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ABSTRACT

This paper develops a Q-learning approach to Unmanned Air Vehicle (UAV) navigation, or path planning, for
sensing applications in which an infrared (IR) sensor or camera is installed onboard the UAV for the purpose
of detecting and classifying multiple, stationary ground targets. The problem can be considered as a geometric
sensor-path planning problem, because the geometry and position of the sensor’s field of view (FOV) determines
what targets can be detected and classified at any given time. The advantage of this approach over existing path
planning techniques is that the optimal guidance policy is learned via the Q-function, without explicit knowledge
of the system models and environmental conditions. The approach is demonstrated through a demining applica-
tion in which a UAV-based IR sensor is capable of determining the optimal altitude for properly detecting and
classifying targets buried in a complex region of interest.
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1. INTRODUCTION

This paper develops a Q-learning sensor planning approach to Unmanned Air Vehicle (UAV) navigation for
sensing and surveillance applications. The approach is applicable to airborne sensors, such as UAVs or helicopters
with onboard sensors, that are deployed over a region of interest (ROI), for the purpose of detecting and classifying
hidden (e.g. buried) targets, in variable and uncertain environmental conditions, as illustrated in Fig. 1. The
approach is demonstrated through an application involving an infrared (IR) sensor installed onboard a UAV,
referred to as UAV-IR sensor, that flies over a two-dimensional ROI for the purpose of detecting and classifying
buried targets, such as clutter, mines, or unexploded ordnance. The goal of the Q-learning algorithm is to
determine the UAV guidance law or policy that maximizes the number of targets that are properly classified
by the onboard IR sensor, without explicit knowledge of the UAV and sensor models, or of the environmental
conditions. Environmental conditions, such as time-of-day, weather, and vegetation, influence the IR sensor
performance and, therefore, the optimal policy. However, they may be partially unknown or changing over time
and, therefore, they are learned from the Q-function, based on the immediate sensing reward.

Sensor planning is concerned with determining a policy for gathering sensor measurements to support a sensing
objective, such as target classification. When the sensors are installed on mobile platforms an important part of
the problem is determining the optimal sensor path or guidance policy.2 Several approaches have been proposed
for planning the path of mobile robots with on-board sensors to enable navigation and obstacle avoidance in
unstructured dynamic environments, e.g.,.3 However, these methods are not directly applicable to robotic sensors
whose primary goal is to support a sensing objective, rather than to navigate a dynamic environment.4 The
reason is that they focus on how the sensor measurements can best support the robot motion, rather than
focusing on the robot motions that best support the sensing objective.4 This paper addresses the problem of
planning the path and measurements of a robotic sensor, in order to support the sensing objective of properly
classifying multiple targets distributed in an obstacle-populated workspace. This problem can be viewed as a
geometric sensor-path planning problem because the sensor’s field of view (FOV) determines what targets can
be detected and classified at any given time.
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Figure 1. Example of airborne sensing scenario and applications.1

Geometric sensing problems require a description of the geometry and position of the targets, and of the
sensor’s FOV.5 Viewpoint planning has been shown by several authors to be an effective approach for optimally
placing or moving vision sensors based on the target geometry and sensor FOV, using weighted functions or tessel-
lated space approaches.6 In geometric sensor path-planning problem, the optimal sensor path and measurement
sequence depend on the UAV dynamics, the IR sensor’s characteristics and FOV, and on the characteristics of
the ROI.7 Probabilistic deployment is an effective approach for detecting targets in an ROI, by computing a
search path based on the probability of finding a target in every unit bin of a discretized, obstacle-free ROI.8

These existing approaches to geometric sensor-path planning, however, require prior information, such as sensor
and platform models, environmental conditions, and prior sensor measurements. The approach presented in
this paper allows the sensor to learn an implicit model of its own dynamics and measurement process, and of
the ROI, based on the immediate sensing reward calculated by flying over a training ROI in which only the
actual classification of the targets is known a priori. Through Q-learning, the UAV-IR sensor learns an optimal
guidance policy that can be applied to new ROIs, without the need for designer intervention.

