reduced-order
continuous signals to be utilized for control, or to assess
the system-level performance of the SNN [16], [17].

One line of research, reviewed in [18], has focused
on modifying backpropagation algorithms for SNNs,
which are, however, unsupported in biological neu-
ronal networks [2]. Another line of research has ex-
plored biologically-plausible learning mechanisms, such
as Hebbian plasticity and STDP, both of which are
supported by significant experimental evidence [1]–[5].
However, the latter class of algorithms relies on the
direct manipulation of the synaptic weights and, thus,
implements incremental weight changes computed by a
Hebbian/STDP learning rule.

A recent study [19] demonstrates the computational
efficiency of spike driven synaptic plasticity (SDSP)
for pattern recognition with the assumption that the
synaptic weights are known. However, it is not within
the realm of current technological abilities to measure
the synaptic weights and synaptic connections of in vivo
neural networks. Therefore, in this paper, the values and
changes in synaptic weights are assumed unknown a
priori. Weight adjustments are induced by the STDP

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5717-3/13/$31.00 ©2013 IEEE 6798

mechanism, and can be controlled indirectly by imple-
menting a square-pulse function obtained from the RBF
spike model. The square-pulse function is obtained by
integrating the RBF spike model against a suitable aver-
aging function in a leaky integrator, and by comparing
it to a positive threshold, by means of a so-called IF
sampler. As a result, a precise square-pulse function
is obtained with widths, intensities, and timings deter-
mined by the parameters of the RBF model. This paper
is structured as follows: the path planning and control
problem is formulated in Section II and the fundamental
mathematical models of spiking neurons and STDP are
reviewed in Section III-A. Then the SNN architecture
and indirect training algorithm presented in Section IV
are used to solve the problem described in Section II.
The simulation results in Section V demonstrated the
efficiency and feasibility of the proposed spike-based
indirect training algorithm.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The spike-based indirect training approach presented
in this paper is demonstrated on a path planning and
control problem in which a virtual insect equipped
with target and terrain sensors, processes environmental
autonomously via SNNs. The physical characteristics of
the virtual insect can be described by a rigid object
A that is a compact subset of a workspace W ⊂ R2.
The workspace W can either contain smooth or rugged
territory, with roughness and solid obstacles, denoted by
B1, ...,BN , that must be avoided by A. The virtual insect
uses two antennas, shown in Fig. 1, where the dashed
circle S of radius r represents the field of view of the left
(target) antenna, which depends on the terrain roughness,
and the red dot at the top of the red antenna is the field
of view of the right (terrain) antenna. Using sensory
information obtained by the antennas, the virtual insect
must process the sensory inputs and adjust its current
state according to the corresponding desired movement.
The position and orientation of the insect with respect

Ow

Fw

FA
OA

A

B

Fig. 1. Insect geometry and
workspace coordinates.

Fig. 2. Insect terrain sensors
(red antennas) (A), and target
sensors (green antennas) (B).

to W are defined with respect to an inertial reference
frame FW with origin OW in W . The insect’s sensory
inputs are defined with respect to a moving reference

frame FA, embedded in A, and with origin OA. It is
assumed that both A and S are rigid objects, and that
S has a fixed orientation and position with respect to
A. Let q ∈ R3 denote the configuration of the virtual
insect, such that q = [x y θ]T , where x and y are the
Cartesian coordinates in FW , and θ is the heading angle
of the virtual insect. Then, A(q) denotes the compact
subset ofW that is occupied by A when the insect is at a
configuration q ∈ C, where C is the insect’s configuration
space. Similarly, the subset ofW occupied by S at q can
be denoted by S(q), and is the set of all the accessible
sensor information that can be obtained by the insect
when Tobj ∩ S(q) = ∅, where Tobj is the geometry of
the target.

The motion of the virtual insect is simulated using an
adaptation of the unicycle robot that can more closely
represent insect locomotion [20],

ẋ = v cosθ
ẏ = v sinθ
v = v1+v2

2

θ̇ = v2−v1
L

v̇s = − vs
τmotor

+ η ·H(t− tfi), s ∈ [1, 2]

(1)

where v is the linear velocity, vs is the sth motor speed,
θ̇ is the angular velocity, L is the distance between two
motors, τmotor is the time constant that results in a
gradual decay of the motor speed following activation
of the motor, tfi is the firing time of the output neuron
i and H(·) is the heaviside function which is scaled by
a constant η.

