
An Adaptive Spiking Neural Controller for Flapping
Insect-scale Robots

Taylor S. Clawson1 Student Member, IEEE, Terrence C. Stewart2,
Chris Eliasmith2, and Silvia Ferrari1 Senior Member, IEEE

Abstract—Insect-scale flapping robots are challenging to stabi-
lize due to their fast dynamics, unmodeled parameter variations,
and the periodic nature of their control input. Effective controller
designs must tolerate wing asymmetries that occur due to
manufacturing errors and react quickly to stabilize the fast
unstable modes of the system. Additionally, they should have
minimal power requirements to fit within the tightly constrained
power budget associated with insect-scale flying robots. Adaptive
control methods are capable of learning online to account for
uncertain physical parameters and other model uncertainties,
and can thus improve system performance over time. In this
work, a spiking neural network is used to stabilize hovering
of an insect-scale robot in the presence of unknown parameter
variations. The controller is shown to adapt rapidly during a
simulated flight test and requires a total of only 800 neurons,
allowing it to be implemented with minimal power requirements.

I. INTRODUCTION

Insect-scale flapping robots have recently demonstrated the
ability to hover and perform basic trajectory following and
other maneuvers through the implementation of modular PID
and adaptive controllers [1]–[3]. Due to their size and weight,
these robots have a wide variety of potential applications,
including search and rescue and remote monitoring in confined
spaces or hazardous environments. Generating lift through
flapping as opposed to more traditional fixed-wing or rotary
designs is inherently more efficient at this scale [1]. Addition-
ally, it provides a great deal of agility, as can be observed in
many flying insects [4], [5].

Stabilizing and controlling these robots remains a challeng-
ing problem, however, due to a number of factors. A successful
controller must be robust to uncertain physical parameters
caused by manufacturing errors such as wing asymmetries,
which result in a noticeable torque bias during flight that
rapidly destabilizes the robot. Additionally, actuator dynamics
vary between robots, leading to variations in flapping kinemat-
ics. Analytic models of aerodynamic forces are imperfect, and
their accuracy can degrade during rapid maneuvers or in other
poorly modeled flight regimes. The controller must be able to
react quickly to stabilize the system’s naturally fast, unstable
dynamic modes. Additionally, the model and control law must
account for the periodic flapping nature of the system. This
periodicity means that the system has limit cycles instead
of equilibrium points, and that linearizations thus result in
time-varying instead of time-invariant systems. These systems

1Taylor S. Clawson and Silvia Ferrari are with the Department of Me-
chanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
tsc83@cornell.edu, ferrari@cornell.edu

2Terrence C. Stewart and Chris Eliasmith are with the Centre for Theoreti-
cal Neuroscience, University of Waterloo, Waterloo, Ontario, Canada N2L3G1

are also severely underactuated, possessing between 10 and
12 degrees of freedom but only 3 or 4 control inputs. This
limits the effectiveness of some common techniques such as
feedback linearization.

Recent work has shown that spiking neural networks
(SNNs) are capable of being used as adaptive controllers for a
wide variety of systems. They have been used to stabilize lon-
gitudinal fixed-wing aircraft dynamics [6], perform trajectory
following on robot arms [7], perform navigation and control
for terrestrial insect-like robots [8], [9], and stabilize simplified
longitudinal dynamics for insect-scale flapping robots [10].
Building on these previous efforts, the work presented here
develops an adaptive SNN controller capable of stabilizing
hovering flight of a simulated flapping insect-scale robot. The
robot model used in this work computes aerodynamic forces
on the wings during flight with blade-element theory and
includes 6 degrees of freedom in the main robot body [11].

