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ABSTRACT

This paper presents a hybrid approximate dynamic programming (ADP) method for a hybrid dynamic system
(HDS) optimal control problem, that occurs in many complex unmanned systems which are implemented via a
hybrid architecture, regarding robot modes or the complex environment. The HDS considered in this paper is
characterized by a well-known three-layer hybrid framework, which includes a discrete event controller layer, a
discrete-continuous interface layer, and a continuous state layer. The hybrid optimal control problem (HOCP)
is to find the optimal discrete event decisions and the optimal continuous controls subject to a deterministic
minimization of a scalar function regarding the system state and control over time. Due to the uncertainty
of environment and complexity of the HOCP, the cost-to-go cannot be evaluated before the HDS explores the
entire system state space; as a result, the optimal control, neither continuous nor discrete, is not available ahead
of time. Therefore, ADP is adopted to learn the optimal control while the HDS is exploring the environment,
because of the online advantage of ADP method. Furthermore, ADP can break the curses of dimensionality
which other optimizing methods, such as dynamic programming (DP) and Markov decision process (MDP), are
facing due to the high dimensions of HOCP.
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1. INTRODUCTION

Recently, developments in the unmanned system consisting of robots and sensors, such as surveilling intruders,
detecting and classifying targets, raises the degree of functionality, reconfigurability, and redundancy of the
system itself. A three-layer hybrid architecture, one of hybrid dynamic systems (HDS), has been proposed in1 to
characterize the unmanned system’s both continuous dynamics and discrete event behavior, where the events can
be defined as reaching some HDS state that has specific properties than other state, or as the signal causing the
sudden change of HDS state. A HDS has the ability of coordinating a variety of subsystems within their unique
structures, and has the benefit of allowing more flexibility in dynamic models. The HDS optimal control problem
(HOCP) usually requires discrete decisions and continuous controls, and its hybrid nature has been recognized
by several authors.1,2 An hybrid modeling approach in a mobile multi-agent network was recently developed,3

that is very effective at maintaining a desired formation or connectivity in a sensor network. Furthermore, a
hybrid modeling framework for robust maneuver-based motion planning in nonlinear systems with symmetries
was proposed by Sanfelice.4 The hybrid systems with autonomous or controlled events are reviewed in.5 The
HOCP is to find the optimal continuous controller and the optimal discrete decisions subject to a deterministic
minimization of a scalar objective function regarding the HDS state, event, controls, and decisions over time.
The objective functions in a discrete form or in a mixture of continuous-discrete form are used by several authors
in.6,7 In this paper, the objective function of the mixture form is adopted since it is consistent with the hybrid
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nature of HDS and HOCP. The objective function includes the integration of the cost regarding continuous state
and control over time, and the summation of all event costs (or rewards). A method based on the fixed mode
sequence of events and event decisions are used in7 and a two stage optimization method is adopted in.8 Existing
hybrid and distributed control approaches are reviewed comprehensively in Cassandras’s book.9

Since the HDS is described by a multiple layer structure, and is controlled by the interaction between contin-
uous state control and discrete event decisions, the high dimensionality of HOCP makes the problem intractable.
The existing approaches solve HOCP by either decreasing the dimensions of the hybrid system through imposing
more constraints, such as fixing event decision sequences, or by introducing a two stage optimization method,
which obtains the event decisions first, and then calculates the continuous control based on decision sequence.
As a result, the optimality of the solution is restricted, and more importantly, the methods are not adaptive,
and can not be applied online when the environment and/or underlying HDS model are uncertain or unknown.
Therefore, to overcome above limitations of existing approaches, a hybrid approximate dynamic programming
(ADP)10–12 is extended and used in this paper to solve HOCP. ADP is widely used in various fields, such as nat-
ural gas storage valuation,13 budget planning,14 and inventory allocation.15 ADP uses a Bellman equation16,17

to describe the value function (also called cost-to-go) of HOCP, similar to dynamic programming (DP).6,18,19