The objective of the virtual insect is to reach the target
Tobj , while avoiding rugged terrain inW by using visual
and terrain information obtained from its antennas. Al-
though the problem formulation and equations presented
in this section are used to describe the insect motion,
they are not used to design the insect SNN controller.
Instead the SNN, described in the next section, is trained
using the spike-based indirect algorithm presented in
Section IV, based on sensory inputs to which the insect
responds at any time t > t0.

III. MATHEMATICAL MODELS

A. Modeling of Neuron and Alpha Synapse

Spiking neuron models are mathematical representa-
tion of spike pattern dynamics observed in biological
neurons, such as action-potential generation, refractory
periods, and post-synaptic potential shaping. The leaky
integrate-and-fire (LIF)-SNN is adopted in this paper
because it is the simplest model of spiking neuron, and is
amenable to mathematical analysis. The LIF-SNN also
provides the highest computational efficiency compared
to other neuron models [21]. The LIF membrane poten-

6799

tial can be modeled by the differential equation [21],

τm
dV (t)

dt
= −V (t) +Rm[Istim(t) + Isyn(t)] (2)

where Istim is the stimulus current (e.g. from an external
stimulus such as blue light or a controlled input voltage),
and Isyn is the synaptic current from the presynaptic
neurons. τm is the passive membrane time constant, and
Rm is the membrane resistance of the neuron, both of
which can be assumed constant. When the membrane
potential V reaches a threshold value Vth, the neuron
fires (spikes), and the membrane potential returns to a
resting potential Erest. The synaptic current from the
presynaptic neurons can be modeled as,

Isyn(t) = gsyn(t)[V (t)− Esyn] (3)

where gsyn(t) is the synaptic conductance, and Esyn is
the reversal potential for the synapse. The gsyn(t) in
this paper are modeled using this two-parameter alpha
function for representing the rising and decay phases
[22],

gsyn(t) = ḡsynh(e
− t
τdelay − e−

t
τrise) (4)

where, to ensure that the amplitude equals ḡsyn, the
normalization factor in (4) is defined as,

h = (−e−
tpeak
τrise + e

−
tpeak
τdecay)−1 (5)

and the conductance peaks at a time

tpeak =
τdecay τrise

(τdecay − τrise)
ln

(
τdecay
τrise

)
(6)

The time constants of synapse conductance vary widely
among synapse types. In our paper, excitatory synapses
are modeled with AMPA receptors, which are found in
many parts of the brain and are the most commonly
found receptors in the nervous system [23], and in-
hibitory synapses are modeled using the fast inhibition
GABAA receptor.

B. Spike-Timing Dependent Plasticity (STDP)

In this paper, it is assumed that all of the SNN
synapses change over time only by virtue of the STDP
rule. The STDP can be implemented in a LIF-SNN,
during every time step ∆t, to adapt the synaptic weight
wij between a pre-synaptic neuron j and a neuron i
based on the relative timing of the pre- and post-synaptic
spikes, denoted by t̂j and t̂i, respectively, such that [21]:

wij(t+ δt) = wij(t)(1 + ∆wij(t)) (7)

∆wij(t
f
i) = D+(wij) · xj(tfi) (8)

∆wij(t
f
j) = −D−(wij) · yi(tfj) (9)

where the functions,

D+(wij) , λ(1− wij)µ, D−(wij) , ξλwµij (10)
describe how the weight changes depend on the current
weights. if µ = 0, the rule becomes additive STDP. λ
is the learning rate, and ξ is the asymmetry parameter.
As observed in biological neurons, if the presynaptic
neuron fires before the postsynaptic neuron, the synapse
is strengthened, and if it fires after, the synapse is
weakened. The pair-based STDP rule can be numerically
implemented in the LIF-SNN using two local variables,
xj and yi for low-pass filtered version of the presynaptic
spike train and the postsynaptic spike train [21]. Let
us consider the synapse between neuron j and neuron
i. Suppose that each spike from presynaptic neuron j
contributes to a trace xj at the synapse,

dxj
dt

= −xj
τx

+
∑
tfj

δ(t− tfj) (11)

where tfj denotes the firing times of the presynaptic
neuron. In other words, the trace xj is increased by
an amount of one at tfj and decays with time constant
τx afterwards. Similarly, each spike from postsynaptic
neuron i contributes to a trace yi,

dyi
dt

= − yi
τy

+
∑
tfi

δ(t− tfi) (12)

where tfi denotes the firing times of the postsynaptic
neuron. When a presynaptic spike occurs, the weight
decreases proportionally to the momentary value of the
postsynaptic trace yi. Similarly, when a postsynaptic
spike occurs, a potentiation of the weight is induced.