The paper is organized as follows. The Q-learning approach is reviewed in Section 2. The mathematical
models used to simulate the system and learn the optimal policy are described in Section 3. The Q-learning
approach to UAV-IR sensor-path planning is presented in Section 4. Then, the methodology is demonstrated
in Section 5 by means of a novel simulation comprised of an integrated demining system where the IR sensor
is installed onboard a UAV that obeys a six-degree-of-freedom equation of motion derived from full-scale wind
tunnel data and physical models reviewed in.9

2. BACKGROUND ON Q-LEARNING

Approximate dynamic programming (ADP) methods, such as Q-Learning, are valuable tools for solving optimal
control problems online, subject to partial or imperfect knowledge of the system state and models.10 Optimal
control problems involve a dynamic system (or process) that is either stochastic or deterministic. Although
various notations are in use in the ADP literature,11 in this paper, we will adopt the notation that is typically used
in the optimal control and dynamic programming community (see12 for a detailed description and introduction).
Assuming time can be discretized and indexed by k, a deterministic dynamical system may be modeled by the
difference equation,

xk+1 = f(xk, uk, k) (1)

where, the state xk at time k is an element of the state space X , and the control uk at time k is an element of the
space A of admissible actions or decisions. If the dynamical system is stochastic, then it may be modeled as a
Markov decision process (MDP).13 An MDP is a tuple M = {X ,A, T, R} representing a random and sequential
decision process. In this case, the state space is a finite set of possible state values, denoted by X = {s1, . . . , sn},
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and the space A = {a1, . . . , am} is a finite set of admissible actions or decisions. T is the transition probability
function, T : X ×A → P (X ), which describes the MDP state transitions, such that whenever the state at time
k has value xk = si and the decision is uk = aj , there is a probability P (xk+1 = sl | xk = si, uk = aj) that the
next state value is xk+1 = sl. In many real-world applications of optimal control, however, the exact form of
the difference equation (1) or the transition matrix T are unknown or approximate, and can only be determined
online.

In optimal control problems, there exists a reward associated with the dynamic system that may be repre-
sented by the reward function, R : X × A → R, specifies the value of the immediate reward, rk = R( xk, uk),
received after executing the action decision uk in state xk. A policy is a mapping of state values to actions,
π : X → A. Let the value function V π(xk) denote the expected discounted return of a policy π, defined as:

V π(xk) = E

{ ∞∑
i=0

γirk+i | π, xk

}
(2)

where, rk+i is the reward received i steps into future, and the discount factor 0 ≤ γ < 1 modulates the
effect of future rewards on present decisions, with small values emphasizing near-term gain and larger values
emphasizing later rewards. Then, an optimal policy π∗ is one that maximizes V π(xk) for all possible states
xk ∈ X . The Markov property guarantees that an optimal policy exists, though it may not be unique, and, thus,
it is associated with an optimal value function V ∗(xk) = maxπ V π(xk). The optimal policy of an MDP, M,
is a fixed point of the Bellman’s equation, which can be determined iteratively using policy iteration or value
iteration algorithms [14, Chapter 5].

In value iteration, the value of a state V (xk) is the total expected discounted reward accrued by a policy
starting at xk ∈ X . The Q function of a state-action pair, Q(xk, uk), is the total expected discounted reward
accrued by a policy that produces uk = π(xk) [14, Chapter 5]. The Bellman equation can be formulated in terms
of the aforementioned functions, such that the state-action value function is

Q(xk, uk) = E {R(xk, uk) + γV (xk+1)} (3)
V (xk+1) = max

uk+1∈A
Q(xk+1, uk+1). (4)

If two functions Q(·) and V (·) satisfy the above Bellman equation, then they specify an optimal greedy policy

π∗(xk) = arg max
uk∈A

Q(xk, uk) (5)

Value-iteration algorithms use eq. (3) to iteratively determine Q(·) and V (·) and, subsequently, determine π∗(·).
Value iteration can be used to determine the optimal policy of an MDP, M, provided the transition probability

function T is known. If T is unavailable, Q-Learning can be utilized to learn an approximate state-action value
function Q(xk, uk) that is iteratively updated by the rule,

Q(xk, uk) ← (1 − α)Q(xk, uk)
+ α[rk + γ max

uk∈A
Q(xk+1, uk)] (6)

where, α is the learning rate, and 0 < α ≤ 1. In this paper, Q-Learning is used to solve a new sensor planning
problem described in the next section, which consists of obtaining the optimal guidance policy for an IR sensor
deployed onboard an UAV for mine detection and classification.

