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ABSTRACT

The problem of surveilling moving targets using mobile sensor agents (MSAs) is applicable to a variety of
fields, including environmental monitoring, security, and manufacturing. Several authors have shown that the
performance of a mobile sensor can be greatly improved by planning its motion and control strategies based
on its sensing objectives. This paper presents an information potential approach for computing the MSAs’
motion plans and control inputs based on the feedback from a modified particle filter used for tracking moving
targets. The modified particle filter, as presented in this paper implements a new sampling method (based
on supporting intervals of density functions), which accounts for the latest sensor measurements and adapts,
accordingly, a mixture representation of the probability density functions (PDFs) for the target motion. It is
assumed that the target motion can be modeled as a semi-Markov jump process, and that the PDFs of the
Markov parameters can be updated based on real-time sensor measurements by a centralized processing unit
or MSAs supervisor. Subsequently, the MSAs supervisor computes an information potential function that is
communicated to the sensors, and used to determine their individual feedback control inputs, such that sensors
with bounded field-of-view (FOV) can follow and surveil the target over time.

Keywords: Target tracking, surveillance, mobile sensor networks, multi-agent systems, information value, po-
tential field, particle filtering.

1. INTRODUCTION

The paradigm of the moving target surveillance using a network of mobile sensor agents (MSAs) is found in
a variety of applications, including the monitoring of urban environments,1 tracking anomalies in merchandise,
manufacturing plants,2 or information, and tracking of endangered species in a wild area.3 Modern surveillance
systems often consist of MSAs deployed to detect and track moving targets in a complex and unstructured
environment. A mobile sensor agent, comprised of an autonomous vehicle equipped with embedded wireless
sensors and communication devices, is often deployed to cooperatively track and surveil moving targets based
on limited information that only becomes available when the target enters a sensor’s field-of-view (FOV) or
visibility region. Typically, the objectives are to maximize tracking accuracy and reliability by means of limited
sensor resources, namely energy and communications. Thus, the MSAs’ performance can be greatly improved by
planning the sensor’s motion and control, and by taking into account the FOV geometry, the sensor dynamics,
and the target measurements that become available over time.1,4–8 In particular, when the sensor’s FOV is
bounded, the sensor’s position and orientation determine what targets can be measured at any given time.
Therefore, the sensor path must be planned in concert with the measurement sequence.

Cell decomposition4,9 and probabilistic roadmap methods8 have been successfully developed for solving geo-
metric sensor path planning problems with stationary targets, such as the treasure hunt. Visibility-based methods
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have been proposed in.10–13 to account for the sensor’s dynamics and FOV. However, existing methods typically
are not applicable to moving targets, and do not account for the uncertainty associated with target tracking,
for example the uncertainty due to complex environmental conditions and online sensor measurements, where,
tracking refers to the estimation of the state of a moving target through one or more sensors. The problems of
data association and fusion that arise in tracking multiple targets by means of multiple sensors have received
considerable attention.14–18 Typically, in these problems the target is modeled as a linear dynamic system with
random disturbance inputs, and its state is predicted through frequent observations of its measurable output,
which include additive random noise characterized by a Gaussian distribution. Kalman filter equations are then
used to optimally estimate the target state based on the sensor measurements collected over time. While this
approach is well suited to long-range high-accuracy sensors, such as radars, and their applications, many of the
underlying assumptions are violated in MSAs, because the targets are non-cooperative and inherently random,
and the sensor measurement errors are not additive and non-Gaussian. Furthermore, there is no systematic
approach for incorporating the results of the tracking algorithms and the effects of environmental and operating
conditions into the motion planning problem.

In this paper, a novel potential function method is developed for planning the sensor path and control inputs
based on the feedback provided by the target tracking algorithm. While the classical Kalman filter19 assumes
that the target dynamic and output equations are linear, and the random inputs can be modeled by a Gaussian
distribution, the extended Kalman filter (EKF)20 can be used when the system dynamics can be linearized about
nominal values predicted by a Taylor expansion. The unscented Kalman filter (UKF)21 is based on the knowledge
of the mean and the covariance of a given function by the unscented transformation (UT) method,22 and can
be applied to compute the mean and covariance of a function up to the second order of the Taylor expansion.
However, the efficiency of these filters tends to decrease as the system dynamics become highly nonlinear, as due
to increasingly stringent and complex operating and environmental conditions. Thus, a non-parametric method
based on condensation and Monte Carlo simulation, known as particle filter, has been proposed23 for tracking
multiple targets exhibiting nonlinear dynamics and non-Gaussian random effects.