C. Sensor Models

The virtual insect uses terrain and target sensors,
represented by the antennas in Fig. 2 in order to detect
the roughness of terrain, and the distances, d1 and d2,
between the antennas and the target. The roughness of
the terrain is represented by grayscale values, where 255
(white) is the flat region and 0 (black) is the roughest
region. Thus, the terrain sensor has an input,

Sm = γ|M(x, y)− 255| (13)

where γ is a scaling constant for the intensity of sensor
inputs, and M(x, y) is the grayscale value at (x, y). The
two target (e.g. vision) sensors determine the position
of the target T by calculating the Euclidean distance
between each of the two (green) antennas, and the target
(star). Then, the sensory input from the target sensors is
defined as,

St = µ‖P (x, y)− T (x, y)‖ (14)

6800

where µ is a scaling constant for the intensity of sensor
inputs, and P (x, y) and T (x, y) are the coordinates of
the sensor and target, respectively.

IV. SPIKE-BASED INDIRECT TRAINING APPROACH

The indirect spike-based training approach is illus-
trated on a seven-node SNN, shown in Fig. 3, that
includes both excitatory and inhibitory synapses, n = 4
input neurons that receive information from each of the
insect antennas, and r = 2 output neurons that control
the two motors of the insect. During every iteration cycle

Fig. 3. SNN architecture

l of the training algorithm, the desired SNN input-output
(unknown) mapping gl: Rn×1 → Rr×1 is assumed
to be stationary. Let Wl(tk) = wij(tk) represents a
matrix containing the SNN synaptic weights at time
tk. For any set of weights, the SNN is provided with
an observation of the input, sl, which is encoded as n
constant current inputs over a time interval [tk, tk + τ].
The decoded output of the SNN matches the output
yl = gl[s

l]. Because of τ � (tk+1 − tk), the amplitude
of the constant current ω can be used to encode, at
any tk, instantaneous values of sl. Then, the indirect
training algorithm modifies the synaptic weights of the
SNN by injecting the training currents into the training
neurons of the SNN, such that the weight matrix W are
optimized in (15),

yl(tk) = gl[s
l(tk)]← SNN [sl(tk),Wl(tk)], (15)

where sl is the input of the SNN at time tk, yl is the
desired output of the SNN, gl(x) is the desired mapping
between the inputs and outputs of the SNN, and Wl(tk)
is the weights matrix of the SNN at time tk, which
contains the weight wij between neuron j and i.

The distance between yl and the decoded SNN’s
output is optimized with respect to the parameters of
a new deterministic spike train model, as the individual
synaptic weights wij , can not be set directly. In order
to change Wl in a manner that improves the SNN
performance of the mapping in (15), the programming
voltages are generated based on an optimized spiking
sequence T li = {t̂li : i = 1, ..., N} during the lth

time interval [tl, tl+1], where N is the total number of
neurons in the SNN. Existing stochastic spike models
[21] cannot be used to generate T li . As a result, they
do not allow for the precise timing of pre- and post-
synaptic firings, which can lead to undesirable changes
in synaptic weights by virtue of the STDP rule in III-B.
This paper utilizes a new radial basis function (RBF)
spike model shown in Fig. 4 from previous work [24] ,

sli(t) =

M l
i∑

k=1

ωi,kexp[−βi,k(‖t− ci,k‖)2],

i = 1, ..., q, t ∈ [tl, tl+1] ⊂ [tk, tk + T]

(16)

where ci,k represent the centers, the biases βi,k are
widths, and the weights ωi,k correspond to the heights
of the RBF spike k, M l

i is the total number of RBFs
during [tl, tl+1]. The continuous signal sli(t) in (16)
is integrated against a suitable averaging function in
a leaky integrator and, then, compared to a positive
threshold, by means of a so-called IF sampler [25]. As
a result, a precise pulse function, with a width that is
dependent on the value of βi,k, and an intensity that
depends on ωi,k, is generated with center at ci,k, during
the interval [tl, tl+1]. Therefore, by using the RBF spike
model in (16) with suitable widths and heights, it is
possible to induce the neuron to fire shortly before the
end of each pulse of the square-pulse function (also
considering the refractory period ∆abs of the neuron).