SNN-based controllers have several desirable properties for
controlling insect-scale flapping robots. Hardware implemen-
tations of SNNs have shown to be very power efficient [12],
an important consideration given the small power and weight
budgets for robots at this scale. For instance, the power
budget for the RoboBee is around 20mW [1], most of which
is required to power the actuators. Additionally, event-based
sensors are available which yield low-latency feedback on
the order of 15µs [13]. The output from these sensors must
be processed before being used with most existing control
algorithms however, thus reducing the inherent benefits of low
latency and low power consumption. Integrating the event-
based output from these sensors with SNN-based control
algorithms has the potential to provide low latency and low
power feedback control if SNN control algorithms can be
developed which demonstrate robust performance for complex
unstable systems. To this end, this paper presents an adaptive
SNN-based controller capable of stabilizing a realistic model
of an insect-scale flapping robot while adapting for unknown
parameter variations.

Due to a lack of sufficient rotational damping, open loop
hovering flight is unstable for many insect-scale flapping
robots, including the RoboBee shown in Fig. 1 [14], [15].
In systems such as the RoboBee, open loop flight tests often
result in a crash in less than 0.3 seconds, leaving very little
time for a poorly tuned controller to adapt to uncertain physical
parameters. If the adaptive controller is not initially robust
to uncertainties in physical parameters prior to any online
learning, it will be unable to stabilize hovering flight long
enough to learn the parameters of the robot. To achieve



Fig. 1: The RoboBee, with the wing stroke plane shown in
blue.

this, a portion of the SNN control signal is tuned offline to
approximate a linear controller which was developed for the
idealized robot model. A separate term in the control law
is used to adapt online to any errors caused by parameter
variations in the system.

Several distinct control methods have been implemented to
stabilize hovering flight for flapping-wing robots previously.
A hierarchical approach to designing flight controllers for
insect-scale flapping robots proposed in [16]. The design calls
for a stabilizing controller to compute desired forces and
torques, which are passed on to a wing trajectory controller,
responsible for generating periodic signals to be sent to the
wings. This modular approach has been extended to several
control methods for insect-scale flapping robots.

A modular PID approach was used to stabilize hovering and
perform basic trajectory following for the RoboBee, shown
in Fig. 1, in [1]. A similar approach in [17] used the same
modular architecture, but included adaptive terms to estimate
wing torque biases and improve tracking performance. This
design was augmented with an iterative learning scheme to
perch on vertical surfaces in [3]. The adaptive approach in [18]
is an extension of [3], but also accounts for wind disturbance
rejection based on feedback estimates.

The SNN controller proposed here is shown to be capable
of stabilizing an insect-scale flapping robot in the presence
of unknown parameter variations, achieving improved perfor-
mance over the linear controller on which a portion of the
SNN control law is based. This is demonstrated by controlling
a simulation of the RoboBee which has been previously
validated against experimental data [11].

II. DYNAMIC MODEL

The RoboBee is a 14mm tall flapping robot that has demon-
strated hovering [1], basic lateral maneuvers, and perching [2].
Thrust is provided by two wings mounted to the top of the
main body, as shown in Fig. 1. Each wing is independently
actuated, and only the stroke angle of each wing can be
directly controlled. The current design does not allow for any
stroke-plane deviation, and the wing pitch cannot be controlled
directly during flight.

(a) Pitch Control (b) Roll Control

Fig. 2: Control torques in the direction indicated by the arrows
are achieved by varying the wing stroke from the green region
to the blue region

Piezoelectric actuators drive transmissions that flap the
wings to generate lift. Torque control is achieved by changing
the wings’ relative stroke amplitudes for roll and the mean
stroke angle for pitch, as shown in Fig. 2. As in many biolog-
ical insects, the robot is unstable in passive flight [14], [15].
The instability arises because of net drag forces acting high
above the robots center of mass. This unstable mode arises in
both the longitudinal and lateral directions, destabilizing the
robot in both pitch ψ and roll θ. The dynamics are neutrally
stable in yaw, so for simplicity, yaw control is not considered
in this work.

The RoboBee model used for this paper combines rigid-
body dynamics with blade element theory as described in [11].
The resulting model accounts for 6 degrees of freedom in the
body of the robot, and 1 in each wing. Each wing’s stroke
angle φW is specified kinematically, while the wing pitch ψW
is free to rotate. No stroke-plane deviation is allowed in the
current design, so the position of the wings at any point in
time can be specified using only φW and ψW .