3. MATHEMATICAL MODELS AND PROBLEM FORMULATION

3.1 UAV-IR Dynamic Equation

The problem considered in this paper consists of learning an optimal guidance policy for an UAV with an onboard
infrared (IR) sensor that flies over a minefield W ⊂ R

2, or region of interest (ROI), for the purpose of detecting
and classifying buried landmines and unexploded ordnances (UXOs). The UAV dynamics can be modeled by
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a six-degree-of-freedom equation of motion derived from Newton’s second law using an inertial- and a body-
reference frame.9 The full aircraft state consists of the 12-dimensional vector xa = [u v w xr yr zr p q r φ θ ψ]T ,
where, u, v, w, and p, q, r are the UAV velocities and angular rates in body frame, respectively, and xr, yr,
zr, and φ, θ, ψ, are the UAV translational and angular positions in inertial frame, respectively. The body
state accelerations, denoted by Xb, Yb, Zb, Lb, Mb, and Nb are a function of the available thrust, and of the
aerodynamic force and moment coefficients produced by the controls for the present aircraft state and wind field.
The model estimates low-angle-of-attack Mach effects, power effects, and moments and products of inertia by
using available full-scale wind tunnel data and physical characteristics, according to the methods described in.9

The moments of inertia Ixx, Iyy, Izz, and product of inertia Ixz are estimated using simplified mass distributions,
and are held fixed at all times. Then, using the classical aircraft angles definitions and coordinate transformations
described in,9 the following UAV equation of motion can be obtained:

u̇ = Xb + gx + rv − qw

v̇ = Yb + gby + pw − ru

ẇ = Zb + gbz + qu − pv

ẋr = u cos θ cos ψ + v(sin φ sin θ cos ψ − cos φ sin ψ)
+ w(cos φ sin θ cos ψ − sin φ sin ψ)

ẏr = u cos θ sin ψ + v(sin φ sin θ sin ψ + cos φ cos ψ)
+ w(cos φ sin θ sin ψ − sin φ cos ψ)

żr = −u sin θ + v sin φ cos θ + w cos φ cos θ

ṗ =
q

(IxxIzz − I2
xz)

{IzzLb + IxzNb − p[Ixz(Iyy − Ixx

− Izz)] + r[I2
xz + Izz(Izz − Iyy)]

}
q̇ =

(
Mb − pr (Ixx − Izz) − Ixz

(
p2 − r2

))
Iyy

ṙ =
q

IxxIzz − I2
xz

{IxzLb + IzzNb + r[Ixz(Iyy − Ixx

− Izz)] + p[I2
xz + Ixx(Ixx − Iyy)]

}
φ̇ = p + (q sin φ + r cos φ) tan θ

θ̇ = q cos φ − r sin φ

ψ̇ =
q sin φ + r cos φ

cos θ
(7)

The aircraft control inputs consist of the throttle δT , the elevator δE, the aileron δA, and rudder δR, i.e.,
ua = [δT δE δA δR]T . As shown in,15 the UAV can be fully controlled by means of a reduced state vector
xUAV = [V γ q θ r β p μ]T , which is formulated in terms of the aircraft speed V , sideslip angle β, and path
angle γ, where,

V =
√

u2 + v2 + w2 (8)
β = sin−1 (v/V ) (9)
γ = sin−1 (−w/V ) (10)

and in terms of the bank angle μ, defined in.9

3.2 Model of IR Sensor Measurements
The field-of-view (FOV) of the onboard IR sensor is assumed to be a closed and bounded subset of an Euclidian
space, S = [0, LIR]2 ⊂ R

2, with the square geometry illustrated by the grey area in Fig. 2. It can be easily
shown using planar geometry that the size of the FOV is a function of the aircraft altitude H = −zr,

LIR = H sin θIR (11)
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where, zr is defined positive downward by convention,9 and θIR is the sensor’s aperture angle. In this paper, it
is assumed that θIR is held constant, and that the orientation of the IR sensor is fixed with respect to the UAV
body frame. It follows that the position and size of the FOV are a function of time, S = S(t), and change based
on the aircraft trajectory or path. For simplicity, it is also assumed that the centroid of S(t) coincides with the
UAV coordinates in inertial frame, xr(t) and yr(t) at any time t.