The DP algorithm, generally, uses a backward method to solve the Bellman equation by discretizing the system
state. The algorithm can save some computational burden by cutting unnecessary choices of state to be visited,
however, it still suffers from the curses of dimensionality, and becomes intractable when the system state is
continuous and dimension is high. Furthermore, the backward method can not be applied to the online problem
when the Bellman equation can not be solved by back propagating the value of last state to previous state since
the knowledge of last state is not available before controls and decisions are executed, and the environment is
explored. Different from DP, the ADP method adopts a forward structure which can be applied to the online
problem. The ADP method updates the control law and the decisions by the reward obtained and the reward
expected from executing an action to the system. As a result, the imperfect model of the system itself, due
to the uncertainty of the system and the environment, can be adapted. A critic neural network is applied to
approximate the gradient of the value function regarding system state based on the knowledge obtained online,
and to generate the optimal control for the continuous control. More importantly, ADP approximates the value
function (or the gradient of the value function) to decrease the number of parameters needed to be inferred,
therefore reducing the computational burden. ADP works well in the problems with high dimensions without
imposing unrealistic constraints to lower the dimensions.

In this paper, hybrid value functions are introduced to describe the Bellman function in HOCP. As a result,
the ADP method alone is not sufficient. Considering the discrete nature of events and event decisions, a Markov
decision process (MDP)20is used, together with ADP, to solve HOCP. MDP is a discrete time (stochastic)
control process, and solves optimization problems where the performance is determined by the decisions. Value
iteration or policy iteration21 methods can be used to obtain the optimal decisions when the transition and
reward functions are given. The MDP and ADP method are coordinated to learn the discrete event decisions
and continuous controls which are explained in Section 5. The existing continuous controls and discrete event
decisions are designed based on the knowledge of the plant dynamics and reward that the HDS obtains at each
event. However, these designs can not be adaptive to the scenario when the HDS comes to an unmodeled event
or disturbance, or when the parameters describing the plant are incorrect. Using the same control and decision
design would result in a poor performance. In this paper the advantages of HDS and ADP are combined to
obtain an adaptive continuous control and set of discrete decision designs subject to minimizing an objective
function.

The paper is organized as follows. Section 2 describes the hybrid optimal control problem (HOCP) and
assumptions. The background on approximate dynamic programming is reviewed in Section 3. Sections 4 and 5
presents hybrid value functions and the ADP method for HOCP. Conclusions and future work are described in
Section 6.

2. HYBRID SYSTEM OPTIMAL PROBLEM FORMULATION

The hybrid optimal control problem (HOCP) arises from a variety of fields, such as mobile manipulator systems,
unmanned robotic sensor planning, and autonomous assemble lines. In these applications, the discrete decisions,
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or actions, and continuous controls are crucial to the performance of the hybrid system. For example, in the
mobile manipulator system, the performance is determined by the decisions on the manipulator actions, and by
the continuous controls to the manipulator to finish the actions. A well-known three-layer hybrid framework1

is adopted to characterize the structure of the HOCP. As shown in Fig. 1, the first layer contains a discrete
event controller (DEC) which provides the discrete decision or action, a ∈ A ⊂ R, to the second layer based on
event, ξ ∈ E ⊂ R, which is given by the second layer. In this framework, A is the 1-dimensional set of admissible
discrete action inputs, while E is a 1-dimensional finite discrete set of events. The second layer functions as a
discrete-continuous interface, mapping between the continuous state, x ∈ X ⊂ Rn, and the discrete event space,
E , where, X is an n-dimensional continuous state space. The interface provides parameters to the third layer,
which consists of a continuous state plant (CSP) and a continuous controller (CSC). The controller gives the
continuous control, u ∈ U ⊂ Rm to the system, where, U is the m-dimensional space of admissible continuous
control inputs. It is assumed that the discrete event ξ and continuous state x are fully observable without error.
The second layer and the third layer are combined and denoted as a discrete event plant (DEP). Then, the DEC
provides the discrete event action a(k) to the DEP based on the discrete event variable ξ(k) given by DEP,
where k is the event serial number. The DEC providing the control for kth event ξ is defined as a function of
ξ(k), and is denoted as

a(k) = φ[ξ(k)] (1)

where φ : E → A. In the mobile manipulator system , DEC gives the decision of which action to take at event
ξ(k). Due to uncertainty of each action benefit, DEC is learned and adapted online.
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Figure 1. Hybrid System