Particle filters are well suited to modern surveillance applications because they can be used to estimate
Bayesian models in which the hidden variables are connected by a Markov chain, over discrete time, but the
targets’ state is continuous, as in Markov motion models. In the particle filter method, a weighted set of particles
or point masses are used to represent the PDF of the target state by means of a superposition of weighted Dirac
delta functions.24 At each iteration of the particle filter, particles representing possible target state are sampled
from an importance density function.25 The weight associated with each particle is obtained from the target-state
likelihood function and the prior estimation PDF of the target state. When the effective particle size is smaller
than a predefined threshold, a re-sampling technique is implemented, as explained in.26 One disadvantage of
conventional particle-filtering techniques is that the target-state transition function is used as the importance
density function to sample particles, without taking new observations into account.27 As a result, when the target
state transition function is much broader than the likelihood function, few sampled particles have proper locations
and weights. An improved particle filter, the unscented particle filter (UPF) was proposed in,27 to overcome this
difficulty, by combining UKF and the particle-filtering technique. The UKF generates a proposed distribution
in which the current measurements are considered, and then the distribution is used as the importance density
to sample particles.

Another disadvantage of particle filters is that the point-mass representation provides limited information
about the estimated PDF of the target state, and does not account for the targets’ dynamic equations. To
overcome both of these disadvantages of existing particle-filter tracking algorithms, this paper presents a new
sampling method and a new representation for the approximation of the target state PDF that also accounts
for the target dynamics. In the proposed method, the target dynamics are modeled by a semi-Markov jump
process, and the particles are sampled based on the supporting intervals of the target-state likelihood function
and the prior estimation function of the target state. Where, the supporting interval of a distribution is defined
as the 90% confidence interval.28 The weight for each particle is obtained by considering the likelihood function
and the transition function simultaneously. Then, the weighted expectation maximization (EM) algorithm is
implemented to use the sampled weighted particles to generate a normal mixture model of the distribution.
Unlike the Dirac-delta representation, the normal mixture model of the target-state PDF can then be easily
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combined with the target-dynamic equation. A potential field method is developed to plan the sensor motion
and control such that each sensor can surveil a target, by maintaining a predefined distance between its platform
and the target, such that the target remains inside the sensor’s FOV. The stability of the resulting sensor control
law is guaranteed using Lyapunov stability theory.

This paper is organized as follows. Section 2 describes the tracking and surveillance problem formulation
and assumptions. The background on the particle filter and the potential field methods is reviewed in Section
3. Section 4 describes the new sampling method used in particle filter and the mixture Gaussian distribution
representation for the approximation of the target state PDF, as well as a modified potential field method. The
simulations and results are shown in Section 5. Conclusions and future work are given in Section 6.

2. PROBLEM FORMULATION AND ASSUMPTIONS

The problem considered in this paper consists of determining the motion and control law of a MSA, indexed by
i ∈ IS , deployed for the purpose of tracking and surveilling a moving point-mass target, indexed by j ∈ ITT , in a
region of interest (ROI) comprised of a bounded, two-dimensional Euclidian workspace W ∈ R

2. Where, IS and
IT denote the index sets of the network of MSAs and targets, respectively, and it is assumed that the assignment
problem has been resolved through multitarget-multisensor data association and assignment algorithms.29,30

The sensor has platform geometry Ai ∈ R
2, and a bounded FOV Si ∈ R

2. FAi is a moving Cartesian frame
embedded in Ai such that every point of Ai, and every point of Si, have fixed positions with respect to FAi .
Then, using a suitable transformation, the ith sensor state Yκ

i = [xκ
i yκ

i ẋκ
i ẏκ

i ]T can be used to specify the
position and orientation of all points in Ai and Sj at tκ, with respect to a fixed inertial frame FW , embedded
in W. Where, xκ

i and yκ
i are the coordinates of the ith sensor in FW , and ẋκ

i and ẏκ
i are its linear velocities in

FW . Additionally, let vκ
i = [xκ

i , yκ
i ]T . Now, let ρij denote the geometric distance between the origin of FAi and

its nearest target j in W. Then, the objective of the ith MSA is to maintain ρij within a predefined range,

ρ0 < ρij < ρ1 (1)

while avoiding a set of known, fixed, and rigid obstacles in W, denoted by Bl, l ∈ IB . Where, IB is an obstacle
index set, and ρ0 and ρ1 are constant parameters specified by the user.