Minefield

BinFOV

H

H = zr

xr

yr

Figure 2. Problem description.

As illustrated in Fig. 2, the position and geometry of the FOV determine which regions of the minefield
can be measured by the airborne IR sensor. The IR sensor measurements are influenced by its height above
the ground (H), and by the environmental conditions in the minefield. A two-dimensional grid is superimposed
on the minefield dividing it into unit-square cells. Soil characteristics, vegetation, and time-varying meteoro-
logical conditions, modeled according to,16,17 are assigned to each cell, either at random or at user-specified
positions. Buried targets are modeled as anti-tank mines (ATM), anti-personnel mines (APM), unexploded
ordnance (UXO), and clutter objects (CLUT) that are sampled and reproduced using the Ordata Database,18

which contains over 5,000 explosive items and 3,000 metallic and plastic objects that resemble anti-personnel
mines. Each target i occupies one or more cells in the minefield depending on its size zi, and is characterized by
a depth di, and shape si (Table 1). The IR sensor mode, vIR, is given by the UAV altitude (H) in km, which is
discretized in a set of m possible values {a1, . . . , am}. At any given time, the space of admissible values of vIR

depends on the UAV speed, and is known from aircraft flight envelope. The aircraft flight envelope, denoted
by E , is the set of altitudes and velocities for which the aircraft can be trimmed (an example is shown in Fig.
4). The envelope’s boundary is designed by considering the stall speed, the thrust/power required and available,
compressibility effects, and the maximum allowable dynamic pressure to prevent structural damage.9

w
i

g

smi zmi

sr

si

di

yi vIR

zi

Figure 3. BN model of IR sensor (taken from7).

IR sensors detect anomalies in infrared radiation and, based on their height above the ground, build an image
of an horizontal area, obtaining cursory measurements of shape and size for shallow-buried objects. Because
they rely on temperature variations, their performance is highly influenced by illumination, weather, vegetation,
and soil properties. As shown in,19 an IR sensor can be modeled by the Bayesian network (BN) in Fig. 3, based
on data and on the IR working principles and detailed studies of Agema Thermovision 900 sensors.17 All BN
nodes represent variables that influence the IR measurement process, and are defined as shown in Table 1. The
IR BN model approximates the joint probability mass function (PMF) underlying the IR sensor measurements
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Table 1. IR Sensor Variables and Environmental Conditions
Symbol: Nodes: Range:

yi Target classification {mine (1), not mine (0)}
vIR IR mode (km) {a1, . . . , am | ah = h · 0.2km}
E Soil moisture (%): sr {dry [0, 10], wet (10, 40], saturated (> 40)}

Soil composition: sc {very-sandy, sandy, high-clay, clay, silt}
Soil uniformity: su {yes, no}

Vegetation: g {no-vegetation, sparse, dense}
Weather: w {clear, overcast, raining}

Illumination: i {low (7-10 a.m. and 6-9 p.m.), medium (10-1 p.m.), high (1-6 p.m.)}
Fi Depth (cm): di {surface [0], shallow-buried (0, 12], buried (12, 60], deep-buried (> 60)}

Size (cm): zi {small (2, 13], medium (13, 24], large (24, 40], extra-large (> 40)}
Shape: si {cylinder, box, sphere, long-slender, irregular}

in terms of the recursive factorization

P (vIR, E, Mi, Fi, yi) = P (Mi | vIR, E, Fi)P (Fi | yi)
× P (yi)P (vIR)P (E), ∀i (12)

Where, Fi = {di, zi, si} is the set the features of the ith target, Mi = {dmi , zmi , smi} are the measured target
features extracted from sensor images, and yi denotes the ith target classification with the range Y = {mine, not
mine}. In this paper it is assumed that the environmental conditions Ei are constant and uniform everywhere in
W, but are possibly unknown. The factors in (12) are conditional PMFs given by the BN conditional probability
tables (CPTs) (see20 for a comprehensive review of BNs). By this approach, non-Gaussian sensor models can be
obtained and used for sensor planning, as shown in Section 4.