Because of the relationship in (2), the time it takes
for a neuron to fire with constant current input should
be,

T f = −τmln[1− Vth − Erest
ωRm

], (ωRm > Vth−Erest)
(17)

where Ts is the duration for the neuron to fire, when it
is given the constant current stimulus ω. Accordingly,
the fire time of the neuron can be expressed as,

tfi,k = ci,k −
βi,k
2

+ T f (18)

For simplicity, in this paper, it is assumed that for all
k, the heights ωi,k and widths βi,k are known positive
constants of equal magnitudes. Then, the centers of the
RBF comprise the set of adjustable parameters, Pi =
{ci,k | k = 1, . . . ,M l

i}, to be optimized. The same
approach can be easily extended to a case where all
of the RBF parameters are adapted. The optimal RBF
parameters P ∗i used to generate sl are determined from
minimization of the distance between the decoded output
of the SNN, yN , and the desired output, yl.

The square pulses from the output of IF sampler
cannot overlap with each other. For this reason, the

6801

Fig. 4. RBF is converted to square pulses with corresponding
parameters. t̂i,k is the kth firing time of neuron i

constraints on vector Pi are as follows:

tfi,k ≤ ci,k +
β

2

tfi,k + ∆abs ≥ ci,k +
β

2

(19)

A. Optimization of RBF Parameters

If either the left or right terrain sensor detects the
rough terrain, the insect adjusts its direction in order
to avoid entering the respective location. This desired
behavior is assumed linear and can be mathematically
formulated as follows,(

FL
FR

)
=

(
StrL StL
StrR StR

)(
α
γ

)
(20)

where FL and FR are the desired firing frequencies of
the left and right motor neurons; StrL, StL, StrR, StR
are, respectively the left terrain sensor value, the left
target sensor value, the right terrain sensor value, and
the right target sensor value. The constants α, γ scale
the sensor values, where α > γ due to fact that inputs
from the terrain sensors are prioritized when the virtual
insect approaches rough terrain.

The coding schemes for SNNs include both rate
coding, which is the frequency of neuron spikes, and
temporal coding, which is correlated with the exact
firing times of the neurons. This paper employs the
rate coding to decode the output spikes of the neurons.
The average firing rate of neuron i over time interval
[tl−1, tl] can be calculated by (21), in which l is the
index of the epoch. During our simulation, [tl−1, tl] is
the testing epoch, whereas [tl, tl+1] is the training epoch.
The sensor neurons (see Fig. 3) receive inputs from the
sensors of the virtual insect. The firing frequencies of
the outputs, which connect to the motors, are depicted
fpi (tl), where i is the index of the neuron and p is the
index of the training samples. The error, δ, at time tl is

defined by (22).

fpi (tl) =

∑tl
tl−1

H(vi(tl−1) > Vth)

∆t
, ∆t = tl − tl−1

(21)

δ(tl) =

∑
i∈O

∑Pm
p=1 ||F

p
i − f

p
i (tl)||

2 ∗ Pm
(22)

where O is the set of indices identifying the output
neurons in the SNN, Pm is the total number of training
samples and F pi is the desired firing frequency of the
neuron i for training samples p, fpi (tl) is the firing
frequency of the neuron i for training samples p during
[tl−1, tl].