In this paper, it is assumed that the FOV of every sensor i ∈ IS is a disk Si ∈ R
2 with radius r. The sensor

dynamics are assumed to be linear and time-invariant (LTI), and to be discretized with respect to time, such
that the sensor state transition function can be written in state-space form as,

Yκ+1
i = AYκ

i +

⎡
⎣0

0
δ

⎤
⎦uκ

i , for κ = 0, 1, . . . , (2)

where, κ is the time index, δ is the time span between tκ+1 and tκ, ui ∈ R
2 is the control vector, v̇κ

i = uκ
i , and,

A ≡

⎡
⎢⎢⎣

1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3)

For simplicity, the sensor geometry is assumed to only translate in W, such that the heading of the sensor is
maintained constant at all times.

The motion of target j ∈ IT is modeled as a continuous-time Markov motion process, also known as semi-
Markov jump process,31 where, we say that xt is a continuous-time Markov process if for 0 ≤ t0 < · · · <
tk−1 < tk < t we have Pr(xt ∈ B | xk = sk, xk−1 = sk−1, · · · , x0 = s0) = Pr(xt ∈ B | xk = sk) where Pr
denotes the probability transition function, and s1, . . . , sk ∈ X are realizations of the state space X . Now, let
the random variables θk

j and vk
j represent the jth target’s heading and velocity, respectively, during the time

interval Δtk = (tk+1 − tk), k = 1, 2, . . .. Then, the target motion can be modeled as a continuous-time Markov
process with a family of random variables {xk

j , θk
j , vk

j }, where xk
j ∈ W is the jth target position at tk. A three-

dimensional real-valued vector function maps the family of random variables {θk
j , vk

j } into the random vector
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xj(t), representing the target position at every time t ∈ [t0, tf ], such that the value of the target motion process
is given by,

ẋj(t) = vj(t)[cos θj(t) sin θj(t)]T , (4)

and, therefore, the motion of target j is a Markov process. The third component of the vector function is the
identity function. It follows that θj and vj are piece-wise constant, while xj has discontinuities at the time
instants tk, when the target j changes its heading and velocity. In this paper, it is assumed that the instants
when the target changes its heading are known a-priori, and all targets move at a constant speed vj = v. Also,
it assumed that all time intervals are of constant length, i.e., Δtk = τ , for ∀k.

Now, let Xk
j = [xk

j θk
j ]T denote the jth target state at time step k. The probability transition function for

the target heading at the instant tk of a discontinuity, is defined as,

f(θk+1
j | θk

j ) = N (θk+1
j | μ + θk

j , σ2) (5)

where the mean of heading change μ and the variance of the heading change σ are constant parameters that are
assumed known a-priori. The target heading remains constant during every time interval Δtk, The target state
transition function at every discontinuity is given by,

Xk+1
i = Xk

j +

⎡
⎣cos(θk

j )τv
sin(θk

j )τv
N (μ, σ2)

⎤
⎦ , for ∀k. (6)

where τ is the known length of the time interval Δtk.

The MSA network attempts to obtain measurements of the targets’ positions once with a frequency of 1/δ
(Hz), where δ < τ . Thus, if a time instant tκ, the jth target is inside the ith sensor’s FOV, then the ith MSA
can obtain a measurement of the jth target position,

zκ
i = xκ

j + νij ⇐⇒ xj(tκ) ∈ Si (7)

where xκ
j is the jth target’s position at time tκ, and νij is a white-noise error with standard deviation Σij . If

xj(tκ) �∈ Si, no measurements are returned to the ith sensor.

