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ABSTRACT
This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by
an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional
neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix.
The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled
data, and recursively updated as additional images become available. Based on the learned joint probability mass function,
the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining
new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that
the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori,
i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in
this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels
and ensure that all targets are classified with satisfactory confidence after the path is executed.
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1. INTRODUCTION
Multi-target classification by imaging sensors, such as cameras, radar, or sonar, has a wide range of applications, including
search and rescue, urban surveillance, and environmental monitoring.1 In this paper, a simulated side-scan sonar installed
on an unmanned underwater vehicle (UUV) obtains images of the sea floor that are then used to automatically detect and
classify objects using a deep convolutional neural network (CNN) approach.2 In this approach, the CNN convolutional
features extracted from the sonar image matrix are provided as an input to a support vector machine (SVM) classifier that
estimates the target class and an associated posterior probability. When target classification needs to be highly reliable,
the problem is often divided into two stages: a survey stage during which objects are first detected by taking one or few
images, and an identification stage during which additional images are obtained until the confidence in the classification
decision is above a desired threshold.

When the target class is a hidden variable, the classification accuracy is always unknown, and the confidence level (CL)
is unknown until the images are obtained by the vehicle. Thus, a challenging problem is how to plan the path of the vehicles
efficiently, while also achieving a satisfactory classification performance. In conventional sensor measurements, expected
information gain functions can be used to estimate the information value using, for example, expected entropy or Rényi
divergence.3–7 These information gain functions are challenging to derive for imaging sensors or for deep convolutional
features. Furthermore, if the targets must all be classified within a desired confidence level, the information gain functions
may not be applicable to finding a path that guarantees to cover all the targets subject to this requirement. This paper
presents an approach for estimating the expected confidence level of a target a priori, assuming the classification will be
performed based on the maximum a posteriori (MAP) decision rule. Since multiple images might be required to meet the
desired CL threshold, an approach for recursive CL estimation is presented that takes into account the probabilities learned
from data and all prior images. Numerical simulations show the effectiveness of the proposed approach on a simulated
UUV-based imaging sonar.
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2. PROBLEM FORMULATION
Consider the problem of classifying n targets in an underwater region-of-interest, W ⊂ R2, were all targets are at fixed
and unknown locations on the seafloor. While the onboard sonar is in operation, the UUV travels at constant speed and
heading, in order to generate high-quality images of the seafloor. The sonar measurements are processed into an image
matrix K, referred to as sonar image, that is automatically segmented into smaller images, denoted by I, using a matched
filter.2 The UUV goal is to classify targets from multiple sonar images and to adaptively compute the best configuration for
obtaining additional sonar images. All target features are discretized and treated as discrete random variables. Upper case
letters represent random variables and lower case letters represent the value (or realization) of the corresponding random
variable. Each target has a set of physical characteristics, or features, chosen here as shape S, length L, width W , and
height H. Let X denotes the set of actual target features, and X̂ denote the set of features estimated from sonar images with
range X̂ . The aspect angle Θ and relative distance D between a target and the UUV are also discretized, and denoted by
the discrete random variables D and Θ, respectively, such that R = {D,Θ} is the relative configuration between the UUV
and each target. The problem considered in this paper is to classify each target into one of two classes (0 or 1), such that
Y ∈ Y = {0,1} is a binary classification variable that is hidden and random. Y is to be estimated from a set of sequential
segmented sonar images Ik = {I1, I2, ..., Ik} taken at configurations rk = {r1,r2, ...,rk}, where k is a time index that is not
equally spaced and denotes time instants at which a sonar image is available.