According to the hybrid system, the time horizon [t0, ∞] can be partitioned by t1 < t2 < · · · into time
intervals ∆0,∆1, · · · , such that ∆k = (tk, tk+1], where tk is the time when kth event ξ(k) happens. Before
defining the interface in the second layer, let T = {T1, T2, . . . , TN} denote the set of simply connected convex
subsets of X , such that Ti∩Tj = ∅,∀ i,∀ j, i 6= j. Each Ti represents a subspace of interest in X that the system
intends to visit. In the problem of controlling a mobile manipulator system, the reward of visiting Ti is obtained
when x ∈ Ti. Similar to the internally forced switching system,22 the kth event value ξ(k) is triggered when the
system continuous state visits a subset T ∈ T /α[ξ(k − 1)], i.e., x(t) ∈ T , and the value is given as α−1(T ).
Where, α : E → T is a bijection, the operator ”/” denotes the complementary set of α[ξ(k − 1)], and t > tk−1.
The following assumption is adopted to guarantee the value of ξ(k) is determined by the discrete event decision
a(k − 1) given ξ(k − 1), i.e.,

ξ(k) = ψ[ξ(k − 1),a(k − 1)] (2)
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Assumption 2.1. ∃ u(·) over ∆k−1, s.t., x(tk) ∈ α[ψ(ξ(k − 1),a(k − 1))]. ∀ tk−1 < t < tk ,@ u(·), s.t.,
x(t) ∈ T /α[ξ(k − 1)]. According to assumption (2.1), the time (tk) when the kth event ξ(k) happens is
determined by the continuous control u(t), t ∈ ∆k−1, given tk−1.

From above definitions, the interface in the second layer can be fully defined. The interface includes two
mappings: a) the mapping from the discrete event set E to the continuous space X , Σ/S: α; b) the mapping
from the continuous space X to the event set E , S/Σ: β, that are defined as

Σ/S : T = α[ψ(ξ(k − 1),a(k − 1))] (3)

S/Σ : β[x(t), ξ(k − 1),a(k − 1)] =

{
ξ(k) = α−1(T ) if x(t) ∈ T
ξ(k − 1) if x(t) /∈ T (4)

The discrete event decision ξ is determined by the event value ξ given by the interaction between x and T , while
the continuous control u for CSP is calculated based on T , continuous state x, which will be explained later.

In the third layer, the CSP is described by a dynamic function in the continuous space, X , with continuous
control input u, and it is defined as

ẋ = f(x,u) (5)

which assumes that the dynamics of CSP stays the same for any x ∈ X for the sake of simplicity. This assumption
can be relaxed by defining a dynamic function set, {fxi}, one of which is used according to the event value ξ.
As shown in Fig. 1, the CSC provides u to the CSP based on the T and the current CSP state x(t) to bring x
to T , and is given by

u(t) = B(x(t), T ). (6)

According to (1), T is a function of ξ(k) and a(k) when t ∈ ∆k, then the function (6) can be written as

u(t) = B[x(t), T ]

= B[x(t), α(φ(ξ(k),a(k)))]

= C[x(t), ξ(k),a(k)] (7)

which is designed such that u leads the system state x to the subset of interest, T , given by α[φ(ξ(k),a(k))]. At
the same time, the continuous control u (7), together with discrete event decision a (1), are optimized in order
to minimize an objective function, which includes the integration of the cost regarding continuous state x(t) and
control u(t) over [t0, ∞], and the summation of all event costs considering ξ and a.