3. BACKGROUND

3.1 Particle Filter Methods

The particle filter technique is a recursive model estimation technique based on sequential Monte Carlo. It is
applicable to nonlinear system dynamics, with non-Gaussian random inputs. Moreover, because of their recursive
nature, particle filters are easily applicable to online data processing and estimation. The main idea of particle
filters is to represent the PDF functions with properly weighted and relocated point-mass, known as particles.
These particles are sampled from an importance density which is crucial to the particle filter algorithm. Let
{xκ

j,p, w
κ
j,p}N

p=1 denote the weighted particles that are used to approximate the posterior PDF f(xκ
j | Zκ

j ) for the
jth target at tκ, where Zκ

j = {z0
j , . . . , z

κ
j } denotes the set of all measurements obtained by sensor i, from target

j, up to tκ. Then, the posterior probability density function of the target state, given the measurement at tκ
can be modeled as,

f(xκ
j | Zκ

j ) =
N∑

p=1

wκ
j,pδ(x

κ
j,p),

N∑
p=1

wκ
j,p = 1 (8)

where wκ
j,p is non-negative and δ is the Dirac delta function.23 Although different particle filter techniques have

been proposed,25 the techniques always consist of the recursive propagation of the particles and the particle
weights. In each iteration, the particles xκ

j,p are sampled from the importance density q(x). Then, weight wk
j,p

is updated for each particle by

wκ
j,p ∝

p(xκ
j,p)

q(xκ
j,p)

(9)
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where p(xκ
j,p) ∝ f(xκ

j,p | Zκ
j ). Additionally, the weights are normalized at the end of each iteration.

The target state transition function is used as the importance density function. Thus, the sampled particles
can not fully represent the target state estimation since they are sampled without considering the new measure-
ment. Another common drawback of particle filters is the degeneracy phenomenon,27 i.e., the variance of particle
weights accumulates along iterations. This phenomenon indicates that a number of particles have low weights
and no contributions in approximating the probability density function f(xκ

j | zκ
j ) but put heavy computational

burden to the algorithm. A common way to evaluate the degeneracy phenomenon is the effective sample size
Ne,26 obtained by

Ne =
1∑N

p=1(w
κ
j,p)2

(10)

where wκ
j,p, p = 1, 2, . . . , N are the normalized weights. In general, a re-sampling procedure is taken when

Ne < Ns, where Ns is a predefined threshold, and is usually set as N
2 . Let {xκ

j,p, w
κ
j,p}N

p=1 denote the particle
set that needs to be re-sampled, and let {xκ∗

j,p, w
κ∗
j,p}N

p=1 denote the particle set after re-sampling. The main
idea of this re-sampling procedure is to eliminate the particles having low weights by re-sampling {xκ∗

j,p, w
κ∗
j,p}N

p=1

from {xκ
j,p, w

κ
j,p}N

p=1 with the probability of p(xκ∗
j,p = xκ

j,s) = wκ
j,s. At the end of the resampling procedure,

wκ∗
j,p, p = 1, 2, . . . , N are set as 1

N . However, the resampling procedure repeats the particles with high weights a
number of times stochastically. This leads to diversity loss of particles.

In this paper, a modified particle filter approach with a new sampling method based on supporting intervals
of PDFs is proposed. The advantage of the proposed sampling method is that the latest measurement by sensors
is taken into account when particles are sampled. Moreover, a mixture Gaussian is used to represent the PDF
of the target state instead of a set of properly weighted and located point-mass approximation by Dirac delta
function in order to avoid the degeneracy phenomenon.

3.2 Potential Field

The potential field method is a robot motion planning technique that uses an artificial potential function to
find the obstacle-free path in an Euclidean workspace. The geometries and positions of the obstacles and
targets are considered as sources to construct a potential function U which represents the characteristics of
the workspace. Although different approaches have been proposed to generate the potential function based on
obstacles’ geometries,32–34 typically the potential function consists of two components, the repulsive potential
Urep generated by the obstacles,35 and the attractive potential Uatt generated by the robot goal configuration,

U(q) = Uatt(q) + Urep(q) (11)

where q = [x y θ]T is the robot configuration inW, which specifies the robot’s position (x and y coordinates) and
orientation (θ) with respect to FW .35 Recently, an information potential approach was developed for generating
an attractive potential based on target geometries and information value in sensor path planning problems, such
as the treasure hunt.36 Once the potential is generated, a virtual force is applied on the robot that is proportional
to the negative gradient of U , and can be implemented through a suitable control law, such that U constitutes
a Lyapunov function that may be utilized to prove closed-loop stability.