As shown in previous research,7,19 when a sensor is installed on a mobile platform, the measurement gathering
process can be modeled as a Markov decision process (MDP), under proper assumptions. Although the MDP
transition probability matrix of the UAV-IR system could potentially be obtained from the nonlinear dynamic
equation (7), the BN sensor model, environmental maps, and weather forecasts, it would be computationally
prohibitive to determine it for every minefield, weather, UAV, and IR sensor characteristics. Therefore, the goal
of this paper is to develop a Q-Learning technique that can learn the UAV-IR guidance policy in real time from
the sensing reward, without explicit knowledge of the transition probability matrix. By this approach, the same
guidance algorithm can be applied to different airborne sensors and minefields, without redesigning the algorithm
or modeling every system component.

4. Q-LEARNING APPROACH TO UAV-IR SENSOR-PATH PLANNING

The problem of determining the optimal sensor path for searching and classifying hidden targets, known as
treasure hunt problem, was first formulated as an MDP in.21 An effective Q-learning technique for solving
treasure hunt problems was presented in,22 and demonstrated through the benchmark problem of the game of
CLUE�. In this paper, Q-learning is applied to the new UAV-IR demining problem described in Section 3, which
can be viewed as a new application example of treasure hunt. Since the sensor is installed onboard a UAV, the
UAV path determines what cells can be intersected by the sensor’s FOV, and measured by the IR sensor at any
time.

4.1 Definition of Q-Learning State and Control Vectors

As a first step, the aircraft dynamics (7) are evaluated at N equally-spaced discrete points in time, tk = t0 +kΔt,
k = 0, . . . , (N − 1), over the interval [t0, tf ], where Δt = (tf − t0)/N is the discretization interval. Between any
two points in time, the control is assumed to be piecewise-constant and the UAV dynamics (7) are integrated
by a 3th order Runge-Kutta integration routine [23, pg. 77]. In order to apply the Q-Learning technique in
Section 2, the MDP state xk must be observable, and may be defined as a subset of the full system state. Thus,
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based on the problem formulation in Section 3, the xk = [xr(tk) yr(tk) zr(tk) V (tk)]T , since this subset of state
variables determines the IR-sensor FOV’s size and position at tk. The FOV’s size and position, in turn, determine
the hidden target characteristics in cell i, denoted by the set ζi = {di, zi, si, yi}, and the hidden environmental
conditions Ei, through the subset of cells that are intersected by the FOV, with index set Ik. The environmental
conditions may or may not be known depending on the scenario. The set ζi of hidden variables can be estimated
only after the FOV has intersected cell i.

The objective of the optimal greedy guidance policy, uk = π∗(xk), is to compute the next UAV position, at
tk+1, such that the resulting UAV path such that the IR sensing performance over time is maximized. Therefore,
the control vector is defined as the next waypoint, i.e., uk = [xr(tk+1) yr(tk+1) zr(tk+1)]T , where zr(k + 1)
determines the next IR sensor mode vIR(tk+1). In this approach, the Q-learning technique is said to provide
an outer-loop algorithm, whose output can be followed by means of the inner-loop proportional-integral (PI)
controller described in.15

4.2 DEFINITION OF Q-LEARNING REWARD

After the IR measurements are obtained from all the cells inside the sensor’s FOV, the IR BN model (12)
is used to estimate (or infer) the target classification based on the measured target features (Mi) extracted
from sensor images, the sensor mode vIR and, possibly, known environmental conditions. In this paper,
BN inference is performed by junction-tree algorithm available through the Matlab� BN-Toolbox commands
jtree inf engine, enter evidence, and marginal nodes.24 The inference algorithm provides the posterior PMF
P (yi, di, zi, si | vIR, dim

, zim
, sim

, Ei), and the target classification is estimated by choosing the value of highest
posterior probability, i.e.:

ŷi = arg max
yk

i ∈Yi

P (yi | vIR, dim , zim , sim , Ei) (13)

The estimated target classification is then accompanied by the CL, denoted by ci = P (ŷi | vIR, dim
, zim

, sim
, Ei),

which represents the confidence in the estimated value and, for a binary variable, is 0.5 < ci ≤ 1.

