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ABSTRACT

Several information theoretic functions have been proposed
in the literature to assess the information value of sensor mea-
surements a posteriori, that is, after measurements have been
obtained from one or more targets. Sensor planning algo-
rithms, however, require that the value of future sensor mea-
surements be computed a priori, based on available models
and prior information. An approach was recently presented
by the authors for estimating the expected information value
of future sensor measurements in target classification prob-
lems. The approach derives expected information theoretic
functions from probabilistic models of the sensors and the
targets, conditioned on prior information. In this paper, the
approach is extended to the problem of sensor planning for
tracking maneuvering targets. The approach is illustrated for
a sensor that obeys an exponential power law model of re-
ceived isotropic energy, and a target that obeys a Markov mo-
tion model. The performance of five information theoretic
functions is compared through numerical simulations, and the
results show that the objective function based on conditional
mutual information leads to the most effective sensor plan-
ning strategy.

Index Terms— Information theory, sensor, planning, tar-
get, tracking, mutual information.

1. INTRODUCTION

The problem of tracking maneuvering targets with little or no
prior information is relevant to a variety of sensor applica-
tions, such as, monitoring of urban environments and facili-
ties [1], and tracking anomalies in manufacturing plants. Sen-
sor planning can be viewed as a decision making problem for
an information-gathering agent that must decide a measure-
ment sequence in order to optimize the sensing performance
over time. Typically, the ability of a sensor to track a moving
target with little or no prior information regarding target ve-
locity and heading is not available in closed form. However,
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under proper assumptions, sensor tracking can be reduced to
the problem of estimating the target state from partial or im-
perfect sensor measurements [2], by using a probability mass
function (PMF) representation of the sensor measurements.
Therefore, the sensor performance can be expressed as a func-
tion of the amount of information associated with the target
state variables.

Although information theoretic functions can be used to
quantify the amount of information associated with a random
variable, they typically require knowledge of the random vari-
able’s probability mass (or density) function. Therefore, in
order to utilize an information theoretic function to quantify
the amount of information associated with a measurement se-
quence, the corresponding posterior distribution (also known
as posterior belief) typically is computed from the measure-
ment sequence. By this approach, Shannon entropy was used
in [3] for tracking a moving target. Also, relative entropy
was used in [2] to solve a multisensor-multitarget assignment
problem, and in [4] to manage agile sensors with Gaussian
models for target detection and classification.

The main difficulty in using existing information theo-
retic functions for sensor planning is that sensor decisions
must be planned prior to obtaining the sensor measurements,
while these information theoretic functions can only be eval-
uated after obtaining the sensor measurements [5]. A general
approach was recently presented by the authors for estimat-
ing the expected information value of future sensor measure-
ments in target classification problems [6]. The approach was
also implemented to derive an additive, symmetric, and non-
myopic function based on conditional mutual information for
the detection and classification of landmines in [5], and for
playing the game of CLUEr [7].

In this paper, the general approach presented in [6] is
extended to the problem of tracking maneuvering targets,
based on little or no prior information. The comparative per-
formance of five information value functions derived from
mutual information, Rènyi divergence, information potential,
quadratic entropy, and the Cauchy-Schwartz [8] distance is
analyzed numerically. The findings presented exhibit that
the information value function based on conditional mutual
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information [7] results in the most effective sensor planning
strategy for tracking moving targets.

2. PROBLEM FORMULATION

The target tracking problem considered in this paper involves
a sensor deployed in a two-dimensional region of interest in
order to track a set of N moving targets. The sensor measure-
ments are modeled using an exponential power law that rep-
resents received isotropic energy generated by constant tar-
get source level, and attenuated by the environment. The
targets are assumed to be point-masses modeled by piece-
wise Markov motion models, commonly used for multi-target
tracking and estimation [9]. According to these Markov mod-
els, for every target i, with i = 1, . . . , N , the motion can
be assumed to be piece-wise linear and uniform during ev-
ery time interval ∆tj , j = 1, 2, . . .. Therefore, during ∆tj ,
the ith target track can be modeled as a straight line with an
unknown velocity vij , an unknown heading angle θij , and a
known initial position p0

ij = [x0
ij , y

0
ij ]

T , such that,

xij(t) = x0
ij + vijt cos θij

yij(t) = y0ij + vijt sin θij , t ∈ [0,∆tj ] (1)

for all i = 1, . . . , N , and j = 1, 2, . . .. An example of a target
track modeled by (1) is shown in Fig. 1 for j = 1, 2, 3.
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Fig. 1. Example of a target track modeled by (1).

It is assumed that during ∆tj the sensor can take only one
measurement from one target, at a time tk ∈ {t1, . . . , tn},
with ∆tj−1 ≤ t1 < . . . < tn ≤ ∆tj . The sensor planning
algorithm, therefore, must decide which target to measure at
tk, such that the accuracy of the estimates of Xij = [vij θij ]

T

is maximized. During every ∆tj , vij and θij are assumed
to be independently and identically distributed (i.i.d.) random
variables, with uniform probability distributions. Suppose the
sample space of vij is V = {1, 2, 3, 4, 5}, and that of θij is
Θ = {0, π

6 ,
π
3 }, and let X denote the product space V × Θ.

Without loss of generality, the method is presented for j = 1,
and xij will be denoted by xi hereon for brevity.