For a robot with a finite platform geometry A, the potential field is generated by taking into consideration
the robot configuration space C, and the corresponding obstacles’ geometries B. A C-obstacle is defined as the
subset of C that causes collisions with at least one obstacle in W, i.e., CBl ≡ {q ∈ C | A(q)∩Bl �= ∅}, where A(q)
denotes the subset of W occupied by the platform geometry A when the robot is at the configuration q. The
union of all C-obstacles in W is referred to as the C-obstacle region. Thus, in searching for targets in W, the
robotic sensor is free to rotate and translate in the free configuration space, which is defined as the complement
of the C-obstacle region CB in C, i.e., Cfree = C\CB.35

Then, the repulsive potential can be represented as,

Urep(q) =

{
1
2η( 1

ρ(q) − 1
ρ0

)2 if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

(12)
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where η is a scaling factor, ρ(q) is the distance between the robot and the nearest obstacle in Euclidean space,
and ρ0 is a constant parameter that is chosen by the user. The attractive potential is given by,

Uatt(q) =
1
2
ερ2

goal(q) (13)

where ε is a scaling factor, and ρgoal(q) is the distance between the robot and the goal configuration. In (12) and
(13), only the obstacle closest to q is considered to generate Urep(q), and the target is assumed to be a single
point in Cfree. This makes the potential function difficult to update when new obstacles and targets are sensed
during the path execution, because for each value of q, the potential needs to update by computing its distance
from the closest obstacle and target.

In this paper, a modified potential function that taking the target Markov properties into account is proposed
in order to shorten sensors’ traveling distance. Furthermore, when the geometric distance ρ between the sensor
platform and nearest target is smaller than ρ0, the target is treated as an obstacle, while ρ is greater than ρ1,
the target is treated as a target.

4. METHODOLOGY

The methodology presented in this paper obtains a potential-field based control law for an MSA, to surveil a
target based on the tracking information provided by a modified particle filter. For simplicity, it is assumed
that the target velocity is known and constant, and the time instants at which the discontinuities take place are
known and occur at constant intervals. However, the methodology can be generalized, and these assumptions
relaxed, by computing the probability density functions (PDFs) of all Markov parameters using the proposed
particle filter. Here, the particle filter technique is used to obtain the PDF of the target heading, and to update
it with every new measurement zκ

j over time. In the proposed method, a finite normal mixture is utilized to
represent the PDF of the target heading,

f(θ) =
m∑

�=1

π�N (θ | μ�, σ
2
� ),

m∑
�=1

π� = 1, 0 ≤ π� (14)

where f(·) is used to denote a PDF of the arguments in parenthesis, m is the number of normal components,
which is assigned a user-defined upper limit M . μ� and σ� are the mean and variance for �th normal component.
Prior to obtaining target measurements, the number of components is set to m = M , μ� is uniformly sampled
from the interval [−π π], and σ� is chosen equal to a user-defined value σ0. Let zκ

j denote the measurement
obtained by sensor i at tκ, as shown in (7). Then, the PDF of the jth target’s heading at tκ, based on the set
Zκ

j , modeled by the finite normal mixture,

f(θκ
j | Zκ

j ) ←
m∑

�=1

πκ
j,�N (θκ

j | μκ
j,�, (σ

κ
j,�)

2) (15)

is updated based on the target transition probability function (5). Since the change in the target state is
characterized by a Gaussian distribution, i.e.,

θκ+1
j − θk

j ∼ N (μ, σ2) (16)

then, the distribution of θκ+1
j given Zκ

j without considering zκ+1
j is given by ,

θκ+1
j | Zκ

j ∼ N (μ, σ2) +
m∑

�=1

πκ
j,�N (μκ

j,�, (σ
κ
j,�)

2)

∼
m∑

�=1

πκ
j,�(N (μ, σ2) +N (μκ

j,�, (σ
κ
j,�)

2))

∼
m∑

�=1

πκ
j,�N (μκ

j,� + μ, (σκ
j,�)