Let y∗
i denote the actual classification of the target in cell i. Then, the classification error defined as,

ei = |ŷi − y∗
i | (14)

also is binary, and takes a value of 0 when the estimate is correct, and a value of 1 when the estimate is incorrect.
If the estimate is correct, a higher CL is desirable, but if the estimate is incorrect, a lower CL is desirable because
it indicates that the estimate is uncertain. Thus, the IR sensor performance is reflected in the classification error
(14) and in the CL. Additionally, the sensor performance depends on application-specific objectives for deploying
the UAV-IR. For example, in some applications it may be of interest to minimize the number of false alarms,
whereas in others it may be of interest to find cells without targets, in order to determine a safe path through
W. In this paper, the application’s objectives are characterized by a discrete risk function defined as,

ρi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1 if ŷi = 1, y∗
i = 0 (false alarm)

w2 if ŷi = 0, y∗
i = 1 (misclassification)

w3 if ŷi = 1, y∗
i = 1 (mine detection)

w4 if ŷi = 0, y∗
i = 0 (void-cell detection)

(15)

where, w1, . . . , w4 are user-defined positive constants that weigh the relative importance of the four cases listed
in (15). If in a mission a false alarm poses a much greater risk than a misclassification, then w1 >> w2. If, in
addition, it is of secondary importance to correctly classify mines, then w1 >> w3 >> w2, w1, and so on.

Then, the immediate reward from cell i can then be defined as a tradeoff between the measurement value
and error,

ri = Wv[(1 − ei)]ciρi − We(eiciρi) (16)

where Wv and We are user-defined positive constants that represent the desired tradeoff between the measurement
value of obtaining correct classifications of mines or void cells, and the measurement error of incorrectly classifying
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mines or false alarms. At every time tk, the IR sensor obtains measurements from a set of cells in its FOV, S(tk)
and, thus, the total value of the immediate reward is,

rk = R(xk, uk) =
∑

i∈S(tk)

Wv[(1 − ei)]ciρi − We(eiciρi) (17)

and can be computed from the IR sensor measurements, and the actual target classification y∗
i .

In this paper, the Q function is approximated by a feedforward sigmoidal neural network (NN),

Q(xk, uk) = W2Φ(W1 [xT
k uT

k ]T + b1) + b2 (18)

by means of the update rule (6) as the UAV explores the state and control spaces. The s-dimensional operator
Φ represents one hidden layer of s sigmoidal functions of the form σ(n) ≡ 1/(1 + e−n). The NN weights
W1 ∈ R

s×(n+m), W2 ∈ R
1×s, b1 ∈ R

s, and b2 ∈ R
2, are determined by the resilient backpropagation algorithm

(‘trainrp’25). A training set for (18) is formed according to the Q-learning approach. As a first step, the Cartesian
product of the state and control spaces X × A is discretized. With the state and control definitions in Section
4.1, this is achieved by discretizing the flight envelope (e.g., see crosses in Fig. 4). As a second step, the rule
in (6) is applied iteratively over the discrete time tk, while exploring W (already discretized into cells) by flying
the UAV at every feasible pair of altitudes and velocities.

After the reward (17) is evaluated for every pair of state and control values explored by the UAV-IR, the
data can be used to learn the Q function using (18). Then, the optimal policy, uk = π∗(xk), is determined by
maximizing the learned Q function using the greedy rule in (5). The effectiveness of this approach is demonstrated
in the next section, using the system models described in Section 3.

5. NUMERICAL SIMULATIONS AND RESULTS

The UAV is simulated by integrating the ODE in (7), using the Matlab� program FLIGHT, developed in.9

This program simulates the aircraft flight, and determines the trim conditions for any nominal altitude and
velocity that lie inside the aircraft flight envelope E , illustrated in Fig. 4. In this paper, it is assumed that the
UAV maintains steady-level longitudinal flight, and that the Q-guidance algorithm must determine the optimal
nominal altitude H∗ and velocity V ∗, based on the UAV-IR sensing reward obtained by flying over a minefield
W with unknown geometric and environmental conditions, and known targets.
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Figure 4. Aircraft Flight Envelope, taken from.15

The UAV-IR sensor, and the minefield W are simulated numerically, using the mathematical models described
in Section 3. In the simulation, as soon as the FOV of the IR sensor, F , intersects a cell containing a target,
measurements are reproduced and deteriorated based on the target features, the sensor’s mode and working
principles, and the environmental conditions in the cell.19 As an example, the set of cells measured by the
UAV-IR sensor at a sample moment in time, and an altitude a8 = 1.6 km is shown by purple bins in Fig. 5.
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Figure 5. Instantaneous UAV-IR sensor’s FOV at a8 = 1.6 km.