The state vector x is broken up into two halves, the
configuration q and the time derivative of the configuration
q̇, where q = [φR φL ψR ψL φ θ ψ x y z]T . The stroke
angles of the right and left wings are φR and φL, the pitch
angles of the right and left wings are ψR and ψL, the body
Euler angles are yaw φ, roll θ, and pitch ψ, and the position
of the body in the fixed frame is given by r = xı̂+ ŷ+ zk̂.
The complete state is written as

x(t) =

[
q(t)
q̇(t)

]
∈ Rn (1)

The control vector u = [ua up ur] ∈ Rm contains the
stroke amplitude input ua, the pitch bias up, and the roll bias
ur. These parameters are used to compute the stroke amplitude
and mean stroke angle for each wing. The equations of motion
are linear in q̈, and can be expressed in terms of the inertia
matrix M(q), a vector of nonlinear forces C(q, q̇), and the
input matrix B(t),

M(q)q̈ + C(q, q̇) = B(t)u (2)



Solving (2) for q̈, the expression obtained for the state
derivative ẋ is[

q̇
q̈

]
=

[
0 I
0 0

]
x(t)−

[
0

M−1C

]
+

[
0

M−1B(t)

]
u(t) (3)

where the dependence on the configuration q and its derivative
q̇ are suppressed for brevity. As can be seen from (3), the
dynamics can be written in the control affine form

ẋ(t) = f(x) + G(x, t)u(t) (4)

If the equations of motion given in (4) can be linearized
about hovering without significant loss of accuracy, then con-
trol design is greatly simplified. Linearization about a single
point in state space will yield a poor model for control design
however, as the wing states vary greatly during flight. On the
other hand, linearizing about the periodic hovering trajectory
should provide a good approximation for relatively small
deviations from hovering. This will yield a linear time varying
solution in terms of deviation from the hovering trajectory. The
steady hovering trajectory is characterized by a time-varying
state denoted by x∗(t) and a constant control input u∗. The
values for this trajectory can be computed by solving (4) for
the initial conditions and constant control inputs that produce
a periodic trajectory so that x∗(t) = x∗(t + T ), where the
period T = 120Hz is equal to the flapping frequency.

After defining the state deviation x̃(t) = x(t) − x∗(t) and
the control deviation ũ(t) = u(t)−u∗, the linearized equations
of motion are given by

˙̃x = A(t)x̃ + B(t)ũ (5)

where, if ẋ = h(x,u, t),

A(t) =
∂h

∂x

∣∣∣∣
(x∗(t),u∗)

, B(t) =
∂h

∂u

∣∣∣∣
(x∗(t),u∗)

(6)

Also, due to the periodic nature of flapping flight, the model
is periodic with period T , such that

A(t) = A(t+ T ), B(t) = B(t+ T )

The linear time-varying model shown in (5) is far more
suitable for controller design than the full non-linear time-
varying equations of motion. The equations in this form do not
accurately represent the system responsiveness to all control
inputs however, even near the equilibrium trajectory. This
is caused by the inclusion of the actuator dynamics in the
full equations of motion (4). Linearizing the equations of
motion directly as shown in (5) captures the response of the
system to an instantaneous control input, which includes the
transient wing response instead of the steady state response.
The transient response is, in some cases, significantly different
than the steady state response and thus causes the linearized
control input matrix B(t) to inaccurately represent the system
response to control inputs.

The most noticeable case of the transient wing response
differing from the steady state response is after a step change
to the roll input ur. Once the wing stroke amplitudes and pitch
angles reach a steady state, a positive roll bias will increase the

0 0.002 0.004 0.006 0.008 0.01
t (s)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

C
oe

ff
ic

ie
nt

coupling
coupling
coupling

(a) Using the transient wing response

0 0.002 0.004 0.006 0.008 0.01
t (s)

-1.5

-1

-0.5

0

0.5

1

1.5

C
oe

ff
ic

ie
nt

105

coupling
coupling
coupling

(b) Using the steady state wing response

Fig. 3: Coefficients of the linearized input matrix B(t) which
couple the roll input ur to body Euler angles

flapping amplitude of the left wing relative to the right wing,
which causes a greater net lift force on the left wing than the
right wing, as shown in Fig. 2b. The result is a torque that, in
the steady state, causes primarily rolling.