2 + σ2) (17)
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Thus, the PDF of the target heading at tκ+1 is given by

f(θκ+1
j | Zκ

j ) =
m∑

�=1

πκ
j,�N (θκ+1

j | μκ
j,� + μ, (σκ

j,�)
2 + σ2) (18)

When the measurement zκ+1
j is considered, Bayes’ rule is utilized to obtain f(θκ+1

j | Zκ+1
j ), based on zκ+1

j

and f(θκ+1
j | Zκ

j ), as follows,

f(θκ+1
j | Zκ+1

j ) ← f(θκ+1
j | zκ+1

j , Zκ
j )

=
f(zκ+1

j | θκ+1
j , Zκ

j )f(θκ+1
j | Zκ

j )

f(zκ+1
j | Zκ

j )

∝ f(zκ+1
j | θκ+1

j , Zκ
j )f(θκ+1

j | Zκ
j ) (19)

where f(zκ+1
j | θκ+1

j , Zκ
j ) can be determined from the measurement model,

f(zκ+1
j | θκ+1

j , Zκ
j ) ≈ f(zκ+1

j | θκ+1
j , x̃κ

j )

=
1√

2π‖∑
j ‖

exp (−
‖zκ

j − x̃κ
j − δv

[
cos(θκ+1

j )
sin(θκ+1

j )

]
‖2

2‖∑
j ‖2

)

where
∑

j is the covariance, v is the target linear velocity, x̃κ
j is the target position estimation obtained at tκ. To

evaluate equation (19), the modified particle filter is used, in which the importance density function is based on
the supporting intervals of distributions. f(zκ

j | θκ+1
j , Zκ

j ) and f(θκ+1
j | Zκ

j ) are both considered as distributions
of θκ+1

j . Let S denote the support interval. Let R denote the definitive range for a distribution. S of f(x) is
defined as f(x) > γ,∀x ∈ S. Let Sm

j denote the support interval of f(zκ
j | θκ+1

j , Zκ
j ) and Sp

j denote the support
interval of f(θκ+1

j | Zκ
j ). Then, S = Sm

j ∪ Sp
j . The importance density function for sampling particles is defined

as

f(θκ+1
j ) =

{
1
L if θκ+1

j ∈ S

0 else
(20)

where

L =
∫

R

g(θκ+1
j )dθκ+1

j , g(θκ+1
j ) =

{
1 if θκ+1

j ∈ S

0 else
(21)

The weight for each particle is obtained by considering the target state likelihood function and the previous
target state estimation together simultaneously. By considering f(zκ+1

j | θκ+1
j , Zκ

j ) and f(θκ+1
j | Zκ

j ), the weight
wκ+1

j,p for pth particle of jth target, denoted as θκ+1
j,p , is set as

wκ+1
j,p = f(zκ+1

j,p | θκ+1
j,p , Zκ

j )f(θκ+1
j,p | Zκ

j ) (22)

The weight for each particle is normalized via

wκ+1
j,p =

wκ+1
j,p∑N

p=1 wκ+1
j,p

(23)

Then weighted EM algorithm, shown in Table 1, is adopted to obtain a normal mixture representation of the
target heading’s PDF, using weighted particles. After the target heading is obtained, the target position is
estimated based on the sensor measurement over the latest time interval, using the least square error method.

In order to maintain the desired distance ρij between sensor i and target j within the desired range (1), a
new potential function is presented, such that when the distance from the sensor to the target is less than ρ0,
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Table 1. Weighted EM Algorithm

Initialize
∑M

�=1 πκ+1
j,� N (μκ+1

j,� , σκ+1
j,� ) as

∑M
�=1 πκ

j,�N (μκ
j,�, σ

κ
j,�)

Iterate until
∑M

�=1 πκ+1
j,� N (μκ+1

j,� , σκ+1
j,� ) converges

for each particle p
fp,� = πκ+1

j,� N (θκ+1
j,p | μκ+1

j,� , σκ+1
j,� )

cluster pth particle into group Gl if fp,� ≥ fp,r �=�

end
for each group �

μκ+1
j,� =

∑
wκ+1

j,p θκ+1
j,p∑

wκ+1
j,p

, θκ+1
j,p ∈ G�

σκ+1
j,� =

∑
wκ+1

j,p (θκ+1
j,p −μκ+1

j,� )2∑
wj,p

, θκ+1
j,p ∈ G�

πκ+1
j,� =

∑
wκ+1

j,p , θκ+1
j,p ∈ G�

end
if πκ+1

j,� ≤ ζ

set πκ+1
j,� = 0

end
end

U becomes a repulsive potential, when the distance is greater than ρ1, U becomes an attractive potential, and
otherwise U is zero. Let qκ

i denote the configuration of sensor i, and qκ
j denote the configuration of target j at

tκ. Without considering the knowledge of targets’ Markov property, the potential function for the ith sensor at
time tκ would be defined as,