During each training epoch [tl, tl+1], only one square
pulse is injected into each neuron, and the time differ-
ence between the centers of the RBF input to neuron j
and i, drji, is calculated by (23),

drji = crj − cri , i, j ∈ [1, 2, · · · , N] (23)

where i, j are the index of neurons, r is the index of
the training epoch, crj , c

r
i are the centers of the square

pulse in training epoch r, and N is the total number of
neurons in the SNN. In (24), the drji is calculated by
steepest descent method as below,

dr+1
ji = drji − λ

∂δ

∂wrji
(24)

where λ is a constant learning rate. The weights wji
is assumed to be unknown, therefore each pair of pre-
and postsynaptic firing are separated long time enough
to calculate the weights change by (25),

∆wrij =

{
D+ · e−d

r
ij/τ+ drij > 0

−D− · ed
r
ij/τ− drij < 0

(25)

where D+, D− are the constant amplitudes of the
weights change, drij = cri − crj is the time difference
between the firing time of post- and presynaptic neuron
during training, and τ+, τ− are the time constants. By
submitting (25) into (24), the steepest descent algorithm
works without knowing the synaptic weights during
simulation, which is shown in (26)(27).

dr+1
ji = drji − λ

∂δ

D+ · e−d
r
ij/τ+

drij > 0 (26)

dr+1
ji = drji − λ

∂δr

−D− · ed
r
ij/τ−

drij < 0 (27)

At every time step, drji is calculated as described
above, and the values of cri , c

r
j are calculated using (23).

Then we input the RBF to the neurons during each
training epoch. A square pulse is injected into each
training neuron, such that the SNN is trained by our

6802

Fig. 5. Optimized input spike train, and indirect weight changes
brought about by STDP.

indirect training method via the STDP rule discussed in
Section III-B. Fig. 5 shows the optimized firing times
of neurons 1 and 3 caused by the RBF inputs and
the corresponding weight changes due to the STDP
rule during training. If the output error is lower than
a constant δmin, the training stops and the trained SNN
is used on the virtual insect problem.

V. SIMULATION RESULTS

The architecture and algorithm of the indirect training
approach presented in Section IV are used to train a
SNN with randomized initialization, in order to perform
target detection and terrain navigation. The objective of
the simulations presented is to test the effectiveness of
this training approach by comparing three trained states
of the SNN including naive, partially-trained and fully
trained on blank, s-maze, and cloud terrains.

Fig. 6 shows the error defined by (21) and (22)
against the training duration where the error converges.
Although it reaches at a minimum, the error cannot
be further improved with more training. Therefore, the
training would be stopped once the error is lower than
δmin. Due to the instability of solution caused by contin-
uous strengthening/weakening of synapses, the synaptic
weights are fixed after the training process completes.
Fig. 7 demonstrates the evolution of synaptic weights
with training inputs. The strengthened connections be-
tween terrain sensory neurons and neuron 3 (see Fig.
3) ensure the priority of terrain information; meanwhile
the weights of inhibitory synapses are updated so that
the both sides of SNN structure can be balanced. The
synapses connecting with motor neurons can either be
strengthened or weakened as long as the values of these
synaptic weights are comparable to balance the two
motor outputs.

The simulations are conducted in MATLABr and
in order to create the virtual environment, a 600×600
pixels image of the terrain and the target were generated.
The initial positions of the virtual insect differ in the

Fig. 6. Error δ during training.

Fig. 7. Evolution of eight synaptic weights subject to STDP during
training.The synapse between neuron 1 and 3 is labeled as synapse
(1-3). See Fig. 3 for all connections.

three environments. As illustrated by the examples in
Section V-A to V-C, the indirect training method is
capable of both strengthening and weakening synapses
without directly manipulating synaptic weights. It is also
capable of integrating information regarding the target
location and terrain conditions, and, thus, it can train
the virtual insect to avoid rough terrain on its path to
the target.The movie clips for these results show a very
realistic insect behavior, and can be downloaded from
the URL at [26].

A. Blank Terrain

The properties and effectiveness of the indirect train-
ing is first tested in a simple environment where the
terrain has uniform smoothness and, therefore only tar-
get information is relevant. As shown by the trajectory
in Fig. 8-10, initially, the virtual insect rotates randomly
in place. After partially trained, the virtual insect moves
through the workspace, but does not approach the target.
Finally, following the completion of the training proce-
dure, the virtual insect approaches to the target using the
path of shortest distance.

B. S-maze Terrain

In this scenario, the virtual insect must not only find
the target, but integrate information about the terrain.
The simulation results for naive, partially trained and
fully trained states are illustrated in Fig. 11-13. The
naive insect rotates without moving toward the target.
In the partially-trained state, the insect initially moves
away from the target and due to its capacity of terrain

6803

Fig. 8. Trace of naive insect on blank
terrain (see movie in [26]).