However, instantaneous response to a step change in roll
input ur is, briefly, quite different from the steady state
response. As one wing accelerates and the other decelerates,
a yaw torque is generated and the body very slightly rolls
opposite the desired direction. Flapping one wing faster than
the other is known to theoretically cause yaw torque [1], [19].
The impact on the control input matrix B(t) is significant. The
instantaneous response to a roll control input is captured by
the linearization, which then indicates that a roll control works
in the opposite of the desired direction and causes significant
yawing. Figure 3a plots the coefficients of the B(t) matrix that
couple the roll input ur to the body Euler angle accelerations
when the B(t) matrix is calculated using the linearization
shown in (5).

Since the desired effect of the linearization is to capture
the response of the body due to the steady state motion of
the actuators, the steady state wing motion must be computed
for any control input used when calculating the numerical



Jacobian shown in (6). The state vector must first be divided
into the wing states xw and the body states xb. The steady
state wing motion can then be computed by integrating the
equations of motion for the wing states, ẋw = fw(x,u, t),
while assuming the body remains in the equilibrium trajectory
defined by x∗b . Applying this to the linearization results in
a much improved representation of the LTV system. The
coefficients of the B(t) matrix computed using the steady state
wing trajectories are shown in Fig. 3b. These now correctly
indicate that a positive roll control input will result in a positive
roll torque. The yawing effect remains, but if the control is
held constant throughout the period, yaw torque will cancel.

III. SNN CONTROL DESIGN

The control signal can be provided entirely by popula-
tions of spiking neurons using an adaptation of the approach
presented in [7]. Each individual population of neurons is
structured as a single-layer feed forward network. A total
of four separate neuron populations are used to compute the
complete control signal, which is the summation of two terms.
One term approximates the signal from a linear controller that
is designed to stabilize the ideal model [11], and the other is an
adaptive term to account for parameter variations in the robot.
A total of 800 neurons are used across all four populations.

The linear controller used here is a proportional-integral-
filter (PIF) compensator [20], which uses an augmented state
vector χ(t) = [x̃T (t) ũT (t) ξT (t)] ∈ Rq and a constant gain
matrix K ∈ Rm×q . Using (·)∗ to denote the desired set point
condition, the augmented state vector contains the state error
x̃(t) = x(t) − x∗ ∈ Rn, the control error ũ(t) = u(t) −
u∗ ∈ Rm, and the integral of the output error ξ(t) = ξ(0) +∫ t
0

ỹ(τ)dτ ∈ Rr. The PIF control law is

uPIF (t) =

∫ t

0

−Kχ(τ)dτ (7)

For simplicity, the control input error and integral of the output
error are both assumed to be zero for the SNN approximation.
The most significant terms in the PIF control signal are
dependent on the state error x̃(t) only.

To formulate the PIF approximation term u0 in terms of
spiking neurons, the Neural Engineering Framework (NEF)
[21], [22] is used. The NEF provides a framework for rep-
resenting algorithms in terms of spiking neuron models, and
includes methods for both encoding time-varying vectors in
populations of neurons and for decoding the output of spiking
neurons into a continuous signal.