Red bins represent undetected targets (mines or clutter), green bins represent detected targets, and black bins
represent obstacles.

In this paper, the environmental conditions in Table 1 are assumed uniform in W and, therefore, the UAV-IR
can learn the Q-function by flying over W at various altitudes and velocities in E . At higher altitudes, the IR
measurements are typically less accurate, but more cells are measured because the FOV is larger. At lower
altitudes, the FOV is smaller, translating to less cells being measured by the sensor, but the IR measurements
are more accurate. As an example, the cells measured by the UAV-IR sensor along a path at a8 = 1.6 km, and
during the time interval [t0, tf ], are shown by the purple bins in Fig. 6, using the same color legend used in Fig.
5. For comparison, the cells measured along the same path at a32 = 6.4 km is shown in Fig. 7.
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Figure 6. Cells measured by UAV-IR during [t0, tf ], at a8 = 1.6 km.

As shown in Fig. 8, the percentages of mines (red bins) and clutter-targets (yellow bins) that are correctly
classified is higher at a8, whereas the percentage of targets that were undetected (blue bins, labeled by “U”) is
higher at a32. The CL (%) of the classifications, plotted on each target detected in Fig. 8, also tends to be higher
at lower altitudes. While the UAV-IR explores the state space, its measurements and the actual classification
of the targets are used to compute the reward in (17), and to learn the Q-function from (6). In this paper, the
weights in the risk function (15) are chosen as w2 = w3 = 1 in order to represent a high risk for incorrectly
classifying mines, and as w1 = w4 = 0.1 in order to represent a low risk for incorrectly classifying cells that
contain clutter or are empty. As a result, the Q-function learned by UAV-IR, and approximated by the NN in
(18), is the highly nonlinear function that is plotted in Fig. 9 with respect to vIR.

Once learning is completed, the greedy policy in (5) is computed by maximizing the learned Q-function using
the Matlab� Optimization Toolbox.26 This policy provides the optimal sensor’s altitude at time t(k+1) as a
function of the present aircraft state (altitude and velocity) at tk. In this study, the optimal altitude is found to
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Figure 7. Cells measured by UAV-IR during [t0, tf ], at a32 = 6.4 km.
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Figure 8. Classification results for the UAV-IR at a8 = 1.6 (a), and at a32 = 6.4 km (b), during a sample time interval.

be H∗ = a25 = 5.0 km. Thus, as verified by the sensing performance comparison in Table 2, when the UAV-IR
sensor flies at this altitude, it obtains the highest number of correct mine detections, as specified by through the
risk function (15).

Table 2. Performance Comparison

UAV-IR
Mode

Total
Bins

Mine
Detections

(CL)

Clutter
Detections

(CL)
Undetected

Targets

a8 515 15 (74%) 5 (77%) 50
a25 1295 19 (69%) 8 (71%) 73
a32 1551 17 (67%) 9 (67%) 81

6. CONCLUSIONS AND FUTURE WORK

This paper presents a novel Q-learning approach to geometric sensor path planning that is applicable to Un-
manned Air Vehicle (UAV) navigation for sensing and surveillance applications. The goal of the Q-learning
algorithm is to determine the UAV guidance policy that maximizes the number of targets that are properly
classified by the onboard IR sensor, without explicit knowledge of the UAV and sensor models, or of the envi-
ronmental conditions. By this approach, the UAV-IR sensor learns the Q-function based solely on the actual
classification of known targets buried in the ROI. Through the Q-function, the sensor learns about the system
models implicitly, and obtains a greedy policy by minimizing the Q-function with respect to the control. The
approach is demonstrated through an application involving an IR sensor installed onboard a UAV that flies over
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Figure 9. Q-function learned by UAV-IR as a function of vIR.

a two-dimensional ROI for the purpose of detecting and classifying buried targets, such as clutter, mines, or
unexploded ordnance.
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