At any time k, the UUV planning algorithm plans the next configuration rk+1 such that an additional image segment
Ik+1, taken at rk+1, will reduce uncertainty enough to bring the CL above a desired threshold. The later task is achieved by
learning a function f : R 7→ [0,1], where R is the set of all the possible configuration r. I is the set of all the possible
image segment I. Let u ∈ R be the utility of the next observation,

u = f (rk+1;rk, Ik), (1)

where rk and Ik are parameters. After obtaining the kth measurement, rk and Ik are known. Thus, u is only a function of
next configuration rk+1 and can be maximized as follows:

r̂ = argmax
rk+1∈R

f (rk+1;rk, Ik). (2)

The image processing and feature extraction approach previously developed by the authors is adopted and briefly
reviewed here for completion.2 The original sonar image is first down-sampled by a chosen factor to remove redundant
information and reduce the computation required. The sonar image matrix is expressed on a grey scale by linear projection
onto the interval [0,1],

Kg(i, j) =
K(i, j)

maxi, j [K(i, j)]
, (3)

and the histogram equalization technique8 is applied to obtain a high contrast gray-scale image matrix, as shown by the
example in Fig. 1. The pre-processed sonar image is segmented by a matched filter to obtain a sub-image, I, for each target
detected during surveying.

The well-known pre-trained CNN ALexNet, overfitted to a sonar training database, is then used to extract the convolu-
tional features from the segmented sonar image I. Using a pre-trained CNN in series with an SVM classifier is an effective
approach when the training data set is too small to train a deep CNN from scratch, and also helps reduce the computation
required.2 The activation from the first fully connect layer is selected to form a (4096× 1) convolutional feature vector,
denoted by z. Then the convolutional features are fed to a linear SVM trained for target classification on a labeled training
set.9 The SVM maps the convolutional features to the target classification label ŷ ∈ {0,1}. This approach has shown to
provide excellent classification accuracy and, therefore, is adopted in this paper to perform automatic target recognition
on the simulated UUV.2 It is then assumed, for simplicity, that the UUV has knowledge of the relative target position and
aspect angle based on on-board instrumentation and prior sonar images.
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Figure 1: Enhanced sonar image with targets shown by red boxes.

3. RECURSIVE ESTIMATION AND PROBABILITY LEARNING
This section presents a recursive estimation approach for updating the belief on the target classification Y , based on the
inferred target class and probability distribution obtained from previous images. At time k, a deep learning classification
label ŷk and the target feature estimates xk are obtained for each target detected during surveying, using the segmented
sonar image Ik taken at the UUV configuration rk. Thus, the evidence set Mk = {e1,e2, ...,ek}, where ek , {ŷk, x̂k,rk}, is
used to develop a non-myopic strategy for information gathering. The conditional posterior distribution of the target class
Y is obtained using Bayes’ rule,

P(Y |Mk) = P(Y |ek,Mk−1) =
P(ek|Y,Mk−1)P(Y |Mk−1)

∑Y P(ek|Y,Mk−1)P(Y |Mk−1)
. (4)

In most sensor measurements, it can be assumed that ek is conditionally independent on Mk−1 given the target class, or

P(ek|Y,Mk−1) = P(ek|Y ). (5)

Thus, the posterior probability can be rewritten as,

P(Y |Mk) =
P(ek|Y )P(Y |Mk−1)

∑Y P(ek|Y )P(Y |Mk−1)
, (6)

where P(Y |Mk−1) is known from time (k− 1). Using the chain rule of probability, the probability of evidence can be
factored as,

P(ek|Y ) = P(ŷk, x̂k,rk|Y ) = P(ŷk|x̂k,rk,Y )P(x̂k|rk,Y )P(rk|Y ), (7)

where P(ŷk|x̂k,rk,Y ) and P(x̂k|rk,Y ) conditional probability tables known from the sensor measurement model learned
from the training set, and P(rk|Y ) is assumed to be a uniform prior. Then, the the posterior distribution of the classification
variable, Y , in (6), can be recursively updated as follows,

P(Y |e1) =
P(e1|Y )P(Y )

∑Y P(e1|Y )P(Y )
, (8)

where the prior P(Y ) is learned from the training set. By the maximum a posteriori (MAP) rule, the target class is decided
based on the maximum posterior probability:

ŷ = argmax
y∈Y

[P(Y |Mk)] = argmax
y∈Y

[
P(ek|Y )P(Y |Mk−1)

∑Y P(ek|Y )P(Y |Mk−1)

]
. (9)
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The actual classification confidence level (CL) associated with the decision (9) at time k is,

CL(ek|Mk−1) = max
y∈Y

[P(Y |Mk)] = max
y∈Y

[
P(ek|Y )P(Y |Mk−1)

∑Y P(ek|Y )P(Y |Mk−1)

]
, (10)

where a higher CL value suggests lower uncertainty in the chosen class.