The state x(t) is encoded in a population of neurons as a
sequence of spikes from each neuron. The nonlinear spiking
neuron model of the ith neuron within the population is Gi :
J × T → R, which maps the input current Ji ∈ J ⊂ R and
time t ∈ T ⊂ R+

0 to the spike train ri ∈ R,

ri = Gi(Ji(x), t) (8)

The total current Ji into neuron i is written in terms of a gain
term αi ∈ R, the neuron’s preferred direction vector ei ∈ Rn,
and a fixed background current Jbiasi ∈ R,

Ji(x) = αie
T
i x(t) + Jbiasi (9)

The nonlinear spiking neuron model Gi used in this work
is the leaky integrate-and-fire model [23]. This models the
voltage Vi across the membrane of a neuron as an RC circuit
governed by the first-order ODE

τRC
dVi
dt

= −Vi(t) +RiJi(x) (10)

where τRC is the decay time constant, and Ri is the resistance
in the circuit and accounts for the passive “leak” of the
current, and the initial condition is Vi(0) = V0. The spike
train ri of the neuron can be written as a summation of Dirac
delta functions indexed by k. A spike time tik is defined
when the voltage reaches a threshold Vth, following which
the membrane potential Vi is set to the reset value Vr < Vth.
Expressed formally,

tik = {τ : Vi(τ) = Vth} (11)

lim
t→t+ik

Vi(t) = Vr (12)

Following a spike, neuronal activity is held at the reset value
Vr for a refractory period τref , after which the membrane
potential Vi(t) again follows (10).

The spiking activity contained in ri can be expressed using
the spike times tik as,

ri =
∑
k

δi(t− tik) (13)

where δi(t) denotes the Dirac delta function. To decode a
continuous estimate of the state x(t) from the spiking activity
ri, the filtered postsynaptic activity is used. In this model,
synapses act as linear filters hi(t) on the spike trains. This can
be explicitly stated using the postsynaptic time constant τPSC
as hi(t) = (1/τPSC)e−t/τPSC . The activity ai of neuron i is
thus the summation of impulse responses from linear filters,
which can also be written as the convolution of the synaptic
filters hi(t) with the spike train,

ai(x, t) = hi(t) ∗Gi(Ji(x), t)

=
∑
k

hi(t− tik) (14)

where “∗” denotes the convolution operator. The activity of the
population of neurons can be used to represent the PIF control
signal through the use of carefully chosen linear decoders di ∈
Rm,

u0(t) =
∑
i

ai(x, t)di (15)

The linear decoders which give the optimal representation
of the PIF control signal are found using standard least squares
optimization over a set B of sampled data,

di = argmin
mi

∫
x∈B
‖ g(x)−

∑
i

āi(x)mi ‖2 dx (16)



Plant

Fig. 4: The SNN control architecture, where clusters of circles
represent neuron populations.

where g(x) is the output of the PIF control law for a given
point in state space and āi(x) is the time-averaged steady-
state neuron activity for the same point. The elements of B
are sampled from a subset of the state space near the hovering
condition, where the neuron population is expected to be
capable of approximating the PIF control law.

The control input u0(t) closely approximates the signal
from the PIF compensator, which is designed to control an
ideal model of the RoboBee [11]. In reality however, the
RoboBee is subject to manufacturing defects which are not
present in the ideal model. These defects include variations
in the wing hinges and asymmetries between the actuators
that result in anomalous torque generation during flight. An
adaptive control input uadapt(t) accounts for this and other
unmodeled dynamics present in the system. The computation
of uadapt(t) follows a direct adaptive method similar to that
outlined in [7], [24], [25].

The adaptive term uadapt(t) contains three scalar quantities:
an amplitude input ua(t), a pitch input up(t), and a roll input
ur(t),

uadapt(t) =
[
ua(t) up(t) ur(t)

]T
(17)

Each of these scalars are computed from a separate population
of neurons, as shown in Fig. 4. Each population is trained
online to zero out an error signal that depends on the error
∆x(t) = x(t) − xref (t) between the state x(t) and the
reference state xref (t), a constant gain term α ∈ R+

0 , and
the constant vector Λ ∈ Rn,

E(t) = ΛT (∆x(t) + α∆ẋ(t)) (18)

In general, variations in actuator performance between
robots result in unknown dynamics that change as a function of
the state. However, it is assumed that the actuator performance
dominates any variations in the dynamics in the body z
direction, so the adaptive amplitude ua(t) is not computed
as a function of the state. The adaptive amplitude input ua(t)
is computed by decoding the neuron activity through linear
decoders da,i ∈ R,

ua(t) =
∑
i

aa,i(t)da,i(t) (19)

where the activity of the neurons in this population is

aa,i(t) = hi(t) ∗Gi(Jbiasi , t) (20)