U(qκ
i ) =

⎧⎪⎨
⎪⎩

1
2η( 1

ρ(qκ
j ,qκ

i ) − 1
ρ0

)2, if ρ(qκ
j ,qκ

i ) ≤ ρ0

0, if ρ0 < ρ(qκ
j ,qκ

i ) < ρ1

1
2ξ(ρ(qκ

j ,qκ
i )− ρ1)2, if ρ(qκ

j ,qκ
i ) ≥ ρ1

(24)

and this potential field is referred as the exact potential field. In order to shorten sensors’ travelling distance, the
heading of the target during next segment, denoted as θk+1, is considered when potential field is constructed.
The expectation of θk+1, denoted by θ̃k+1, is obtained via equation (5),

θ̃j
k+1

= E{θj
k+1} =

m∑
�=1

πκ
j,�θ

κ
j,� + μ

Then the potential field that takes knowledge of target motion into account can be established via

U(qκ
i ) =

⎧⎪⎨
⎪⎩

1
2η( 1

ρ(qκ
j ,qκ

i ) − 1
ρ0

)2, if ρ(qκ
j ,qκ

i ) ≤ ρ0

0, if ρ0 < ρ(qκ
j ,qκ

i ) < ρ1

1
2ξ(ρ(qκ∗,qκ

i )− ρ1)2, if ρ(qκ
j ,qκ

i ) ≥ ρ1

(25)

where

qκ∗ = qκ
j + α

[
cos θ̃k+1

j

sin θ̃k+1
j

]
(ρ(qκ

j ,qκ
i )− ρ1) (26)

where the parameter α is a constant, qκ
j and qκ

i are the target and the sensor configurations respectively. This
potential field is referred as the virtual potential field, which is different from the one established by equation
(24). When the distance between the sensor and the target is in predefined interval, qκ∗ = qκ

j , which indicates
the virtual potential field converges to the exact potential field. The artificial force is provided by the negative
gradient of U ,

F(qκ
i ) = −�U(qκ

i ), (27)
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where, from (24), the force provided by the potential field is given by,

F (qκ
i ) =

⎧⎪⎨
⎪⎩

η( 1
ρ(qκ

j ,qκ
i ) − 1

ρ0
)�ρ(qκ∗,qκ

i )
ρ2(qκ∗,qκ

i ) if ρ(qκ
j ,qκ

i ) ≤ ρ0

0 if ρ0 < ρ(qκ
j ,qκ

i ) < ρ1.

−ξ(ρ(qκ∗,qκ
i )− ρ1)�ρ(qκ∗,qκ

i ) if ρ(qκ
j ,qκ

i ) ≥ ρ1

(28)

Then, similar to,37,38 the control law u defined in terms of the artificial force is,

u(qκ
i ) = (ẋκ

j − vκ
i ) + F (qκ

i ). (29)

The Lyapunov function

V =
1
2
(ẋκ

j − vκ
i )T (ẋκ

j − vκ
i ) + U(qκ

i ) (30)

is considered as a possible positive semidefinite candidate, in order to analyze the stability of the control law
(29). From (2), (29), and (30), the time derivative of the chosen Lyapunov function is given by:

V̇ = (ẋκ
j − vκ

i )(−v̇κ
i )− �U(qκ

i )(ẋκ
j − vκ

i )

= (ẋκ
j − vκ

i )(−(ẋκ
j − vκ

i ) + �U(qκ
i ))− �U(qκ

i )(ẋκ
j − vκ

i )

= −(ẋκ
j − vκ

i )T (ẋκ
j − vκ

i ) ≤ 0 (31)

Furthermore, V ≥ 0 because U(qκ
i ) ≥ 0. Thus, considering V̇ ≤ 0, the system under the control law (29) is

asymptotically stable.