Fig. 9. Trace of partially-trained insect on
blank terrain (see movie in [26]).

Fig. 10. Trace of fully-trained insect on
blank terrain (see movie in [26]).

Fig. 11. Trace of naive insect on s-maze
terrain (see movie in [26]).

Fig. 12. Trace of partially-trained insect
on s-maze terrain (see movie in [26]).

Fig. 13. Trace of fully-trained insect on
s-maze terrain (see movie in [26]).

navigation, it successfully accomplishes the task by
rambling along the black terrain.

C. Cloud Terrain

The cloud terrain is a heavily obstacle populated
maze, created via Photoshopr. This environment in-
troduces rough terrain and narrow channels, creating a
complex and difficult landscape for the virtual insect to
navigate. In the partially-trained case, the insect fails
to acquire the target as it does in the s-maze terrain
because of the complexity of cloud terrain. As expected,
the fully trained SNN accounts for both target location
and terrain roughness and effectively controls the virtual
insect along its path.

D. Discussion

The training inputs and the desired outputs in this
training algorithm follow the training rules as formulated
in (20), which do not contain any knowledge about the
locations of obstacles. Therefore once the SNN is fully
trained, the virtual insect can navigate any terrain to get
a randomly positioned target. Furthermore, the stability
of the solution is ensured by fixing synaptic weights
following the completion of training. A recent paper
by Strauss et. al [27] also demonstrated the learning
ability of association task in a bio-inspired SNN model.
However, during training, a reward signal is injected
into the pre-motor neuron and the training algorithm

is path specific, in which only the synapses between
input neurons for sample A and pre-motor neuron are
strengthened. Therefore, it may not be suitable for the
path planning problem described in our paper.

VI. CONCLUSIONS

This paper presents a spike based indirect training
method that induces changes in the synaptic weights by
controlled pulses abiding by the STDP rule, as opposed
to the direct weight manipulation. The difficulty in using
the indirect training method is that it seeks to optimize
a pulse signal, which can be expressed as piece-wise
continuous, multi-valued (or many-to-one), and non-
differentiable functions that are prohibitive to numerical
optimization. Additionally, stimulation patterns created
by stochastic spike model can result in imprecise timing
of pre- and post-synaptic firings, and thus can induce
undesirable changes in the synaptic weights. In order to
address the two problems mentioned above, this paper
presents a deterministic and adaptive training algorithm
by RBFs that can be easily optimized to determine
precise spike timings that minimizes a desired objec-
tive function. The simulation of the virtual insect path
planning shows that this algorithm can train SNN to
approximate the mapping between the input and desired
output, which enables the SNN to solve control problems
like path planning both in biological neuronal networks,
and in CMOS/memristor nanoscale chips. For future

6804

Fig. 14. Trace of naive insect on cloud
terrain (see movie in [26]).

Fig. 15. Trace of half-trained insect on
cloud terrain (see movie in [26]).

Fig. 16. Trace of fully-trained insect on
cloud terrain (see movie in [26]).

investigation, the fully trained synaptic weights may still
be able to further evolve rather than being constant and
the SNN architecture may not be specially designed.

VII. ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation, under ECCS Grant 0925407. The authors
would like to thank Roy Tangsombavisit and Ryan Peters
for developing the virtual insect locomotion model.

REFERENCES

[1] S. Ferrari, B. Mehta, G. D. Muro, A. M. VanDongen, and
C. Henriquez, “Biologically realizable reward-modulated heb-
bian training for spiking neural networks,” Proc. International
Joint Conference on Neural Networks, Hong Kong, pp. 1781–
1787, 2008.

[2] C. M. A. Pennartz, “Reinforcement learning by hebbian synapses
with adaptive thresholds,” Neuroscience, vol. 81, no. 2, pp. 303–
319, 1997.

[3] R. Legenstein, C. Naeger, and W. Maass, “What can a neuron
learn with spike-timing-dependent plasticity,” Neural Computa-
tion, vol. 17, pp. 2337–2382, 2005.

[4] J. P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal
spike-timing-dependent plasticity for precise action potential
firing in supervised learning,” Neural Computation, vol. 18, pp.
1318–1348, 2006.

[5] R. V. Florian, “Reinforcement learning through modulation of
spike-timing-dependent synaptic plasticity,” Neural Computa-
tion, vol. 19, no. 6, pp. 1468–1502, 2007.