This can be written more compactly by defining
the activity for the amplitude population as
aa = [aa,1, aa,2, . . . , aa,N ]T and the corresponding
population decoders da = [da,1, da,2, . . . , da,N ]T . The
amplitude control signal (19) can now be rewritten as

ua(t) = aTa (t)da(t) (21)

The linear decoders da(t) for the amplitude population are
continuously updated based on an adaptation rate γ ∈ R+

0 , the
population activity, and the error signal (18),

ḋa(t) = γaa(t)E(t) (22)

For the amplitude input ua(t), the vector Λ is chosen so that
the error function is only a function of the body z velocity
error ∆vz(t) and its derivative.

The adaptive pitch input up(t) and adaptive roll input ur(t)
are computed similarly to the adaptive amplitude input (21).
Pitch and roll torques experienced during flight are in general
a function of the state, because drag on the wings varies as
a function of the robot’s angular and linear velocity. This is
accounted for in both up(t) and ur(t) by incorporating the
state in the neural activity, as shown in (14),

up(t) = aTp (x, t)dp(t) (23)

ḋp(t) = γap(x, t)E(t) (24)

The pitch input is computed to reduce the error in body x
velocity vx(t) by choosing Λ in the error function (18) so
that the error depends only on vx(t) and its derivative.

The roll input ur(t) is computed identically to the pitch
input (23), except that Λ in the error function is chosen so
that the error depends only on the body y velocity vy(t) and
its derivative,

ur(t) = aTr (x, t)dr(t) (25)

ḋr(t) = −γar(x, t)E(t) (26)

The sign difference between the right hand side of (24) and
(26) results from differences in sign convention between the
two control inputs.

In summary, the adaptive amplitude input (21) is designed
to zero out any error in body z velocity, the pitch input (23)
is designed to zero out error in the body x velocity, and the
roll input (25) will zero out the error in body y velocity. The
complete control signal sent to the plant is the sum of (15)
and (17),

u(t) = u0(t) + uadapt(t) (27)

The first term u0(t) is trained offline to control the ideal
model, and the adaptive term uadapt(t) is trained online to
minimize the steady-state error ∆x(t) caused by parameter
variations and constant disturbances.



0 1 2 3 4 5 6
t (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
A

ng
le

 (
ra

d)

Fig. 5: For comparison with the SNN controller, the PIF
compensator quickly stabilizes roll θ and pitch ψ, but the yaw
angle φ is not stabilized.

IV. RESULTS

Closed loop flight test simulations were conducted using
both the SNN controller (27) and the PIF compensator (7) to
control the model from [11]. Compared to previous stroke-
averaged models, this model more accurately represents the
coupling between various degrees of freedom in the robot
by using blade element theory to compute instantaneous
aerodynamic forces during flapping. The model was compared
with experimental data in [11] to validate its effectiveness at
representing the flight dynamics of the physical robot. To ver-
ify the ability of each controller to compensate for parameter
variations in the model, wing asymmetry was introduced in
both simulations by applying a static amplitude bias between
the right and left wings of the model for roll and a static mean
stroke angle offset for pitch. In both cases, the controllers were
commanded to control hovering flight.

The attitude and body velocity during the flight simulation
using the PIF compensator are shown in Fig. 5 and Fig. 6.
Although the integral term in the PIF compensator does work
to eliminate steady-state error in vx and vy as shown in Fig.
6, it does so slowly, and at the end of the 6 second test flight
the robot maintains a significant non-zero velocity. Due to
the positional drift, the robot continues yawing throughout the
simulation as shown in Fig. 5. However, the PIF compensator
is able to quickly stabilize pitch and roll to near zero.