In this paper, a widely used objective function for HOCP23,24 is adopted and is given by

J ,
∫ ∞
t0

γkL [x(τ),u(τ)]dτ +
∑
k=1

γkL[ξ(k),a(k)] (8)

subject to the hybrid system illustrated in Fig. 1. The power k of discount factor γ, which is positive and less
than 1, for L is determined by subscript of ∆k that τ belongs to. The cost evaluation functions, L and L,
in equation (8) are the functions of the continuous state (discrete event) and the continuous control (discrete
decision), and they are defined separately as

L (x,u) , xTHx + 2xTPu + uTQu (9)

L(ξ,a) , +θ(ξ,a) (10)

where, H, P, and Q are predefined matrices, and θ : E ×X → R. In the mobile manipulator system, θ(ξ,a) can
be defined as the amount of product transported due to the event ξ and a. In this paper, it is assumed that
functions α, ψ and f are known. Generally, the HOCP is given as:

Problem 2.2. Find the optimal continuous state control u and the discrete event decision a, such that J is
minimized given initial x and ξ, subject to the hybrid system in Fig. 1.

One of the applications involves controlling the mobile manipulator system. This example is used in the
simulation section to demonstrate the method proposed in this paper. In this scenario, the L in (8) is considered
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as the energy cost for traveling, while L is considered is the negative reward by transporting products. For
simplicity, the robot is a point mass and its state consists of position and velocity [x, y, ẋ, ẏ]. Let Ti ⊂ R2 denote
the projection of Ti ∈ T on to the x − y plane. While Ti = Ti × [−vmax vmax] × [−vmax vmax], where vmax is
positive and predefined. The setting of Ti comes from the applications where the product carried by the robot
can only be examined when the robot’s speed is under a threshold. The ADP designed to learn the optimal
control for the mobile manipulators is discussed in Section 4 and 5, while the background on ADP is given in
next section.

3. BACKGROUND ON APPROXIMATE DYNAMIC PROGRAMMING

Approximate dynamic programming (ADP)10,25 was proposed to solve the dimensionality curses that dynamic
programming (DP)18,19 and Markov decision process (MDP)18,26 are facing when the system dimension is high
or the system state is continuous and fine discretization is required. DP solves a wide spectrum of optimal
control problems by backward methods for a finite time problem. MDP can obtain the optimal decision for each
discrete state by the well known value iteration or policy iteration method for an infinite time problem. ADP,
DP and MDP adopt the Bellman equation to describe the objective function (8) in recursive form by discretizing
the time horizon. For a non-hybrid optimal control problem, the discrete value function used in the Bellman
equation is given as

V (κ) ,
∑
j=κ

γj−κL [x(j),u(j)] (11)

where j and κ are time indices from discretizing the time horizon, while L and γ are a quadratic function and
discount factor, respectively. Let V ∗(κ) denote the optimal value function conditioned on optimal control. Then,
using the Bellman equation, the recursive form of V ∗(κ), is written as

V ∗(κ) = L [x(κ),u(κ)] + γ
∑
j=κ+1

γj−κ−1L [x(j),u(j)] (12)

= L [x(κ),u(κ)] + V ∗(κ+ 1) (13)

where L [x(κ),u(κ)] is considered as the instant reward or cost. The DP method employs a backward procedure
to solve the Bellman equation for a finite time problem given a initial system state and a goal state. Without
losing generality, V ∗(κf ) of the goal state is always set as zero, and is back propagated into (12) to obtain the
optimal value V ∗(κ), as well as the decision associated with each time step κ. The DP algorithm requires the
perfect knowledge of system dynamics and the environment (which is usually static). As a result, it can not be
applied to the online problem when the value function V ∗ is impossible to be calculated before the decisions
or the controls are executed and the environment is explored, sometimes, as well as the system itself, due to
the uncertainty of the system model. Furthermore, at each time step κ, the value of V ∗(κ) on each possible
state x is needed, which results in a curse of dimensionality when n is large. The DP algorithm can save some
computational burden by cutting the unnecessary choice of states, however, it still becomes intractable when the
x is continuous and a fine time discretization is needed. Similar to DP, MDP also suffers from the dimensionality
curses since it forms a state vector which includes all the possible system states and a state transition matrix of
system state, which is conditioned on decisions.