[6] R. Siegel, “Land mine detection,” Instrumentation Measurement
Magazine, IEEE, vol. 5, no. 4, pp. 22 – 28, dec 2002.

[7] T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, and B. Nebel,
“Cs freiburg: coordinating robots for successful soccer playing,”
Robotics and Automation, IEEE Transactions on, vol. 18, no. 5,
pp. 685 – 699, oct 2002.

[8] S. Ferrari, “Multiobjective algebraic synthesis of neural control
systems by implicit model following,” Neural Networks, IEEE
Transactions on, vol. 20, no. 3, pp. 406 –419, march 2009.

[9] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduc-
tion: Overview of sensor networks,” Computer, vol. 37, no. 8,
pp. 41–49, 2004.

[10] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. shiuan Peh, and
D. Rubenstein, “Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with zebranet,” 2002.

[11] W. Maass, “Noisy spiking neurons with temporal coding have
more computational power than sigmoidal neurons,” Advances
in Neural Information Processing Systems, vol. 9, pp. 211–217,
1997.

[12] G. Hugh, M. Laubach, M. Nicolelis, and C. Henriquez, “A sim-
ulator for the analysis of neuronal ensemble activity: application
to reaching tasks,” Neurocomputing, no. 0, pp. 847 – 854, 2002,
computational Neuroscience Trends in Research 2002.

[13] N. Maheswaranathan, S. Ferrari, A. M. VanDongen, and
C. Henriquez, “Emergentburstingandsynchronyincomputersimu-
lationsofneuronalcultures,” Frontiers in Computational Neuro-
science, vol. 6, no. 15, pp. 1–11, 2012.

[14] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, “Nanoscale memristor device as synapse in neuromorphic
systems,” NanoLetters, vol. 10, no. 4, pp. 1297–1301, 2010.

[15] I. Ebong and P. Mazumder, “Memristor based stdp learning
network for position detection,” in Proc. of the International
Conference on Microelectronics, Cairo, Egypt, 2010.

[16] J. J. B. Jack, D. Nobel, and R. Tsien, Electric Current Flow in
Excitable Cells, 1st ed. Oxford, UK: Oxford University Press,
1975.

[17] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
ion currents and its applications to conductance and excitation
in nerve membranes,” Journal of Physiology, vol. 117, pp. 500–
544, 1952.

[18] H. Burgsteiner, “Imitation learning with spiking neural networks
and real-world devices,” Engineering Applications of Artificial
Intelligence, vol. 19, no. 7, 2006.

[19] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic
evolving spiking neural networks for on-line spatio- and spectro-
temporal pattern recognition,” Neural Networks, vol. 41, no. 0,
pp. 188 – 201, 2013.

[20] S. M. LaValle, “Planning algorithms,” 2004.
[21] W. Gerstner and W. Kistler, Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge, UK: Cambridge
University Press, 2006.

[22] E. D. Schutter, Computational Modeling Methods for Neurosci-
entists, 1st ed. The MIT Press, 2009.

[23] T. Honore, J. Lauridsen, and P. Krogsgaard-Larsen, “The binding
of [3h]ampa, a structural analogue of glutamic acid, to rat brain
membranes,” Journal of Neurochemistry, vol. 38, no. 1, pp. 173–
178, 1982.

[24] X. Zhang, G. Foderaro, C. Henriquez, A. M. J. VanDongen,
and S. Ferrari, “A radial basis function spike model for indi-
rect learning via integrate-and-fire sampling and reconstruction
techniques,” Advances in Artificial Neural Systems, p. 16 pages,
2012.

[25] H. G. Feichtinger, “Approximate reconstruction of bandlimited
functions for the integrate and fire sampler,” Advanced Compu-
tational Mathematics, p. 12, 2010.

[26] X. Zhang and Z. Xu, “navigation of virtual insect in different
terrains.” [Online]. Available: http://fred.mems.duke.edu/silvia.
ferrari/downloadables/proposals/

[27] P. Arena, L. Patane, V. Stornanti, P. S. Termini, B. Zapf, and
R. Strauss, “Modeling the insect mushroom bodies: Application
to a delayed match-to-sample task,” Neural Networks, vol. 41,
no. 0, pp. 202 – 211, 2013.

6805