The same initial conditions and wing biases were used to
simulate another closed loop flight, this time using the adaptive
SNN (27) to control the simulated robot. The parameters for
the adaptive input uadapt(t) were tuned using a grid parameter
search. The search varied the parameters of the decoder update
laws to find the values that lead to the smallest total deviation
from the starting hover position in meters. The attitude and
body velocity from a trial with simulated wing bias and
random initial conditions are shown in Fig. 7 and Fig. 8,

0 1 2 3 4 5 6
t (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
el

oc
it

y 
(m

/s
)

v
x

v
y

v
z

Fig. 6: For comparison with the SNN controller, the PIF com-
pensator successfully stabilizes vz , but only slowly stabilizes
vx and vy , resulting in significant drift from the initial position.

0 1 2 3 4 5 6
t (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

A
ng

le
 (

ra
d)

Fig. 7: During a simulated hovering flight, the adaptive SNN
successfully stabilizes roll θ and pitch ψ about zero despite
parameter variations in the model, while the yaw angle φ
stabilizes at a constant non-zero value.

respectively. During this simulated flight test, the RoboBee
remained within 10cm of its starting position.

The body attitude and velocity are both stabilized by the
adaptive SNN controller. The yaw angle φ settles at a non-zero
constant in Fig. 7 and the pitch angle ψ and roll angle θ both
stabilize near zero. The yaw angle was not included in the set
point and thus was not expected to reach zero, since the current
model lacks direct yaw control authority. All components of
the body velocity stabilize near zero as shown in Fig. 8 after
approximately 3 seconds. Comparing the RoboBee attitude and
velocity when controlled by the PIF compensator (Fig. 5 and
Fig. 6) with the attitude and velocity when controlled by the
adaptive SNN (Fig. 7 and Fig. 8) demonstrates the ability



0 1 2 3 4 5 6
t (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
V

el
oc

it
y 

(m
/s

)

v
x

v
y

v
z

Fig. 8: During a simulated hovering flight, the adaptive SNN
successfully stabilizes all components of the body velocity
near zero despite parameter variations.

of the adaptive SNN to account for the unmodeled torque
disturbances caused by the simulated wing bias.

V. CONCLUSIONS

Control using SNNs has several potential benefits, including
the potential for low latency control loops and low power
consumption. This is especially true when considering inte-
grating SNN controllers with event-based sensors. This paper
presents an SNN-based control algorithm that is shown to be
capable of stabilizing an accurate model of an unstable insect-
scale flapping robot despite unknown parameter variations.
One term in the control law approximates the control signal
from a linear controller designed for the idealized model, while
another term adapts online to account for parameter variations
that are unknown a-priori. The controller is able to adapt to
the parameter variations within 3 seconds and successfully
stabilizes hovering flight. This demonstrates the ability of SNN
controllers to stabilize inherently unstable systems that require
rapid, accurate feedback control.

ACKNOWLEDGMENT

This research was supported by ONR grant
N000141712614, the Canada Research Chairs program,
NSERC Discovery grant 261453, ONR grant N0001415l2827,
and AFOSR grant FA9550-17-1-0026. This collaborative
project started at the 2017 Telluride Neuromorphic
Engineering Workshop.

REFERENCES

[1] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood,
“Controlled flight of a biologically inspired, insect-scale robot,”
Science, vol. 340, no. 6132, pp. 603–607, 2013. [Online]. Available:
http://science.sciencemag.org/content/340/6132/603

[2] M. Graule, P. Chirarattananon, S. Fuller, N. Jafferis, K. Ma, M. Spenko,
R. Kornbluh, and R. Wood, “Perching and takeoff of a robotic insect on
overhangs using switchable electrostatic adhesion,” Science, vol. 352,
no. 6288, pp. 978–982, 2016.

[3] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Fly on the wall,” in
Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS
International Conference on. IEEE, 2014, pp. 1001–1008.

[4] M. H. Dickinson, F.-O. Lehmann, and S. P. Sane, “Wing rotation and
the aerodynamic basis of insect flight,” Science, vol. 284, no. 5422, pp.
1954–1960, 1999.

[5] S. N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of
free-flight maneuvers in drosophila,” Science, vol. 300, no. 5618, pp.
495–498, 2003.