The ADP method can solve the curses of dimensionality by approximating the value function (or the gradient
of the value function regarding the state) with fewer parameters than the DP or MDP uses, through a multiple
layer structure, such as aggregation functions,27 or through a reinforcement learning technique,28 such as Q-
learning,29 supporting vector machine,30 and neural network.31 The sigmoid neural network learning technique32

is used in Section 5 to approximate the gradient of the value function regarding the state, namely, the critic
network,33 with which an auxiliary neural network can be trained to obtain the continuous control u given the
state x and the system dynamics. Another advantage of ADP is its online learning and adaptive ability, since
it uses a forward algorithm,10 and updates the critic network, as well as the controls, based on the difference
between the reward (or cost) obtained and the reward (or cost) expected. Furthermore, the ADP can optimize the
controls without having perfect knowledge of the system itself, and overcome the uncertainty of the environment.
One ADP algorithm based on Q-learning10 is summarized in the Algorithm 1 to learn the value function through
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iterations. Let V i(X ) denote the value for all states x ∈ X with the assumption that X is countable. The index
i denotes the serial number of ith iteration. The algorithm starts with an initial guess of the value function,
possibly generated by a potential function.34 In each iteration, an initial state is randomly generated, and then
a state trajectory is calculated by solving the Bellman equation. After that, with the information obtained along
the trajectory, the value of V (xi(t)) for each visited state can be calculated. At last, the value of V (xi(t)) is
updated by Q-learning method, as shown in Algorithm 1, where αi−1 is the learning rate which is a function of
time.

This algorithm can be extended to the case where the X is continuous by adopting a neural network31

to approximate the value function. The Algorithm in 1 can be modified and extended to solve an online
optimal problem by replacing ”Randomly choose initial state xi0” as ”current state x” following the Gauss-Seidel
variation.10 The ADP method introduced in this section is for solving non-hybrid optimal control problems. In
Sections 4, the hybrid value functions and their recurrence relations are developed for HOCP, while in Section
5, the MDP and ADP method are mixed to obtain the discrete event decisions a and the continuous controls u.

Algorithm 1 ADP algorithm based on Q-learning

Require: Initialize V i(X ) and set i = 1
while i ≤ Nmax do

Randomly choose initial state xi0.
Solve : V i(t) = maxut{δtL [x(t),u(t)] + V i(t+ δt)}
Record xi(t) visited
i=i+1;

Update V i(X ) as V i(x) =

{
(1− αi−1)V i−1(xi(t)) + αi−1V

i(t) if x = xi(t)
(1− αi−1)V i−1(x) otherwise

end while

4. HYBRID VALUE FUNCTION

From Section 3, a recursive value function is required by the ADP method, hence, in this section, a hybrid value
function and its recursive form are developed for the hybrid system, and will be used in section 5 to learn the
controls a and u. As explained in Section 2, the time horizon [t0, ∞] can be partitioned into time intervals
∆tk = [tk, tk+1), therefore, it’s reasonable to rewrite the objective function as

J =
∑
k=1

γk
{∫ tk+1

tk

L [x(τ),u(τ)]dτ + L[ξ(k),a(k)]

}
(14)

Before applying approximate dynamic programming, we have several remarks and a further assumption to
decompose the HOCP into subproblems.

Remark 4.1. The functions (2) indicates that the set {ξ(k−1), ξ(k−2), . . . , ξ(1)} is determined by the discrete
event decision set {a(k − 1),a(k − 2) . . . ,a(0)} given the initial ξ(0)

Remark 4.2. Following remark 4.1, {T (k), T (k−1), . . . , T (1)} is also determined by the discrete event decision
set {a(k),a(k − 1) . . . ,a(0)} given the initial ξ(0). Notice that x(tk) ∈ T (k).

Before introducing the assumption, let D(Ti, Tj) define the distance between two subset Ti and Tj as

D(Ti, Tj) = min ‖xi − xj‖∞,xi ∈ Ti,xj ∈ Tj (15)

where ‖ · ‖∞ denote the infinite norm, and let d(T ) define the diameter of a subset T

d(T ) = max ‖xi − xj‖∞,xi ∈ Ti,xj ∈ Ti (16)

Furthermore, Let c(T ) denote the center of the inscribed sphere of T . To further approximate the problem, the
following assumption is adopted.
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Assumption 4.3. ∀ ξ, ∀ a, d[α(ξ)]/D[α(ξ), α(φ(ξ,a)] < η, where η is sufficient small, such that x(tk) ≈
c(T (k)). Then, with remark 4.2, we have the following approximations