4. EXPECTED CONFIDENCE LEVEL
In order to adaptively plan the next UUV configuration so as to meet the desired CL for all targets in the region of interest,
W , this paper presents an approach for predicting the confidence level of the next image, or CL(ek+1|Mk), where ek+1 is
unknown. The expected confidence level is obtained by taking one step conditional expectation of the confidence level with
respect the to next estimated target class variable, Ŷk+1, and target feature set, X̂k+1. At time k, the expected confidence
level associated with a future configuration value rk+1 is

ECL(rk+1|Mk) = EŶk+1,X̂k+1
[CL(Ŷk+1, X̂k+1,rk+1|Mk)]. (11)

From the definition of conditional expectation, the above equation can be rewritten as,

ECL(rk+1|Mk) = ∑
ŷk+1∈Y , x̂k+1∈X̂

CL(ŷk+1, x̂k+1,rk+1|Mk)P(ŷk+1, x̂k+1|Mk,rk+1), (12)

where CL(ŷk+1, x̂k+1,rk+1|Mk) can be obtained recursively from Eq. (10) using each pair of possible realizations of Ŷk+1
and X̂k+1. The probability P(Ŷk+1, X̂k+1|Mk,rk+1) in Eq.(12) can be computed by marginalizing the joint probability
P(Y,Ŷk+1, X̂k+1|Mk,rk+1) over the unknown target classification Y

P(Ŷk+1, X̂k+1|Mk,rk+1) = ∑
Y

P(Y,Ŷk+1, X̂k+1|Mk,rk+1)

= ∑
Y

P(Ŷk+1, X̂k+1|Y,Mk,rk+1)P(Y |Mk,rk+1). (13)

Under the sensor conditional independence assumptions, P(Ŷk+1, X̂k+1|Y,Mk,rk+1) = P(Ŷk+1, X̂k+1|Y,rk+1), and, since the
target class is independent of the sensor range, P(Y |Mk,rk+1) = P(Y |Mk), and Eq. (13) can be written as,

P(Ŷk+1, X̂k+1|Mk,rk+1) = ∑
Y

P(Ŷk+1, X̂k+1|Y,rk+1)P(Y |Mk)

= ∑
Y

P(Ŷk+1|X̂k+1,Y,rk+1)P(X̂k+1|Y,rk+1)P(Y |Mk), (14)

where P(Ŷk+1|X̂k+1,Y,rk+1) and P(X̂k+1|Y,rk+1) can be obtained from sensor measurement model (Section 3). Thus, the
ECL can be calculated recursively at every time step from Eqs. (11), (12) and (14), and a path can be planned such that a
desired ECL is obtained for all n targets in W .

5. SIMULATION RESULTS
The proposed approach for the recursive computation of the expected confidence level is tested on a simulation of n = 520
targets distributed in a region of interest W = [−L, L]× [−L, L], where L = 1200 meters. Training and testing data sets
are obtained for training the CNN and SVM classifier,2 as well a Bayesian network measurement model of the UUV-based
sonar.10 The testing data set has n = 215 targets, each with a hidden target class Y ∈ {0, 1} and a diverse distribution of
target features. During the survey stage, a first set of sonar images are obtained by the UUV using a lawnmower path in
the North-South designed to cover W .