[6] G. Foderaro, C. Henriquez, and S. Ferrari, “Indirect training of a spiking
neural network for flight control via spike-timing-dependent synaptic
plasticity,” in Decision and Control (CDC), 2010 49th IEEE Conference
on. IEEE, 2010, pp. 911–917.

[7] T. DeWolf, T. C. Stewart, J.-J. Slotine, and C. Eliasmith, “A spiking
neural model of adaptive arm control,” in Proc. R. Soc. B, vol. 283, no.
1843. The Royal Society, 2016, p. 20162134.

[8] P. Mazumder, D. Hu, I. Ebong, X. Zhang, Z. Xu, and S. Ferrari, “Digital
implementation of a virtual insect trained by spike-timing dependent
plasticity,” INTEGRATION, the VLSI journal, vol. 54, pp. 109–117,
2016.

[9] X. Zhang, Z. Xu, C. Henriquez, and S. Ferrari, “Spike-based indirect
training of a spiking neural network-controlled virtual insect,” in De-
cision and Control (CDC), 2013 IEEE 52nd Annual Conference on.
IEEE, 2013, pp. 6798–6805.

[10] T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood, “Spiking neural
network (snn) control of a flapping insect-scale robot,” in Decision and
Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp. 3381–
3388.

[11] T. S. Clawson, S. B. Fuller, R. J. Wood, and S. Ferrari, “A blade element
approach to modeling aerodynamic flight of an insect-scale robot,” in
American Control Conference (ACC), 2017. IEEE, 2017, pp. 2843–
2849.

[12] K. Boahen, “A neuromorph’s prospectus,” Computing in Science &
Engineering, vol. 19, no. 2, pp. 14–28, 2017.

[13] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15µs
latency asynchronous temporal contrast vision sensor,” IEEE journal of
solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[14] Z. J. Wang, “Insect flight: From newton’s law to neurons,” Annual
Review of Condensed Matter Physics, vol. 7, pp. 281–300, 2016.

[15] S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J. Wood,
“Controlling free flight of a robotic fly using an onboard vision sensor
inspired by insect ocelli,” Journal of The Royal Society Interface, vol. 11,
no. 97, p. 20140281, 2014.

[16] X. Deng, L. Schenato, and S. S. Sastry, “Flapping flight for biomimetic
robotic insects: Part ii-flight control design,” IEEE Transactions on
Robotics, vol. 22, no. 4, pp. 789–803, 2006.

[17] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Adaptive control of
a millimeter-scale flapping-wing robot,” Bioinspiration & Biomimetics,
vol. 9, no. 2, p. 025004, 2014.

[18] P. Chirarattananon, Y. Chen, E. F. Helbling, K. Y. Ma, R. Cheng, and
R. J. Wood, “Dynamics and flight control of a flapping-wing robotic
insect in the presence of wind gusts,” Interface Focus, vol. 7, no. 1, p.
20160080, 2017.

[19] M. W. Oppenheimer, D. B. Doman, and D. O. Sigthorsson, “Dynamics
and control of a biomimetic vehicle using biased wingbeat forcing
functions,” Journal of guidance, control, and dynamics, vol. 34, no. 1,
pp. 204–217, 2011.

[20] R. F. Stengel, Optimal control and estimation. Courier Corporation,
2012.

[21] C. Eliasmith and C. H. Anderson, Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2004.

[22] T. C. Stewart and C. Eliasmith, “Large-scale synthesis of functional
spiking neural circuits,” Proceedings of the IEEE, vol. 102, no. 5, pp.
881–898, 2014.

[23] W. Gerstner and W. Kistler, “Spiking neuron models cambridge univer-
sity press,” 2002.

[24] R. M. Sanner and J.-J. Slotine, “Gaussian networks for direct adaptive
control,” IEEE Transactions on neural networks, vol. 3, no. 6, pp. 837–
863, 1992.

[25] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipula-
tors,” The international journal of robotics research, vol. 6, no. 3, pp.
49–59, 1987.