{x(k),x(k − 1), . . . ,x(2)} ≈ {c(T (k)), c(T (k − 1)), . . . , c(T (2))} (17)

and the value of set {x(k),x(k − 1), . . . ,x(2)} is determined by the discrete event decision set {a(k),a(k −
1) . . . ,a(1)} given the initial ξ(1). Therefore,

Remark 4.4. Given ξ(k) and a(k), the value of
∫ tk+1

tk
L [x(τ),u(τ)]dτ is a function of u(t),x(t) with t ∈ ∆k,

and it is irrelevant to u(t),x(t) with t /∈ ∆k.

Since the hybrid nature of HOCP, its value function also has a hybrid structure based on ξ and a. To simplify
the problem, let G denote the first value function of ξ(k), defined as

G[ξ(k)] ,
∑
j=k

γj−k

{∫ tj+1

tj

L [x(τ),u(τ)]dτ + L[ξ(j),a(j)]

}
(18)

Let u(ti : tj) denote the continuous state control sequence from ti to tj , where i < j. While, let a(i : j) denote
the discrete event decision sequence, where i < j. With remark 4.4, the optimal value function G∗ and its
recursive form are defined and obtained separately by

G∗[ξ(k)] = min
a(k:∞),u(tk:∞)

∑
j=k

γj−k

{∫ tj+1

tj

L [x(τ),u(τ)]dτ + L[ξ(j),a(j)]

}
(19)

= min
a(k),u(tk:∞)

〈∫ tk+1

tk

L [x(τ),u(τ)]dτ + L[ξ(k),a(k)]

+γ min
a(k+1:∞),u(tk+1:∞)

∑
j=k+1

γj−k−1

{∫ tj+1

tj

L [x(τ),u(τ)]dτ + L[ξ(j),a(j)]

}〉

= min
a(k),u(tk:∞)

{∫ tk+1

tk

L [x(τ),u(τ)]dτ + L[ξ(k),a(k)] + γG∗[ξ(k + 1)]

}
(20)

Again by remark 4.4, u(tk : tk+1) only have impact on x in ∆k given a(k) and ξ(k), then the recursive form of
G∗ can be rewritten as

G∗[ξ(k)] = min
a(k)

{
γG∗[ξ(k + 1)] + L[ξ(k),a(k)] + min

u(tk:tk+1)|a(k),ξ(k)

∫ tk+1

tk

L [x(τ),u(τ)]dτ

}
(21)

The value of the third term in equation (21), minu(tk:tk+1)|a(k),ξ(k)
∫ tk+1

tk
L [x(τ),u(τ)]dτ , is required in order

to evaluate the G∗[ξ(k)], and it is determined by the u(tk : tk+1) given ξ(k) and a(k). Therefore a second value
function V of x(t) ,ξ(k), and a(k) is defined as

V [x(t)|ξ(k),a(k)] ,
∫ tk+1

t

L [x(τ),u(τ)]dτ (22)

where, t ∈ ∆k. The notation V [x(t)|ξ(k),a(k)] for the value function V is used instead of V [x(t), ξ(k),a(k)] in
order to emphasize the conditionality on ξ(k) and a(k). To calculate the integral in (22), the time interval ∆k is
further discretized into even time intervals with ε length, such that, ε� (tk+1− tk), ∀ k. Let κ ∈ {1, 2, . . . , Nk}
denote the instant tk + ε(κ− 1), where Nk = (tk+1 − tk)/ε. By discretizing the time horizon, the value function
(22) can be rewritten as

V [x(κ)|ξ(k),a(k)] = ε

Nk∑
j=κ

L [x(j),u(j)] (23)
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and the optimal value function V ∗ and its recursive form are given by

V ∗[x(κ)|ξ(k),a(k)] = min
u(κ:Nk)|a(k),ξ(k)

ε

Nk∑
j=κ

L [x(j),u(j)] (24)

= min
u(κ:Nk)|a(k),ξ(k)

εL [x(j),u(j)] + ε

Nk∑
j=κ+1

L [x(j),u(j)]