5. SIMULATIONS AND RESULTS

To determine the effectiveness of the proposed methodologies, simulations are run in two different scenarios. The
first, which is primarily used to test the modified particle filter, does not consider the geometries of the sensor
and target, as they are modeled as point masses. The second scenario addresses the geometries of both sensor
and target, and includes obstacles in the workspace. Scenario 1, as previously stated, models the sensor platform
and the target as point masses. The workspace is defined as an obstacle free area with dimensions 50m × 50m.
A single target, that changes its heading every 10 s, maneuvers the environment at a speed of 2m/s. The sensor,
with an omnidirectional FOV of radius 10m, is deployed in order to track the target. The position of the target
is measured every 0.3 s by the sensor, and it is assumed that the measurements have a standard deviation, Σ =
diag(0.4, 0.4). To determine the effectiveness of the modified particle filter, the estimation error of the target
heading inference is calculated. The estimation error, for a time interval, is defined as

ε = θ̃κ − θκ (32)

where θ̃κ is the target heading estimation, and θκ is the true value of the target heading.

The estimation error associated with the modified particle filter in the first scenario is shown Fig. 1. As seen
in the plot, at the beginning of the simulation, the initial estimation of the heading varies greatly with the targets
actual heading, but converges to it quickly. The spikes denoted by k = 1 and k = 2 in the plot correspond to a
change in the targets heading direction, as explained above. The estimation error grows dramatically when the
target suddenly changes its direction. As the sensor updates its measurements, the estimation error, once again,
quickly converges to zero. The simulations for the first scenario, although simple, exhibit the effectiveness of the
modified particle filter in estimating the heading position of the target, and therefore the tracking abilities of
the sensor.

The simulations of the second scenario, which consider finite target and platform geometries, also implement
the dynamics used in scenario 1. However, the workspace is expanded to 100m × 10m, and is populated with
seven obstacles, modeled as convex polygons. For these simulations, the objective of the sensor is to maintain
the distance ρij , from the sensor to the target, between 3m and 4m, while avoiding the obstacles. The results
of the simulations for scenario 2 can be found in Fig. 2, and Fig. 3 shows the path of the sensor platform, A,
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Figure 1. Target heading estimation

Figure 2. Path example

with FOV S, as it tracks the movement of the target, denoted as T . Moreover, q0
j and q0

i indicate the initial
positions of the target and the sensor separately. The Euclidean distance between the sensor and the target
along the path is in Fig. 3, where the vertical dashed lines indicate the instants tk, with k = 1, 2, . . . , when the
target changes its heading. Figure. 3 shows large changes in the geometric distance between the sensor platform
and the target, ρij , when the target changes its heading. However, ρij quickly converges back to the required
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Figure 3. Geometric distance between sensor i and target j.

range, ρ0 ≤ ρij ≤ ρ1, where ρ0 = 3m, and ρ1 = 4m. The simulations demonstrate that the potential field
method presented in this paper is capable of maintaining the sensor within a desired distance from the target.
Furthermore, the proposed sampling method, as seen in this analysis, supports the claim that the noise of the
sensor measurements can be non-Gaussian.

6. CONCLUSIONS AND FUTURE WORK

This paper presents an information potential approach for computing the MSAs’ motion plans and control inputs
based on the feedback from a modified particle filter used for tracking moving targets. The modified particle
filter, as presented in this paper implements a new sampling method (based on supporting intervals of density
functions), which accounts for the latest sensor measurements and adapts, accordingly, a mixture representation
of the probability density functions (PDFs) for the target motion. The proposed methodology is such that the
importance density of the particles is a function of the current measurement distribution and the distribution of
the previous estimation. Furthermore, a modified potential field method, which considers the Markov property
of a target, is proposed in order to decrease the traveling distance of a sensor, as compared to the traditional
potential field method. The heading of a target is estimated by the particle filter using the proposed supporting
interval sampling method and mixture Gaussian representation of the target state estimation. In future work,
this method will be extended to the multivariable case, in which not just the targets’ heading and positions,
are estimated online from the sensor measurements. The methodology will also be implemented for sensors that
have directional FOVs, with noise that is non-Gaussian.
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