From the survey images, the target features and classification are estimated by applying the CNN and SVM classifier
to the segmented sonar images. Subsequently, the ECL is estimated as a function of the UUV configuration, rk+1, and
estimated target class and features, as shown in Sections 3-4. By this approach, the ECL is estimated before obtaining
additional sonar images, and the best UUV path can be planned accordingly. When the identification stage begins, and the
UUV obtains new sonar images, they are similarly processed to obtain new class and feature estimates, as well as an actual
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Figure 2: UUV trajectory and UUV (imaging) position and heading at the times sonar images are obtained from the target.

CL for the classification decision, according to (10). Then, if the actual CL is not above the desired threshold, the ECL is
also updated recursively according to (14), in order to plan additional measurements online. The error in the CL estimate
is given by,

eCL =
|ECL−CL|

CL
· (100%) (15)

and is computed here for validation, after every new image is obtained. Figure 2 and Table 1 show the estimated and actual
classification of a target observed three consecutive times by the UUV-based sonar. It can be seen that the the accuracy of
both estimates improves as additional images are obtained at different relative range and aspect angles.

Table 1: Confidence levels and classification results obtained after each of three sonar images is obtained, sequentially,
from the same target (index 3), as shown in Fig. 2.

Sonar Image Number (k) 1 2 3

Expected CL (ECL(rk |Mk−1)) 0.9580 0.7514 0.9768

Estimated target classification (ŷk) 0 1 1

Actual CL (P(ŷk |Mk)) 0.5312 0.9739 0.9962

Actual target classification (y) 1 1 1

Figure 3(a) and 4 show a comparison of actual and estimated CL for all of the targets in the testing data set, organized
by actual classification, y = 1 and y = 0, respectively. Although the ECL is inaccurate when the prior probability and
corresponding MAP estimate are incorrect, it can be seen that in many cases, the ECL follows the same trend as the actual
CL. From (15), the maximum CL error is 45.82% when y = 1, and 9.90% when y = 0. The majority of the target with y = 0
display a CL error smaller than 4%. Therefore, the expected confidence level is a good estimation of the actual confidence
level. Half of the targets with y = 1 have a CL error less than 5%. For those few targets that display a high CL error (Table
1), due to the poor quality of the survey image(s), the ECL accuracy rapidly improves as more images are obtained during
the identification stage. This is especially true when the UUV configuration is planned so as to maximize the ECL, as will
be shown in a separate paper. The mean and standard deviation of the CL error, obtained from the entire data base, are
plotted in Fig. 3(b) as a function of number of images per target. The results in Fig. 3(b) show that, when y = 1 more
images are required to accurately estimate the CL then when y = 0, but in both cases the ECL improves over time. It was
also found that the ECL accuracy improves with the quality of the sensor measurement model, which is typically learned
from data and/or first principles.10 As a result, the effectiveness of this approach highly depends on the training and testing
data sets. Since the availability of labeled data is limited in many imaging applications, future work will also investigate
how sampling and re-sampling algorithms can be utilized to improve ECL and classification accuracy.
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Figure 3: Expected and actual confidence level for targets of class y = 1(a), and CL error statistics for multiple images (b).
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Figure 4: Expected and actual confidence level for targets of class y = 0.

6. CONCLUSION
This paper presents an approach for computing the expected confidence level in target classification problems for imaging
sensors, such as sonar. A recursive relationship is derived to update the expected confidence level efficiently after every
new image of the target is obtained at a new range and orientation. Using a Bayesian measurement model and a deep
learning approach for automatic target recognition and feature extraction, the expected confidence level can be obtained
from prior information, comprised of processed images, by taking the conditional expectation with respect to target class
and feature estimates. Simulation results show that the expected confidence level can be accurately estimated for most
targets. When prior images do not allow for accurate estimates, the recursive relationship can be used to improve the
estimate efficiently over time, as new target images become available. Therefore, the proposed approach can be used to
develop path planning algorithms for sensor applications in which targets must be classified with high confidence, but the
image-based target recognition and classification problem is challenging and can only be solved by obtaining multiple
images at different positions and orientations.
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