= min

u(κ)|a(k),ξ(k)

εL [x(j),u(j)] + min
u(κ+1:Nk)|a(k),ξ(k)

ε

Nk∑
j=κ+1

L [x(j),u(j)]


= min

u(κ)|a(k),ξ(k)
{εL [x(t),u(t)] + V ∗[x(κ+ 1)|ξ(k),a(k)]} (25)

According to the problem formulation (2), the value functions G (24) and V (21) are not known, due to lack
of the knowledge about the environment regarding subsets of interests or parameters related to energy cost, as
well as due to the uncertainty of the hybrid system itself. Therefore, the continuous control (7) and discrete
decision (1) can not be obtained ahead of time. In the next section, the ADP method is employed to learn the
value functions implicitly and control laws while exploring the environment and gaining the knowledge of the
hybrid system.

5. RECURRENCE RELATIONS FOR HYBRID APPROXIMATE DYNAMIC
PROGRAMMING

In this section, the recurrence relations for hybrid approximate dynamic programming are developed. From the
analysis from previous section, the continuous optimal control is given as

C∗[x(κ)|ξ(k),a(k)] = argminu(κ)|a(k),ξ(k) {εL [x(t),u(t)] + V ∗[x(κ+ 1)|ξ(k),a(k)]} (26)

which can be obtained by setting

∂V ∗(x(κ)|ξ(k),a(k))

∂u(t)
=
∂ {εL [x(κ),u(κ)] + V ∗(x(κ+ 1)|ξ(k),a(k))}

∂u(κ)
= 0 (27)

While the optimal discrete decision is given as

φ∗[ξ(k)] = argmina(k)

{
γG∗[ξ(k + 1)] + L[ξ(k),a(k)] + min

u(tk:tk+1)|a(k),ξ(k)

∫ tk+1

tk

εL [x(τ),u(τ)]dτ

}
= argmina(k) {γG∗[ξ(k + 1)] + L[ξ(k),a(k)] + V ∗[x(tk)|ξ(k),a(k)]} (28)

which can be solved by MDP when V ∗ is available. In the remainder of this section, the methods to learn the
value function V ∗ and continuous optimal control law C∗ are presented first by introducing recurrence relations.
Then, the discrete decision law φ∗ is obtained based on the knowledge of V ∗.

The continuous control sequence u(tk : tk+1) is optimized to minimize the value function V [x(tk)|ξ(k),a(k)],
where tk+1 is free, since it is determined by the x(t) and T , according to the interface definition (4). With remark
(4.2), the subproblem in ∆k becomes a open end time problem,35 where the initial state is given by c[α(ξ(k))]
and the terminal state is given by α[ψ(ξ(k),a(k))]. Expand the derivative given in (27) as

∂ {εL [x(κ),u(κ)] + V ∗[x(κ+ 1)|ξ(k),a(k)]}
∂u(κ)

=
∂εL [x(κ),u(κ)]

∂u(κ)
+
∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂u(κ)

=
∂εL [x(κ),u(κ)]

∂u(κ)
+
∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂x(κ+ 1)

∂u(κ)

=
∂εL [x(κ),u(κ)]

∂u(κ)
+ λ[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂u(κ)
(29)
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where λ[x(κ+ 1)|ξ(k),a(k)] denotes ∂V ∗[x(κ+1)|ξ(k),a(k)]
∂x(κ+1) , which is calculated by

λ[x(κ)|ξ(k),a(k)] =
∂V ∗[x(κ)|ξ(k),a(k)]

∂x(κ)
(30)

=
∂εL [x(κ),u(κ)]

∂x(κ)
+
∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂x(κ)
(31)

=
∂εL [x(κ),u(κ)]

∂x(κ)
+
∂εL [x(κ),u(κ)]

∂u(κ)

∂u(κ)

∂x(κ)
+
∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂x(κ+ 1)

∂x(κ)

+
∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂x(κ+ 1)

∂u(κ)

∂u(κ)

∂x(κ)

=
∂εL [x(κ),u(κ)]

∂x(κ)
+
∂εL [x(κ),u(κ)]

∂u(κ)

∂u(κ)

∂x(κ)
+ λ[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂x(κ)

+ λ[x(κ+ 1)|ξ(k),a(k)]
∂x(κ+ 1)

∂u(κ)

∂u(κ)

∂x(κ)
(32)

With the recurrence relations shown in equation (30), a sigmoid neural network, denoted as NNλ, can be trained
to approximate λ[x|ξ(k),a(k)]. By applying the least mean square (LMS)32 training algorithm, the update for
weights of NNλ, wλ, is given as

∆wλ = −ε
(
λ[x(κ)|ξ(k),a(k)]− ∂V ∗[x(κ+ 1)|ξ(k),a(k)]

∂x(κ)
− ∂εL [x(κ),u(κ)]

∂x(κ)

)
∂λ[x(κ), ξ(k),a(k)]

∂wλ
(33)

where ε is the learning rate, and the term in parentheses is obtained by subtracting the RHS from the LHS
of (30). Then a second neural network, denoted as NNu is used to approximate u = C(x(κ), ξ(k),a(k)) with
criteria that the derivative (29) equals zero. Again, by applying the LMS training algorithm, the update for
weights of NNu, wu, is given as

∆wu = −ρ
(
∂εL [x(κ),u(κ)]

∂u(κ)
+ λ[x(κ+ 1)|ξ(k),a(k)]

∂x(κ+ 1)

∂u(κ)

)
∂C[x(κ), ξ(k),a(k)]

∂wu
(34)

where ρ is the learning step. The training of NNλ and NNu are executed spontaneously, the corresponding
algorithm is summarized in Algorithm 2.36

Algorithm 2 Train NNλ and NNu

Require: Initialize λ and C(x, ξ,a)
while x(κ) ∈ α[ψ(ξ(k),a(k))] do

u(κ) = C(x(κ), ξ(k),a(k))
x(κ+ 1) = f(x(κ),u(κ))
λ(κ+ 1) = NNλ(x(κ+ 1))
Update NNλ and NNu according to (33) and (34)
κ = κ+ 1

end while

The subproblem can be solved by training NNλ and NNu, however, the value V ∗[x(tk)|ξ(k), (a)(k)] is still
needed for solving the optimal discrete event decision. Due to the uncertainty of the environment of the system
or the lack of the system model, the value of V ∗[x(tk)|ξ(k), (a)(k)] is calculated based the executed controls and
the visited state by

V [x(tk)|ξ(k),a(k)] ,
∫ tk+1

tk

εL [x(τ),u(τ)]dτ (35)

With the knowledge of V ∗[x(tk)|ξ(k), (a)(k)], the MDP is adopted to obtain and update the decision policy
φ(ξ). According to the recurrence relations of the optimal value function G∗ (19), the terms V ∗[x(tk)|ξ(k),a(k)]
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and L[ξ(k),a(k)] can be combined as Ω[ξ(k),a(k)]. By the remark (4.4) x(tk) ≈ c[α(ξ(k))]. Therefore, the
decision a optimization problem becomes an MDP, given by

G∗[ξ(k)] = min
a(k)
{Ω[ξ(k),a(k)] + γG∗[ξ(k + 1)]} (36)

Since the size of E is not large, the value iteration or policy iteration method is sufficient enough to obtain the
optimal decision function φ when V ∗[x(tk)|ξ(k),a(k)] is given. However, since the V ∗[x(tk)|ξ(k),a(k)] is learned
online and can only be approximated after corresponding state is visited, the discrete event decision policy is
myopic; therefore, a random decision is taken to encourage the system explore the unknown space to have better
knowledge the system state.

6. CONCLUSION AND FUTURE WORK

The advantage of the hybrid system allows a multiple-layer structure to model the modern unmanned system with
the discrete event decisions and the continuous control inputs. The hybrid value functions and their recurrence
relations are presented in this paper to obtain the optimal decisions and controls by MDP and ADP. Due to
the online nature of ADP, the decisions and controls can adapt to uncertainties of the environment and the
hybrid system. The control, the critic neural networks, and decision policy learn newly available information
online while retaining their baseline performance. In the future, the method will be tested to solve a mobile
manipulator system control problem.
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