The sensor position, ps = [xs ys]
T , is assumed to be

known and constant, and a target is detected when the re-
ceived signal exceeds a chosen threshold. The distance dki

between the ith target and the sensor can then be estimated
from a measurement Zk

i obtained according to the power law,

Zk
i = β||dki ||−ρ + ν, i = 1, . . . , N (2)

and subject to additive, zero-mean Gaussian noise ν, which
is fully specified by its standard deviation σ. In the above
equation ∥·∥ denotes the L2-norm, β is a known constant that
depends on the target characteristics and is assumed same for
all targets, and ρ is an attenuation coefficient that depends on
the environmental conditions [10].

From (1), the distance between the sensor and the ith tar-
get at time tk obeys,

dki =
√
(x0

i + vitk cos θi − xs)2 + (y0i + vitk sin θi − ys)2

(3)
Let λ = [β, ρ, σ]T denote a vector of known target and envi-
ronmental parameters. From (2), the probability of obtaining
a sensor measurement z at tk is

p(Zk
i = z|Xi, λ) =

1√
2πσ

e−
(z−β(dki )−ρ)2

2σ2 (4)

where p(Zk
i |Xi, λ) is the abbreviation for the probability

mass function (PMF) pZk
i
(zki |Xi, λ). Therefore, the informa-

tion functions discussed in the next section, can be used to
evaluate the target information value, as shown in Section 4.

3. BACKGROUND

Information theoretic functions, reviewed comprehensively in
[11], seek to measure the uncertainty of a discrete and random
variable X, with finite range X , from its probability mass
function (PMF) p(x) for x ∈ X . The simplest information
theoretic function, known as Shannon entropy, measures the
uncertainty of X, and is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x). (5)

Sensor planning strategies based on Shannon entropy are usu-
ally myopic, since they do not consider prior sensor measure-
ments but only the present measurements in a sequence [12].

Another information function is Rényi information or α-
divergence, which is defined

Dα(p ∥ q) =
1

α− 1
ln

∑
x∈X

pα(x) q1−α(x) (6)

where q(x) is also known as current belief, and p(x) as poste-
rior belief. It was used for multi-sensors multi-target assign-
ment in [2] to measure the difference between the two PMFs
q(x) and p(x). A recent study showed that, for a sample tar-
get tracking problem, the Rènyi divergence is most effective
when α = 0.5 [4].
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Mutual information function measures the information
content of one random variable about another random vari-
able [11], and can be made non-myopic by conditioning it
on prior sensor measurements. The conditional mutual infor-
mation of two random variables X and Z, given Y, is given
by

I(X;Z | Y) = H(X | Y)−H(X | Z,Y)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x,y, z) log2
p(x, z | y)

p(x | y)p(z | y)
(7)

represents the reduction in uncertainty in X due to knowledge
of Z, when Y is given.

The information function based on the Cauchy-Schwartz
(CS) inequality is defined by [8],

C(p, q) = log2

∑
x∈X p2(x)

∑
x∈X q2(x)[∑

x∈X p(x)q(x)
]2 (8)

which measures the difference between two PMFs p(x) and
q(x), was recently implemented for sensor planning in [6].

As shown in [6], when compared to all other information
theoretic functions, conditional mutual information (7) and
quadratic entropy, defined as,

V (X) =
∑
x∈X

p2(x) (9)

typically lead to the most effective objective functions for sen-
sor planning in target classification problems. In the next sec-
tion, the above information theoretic functions are used to de-
rive information value functions for the target tracking prob-
lem presented in Section 2, and their performance is com-
pared in Section 5.

4. INFORMATION VALUE FUNCTIONS FOR
SENSOR PLANNING

This section presents a methodology for computing the infor-
mation value of a target prior to obtaining sensor measure-
ments. By this approach, at every time step tk, the sensor can
decide to obtain measurements from the target with the high-
est information value, in an effort to optimize its tracking per-
formance. As shown in Section 3, computing the uncertainty
of a random variable, or the difference in uncertainty before
and after obtaining sensor measurements, requires knowledge
of the prior and posterior belief states. Since the posterior
belief is unknown prior to obtaining the measurements, the
approach presented in [6] is extended here to compute the ex-
pected information value of future sensor measurements, in
the presence of multiple moving targets.

Consider a sensor that must decide which target to mea-
sure at time tk, based on the set of all prior measurements
Mk−1

i = {Z1
i , . . . , Zk−1

i }, i = 1, . . . , N , where any entry

can be ∅ if the corresponding measurement is missing. The in-
formation value of target i can be represented by the change
in belief state brought about by Zk

i , as measured by the α-
divergence in (6). At time tk, the change between the prior
belief state, p(Xi | Mk−1

i , λ), and the posterior belief state,
p(Xi | Zk

i ,M
k−1
i , λ), can be estimated by taking the expec-

tation with respect to Zk
i , denoted by EZk

i
. Then, from (6),

the information value can be represented by the expected α-
divergence,

φ̂Dα(Xi;Z
k
i | Mk−1

i , λ)

≡ EZk
i

{
Dα[p(Xi | Zk

i ,Mk−1
i , λ) ∥ p(Xi | Mk−1

i , λ)]
}

=
∑
z∈Z

Dα[p(Xi | Zk
i = z,Mk−1

i , λ) ∥ p(Xi | Mk−1
i , λ)]

× p(Zk
i = z | Mk−1

i , λ) (10)

By taking the expectation with respect to Zk
i , the measure-

ment value z is no longer needed, and φ̂Dα can be computed
from Mk−1

i and the sensor model, as explained below.
As shown in [4], measurements that are obtained at dif-

ferent times can be assumed to be conditionally indepen-
dent given the state, i.e. p(Zk−1

i | Xi,Z
k−2
i , . . . ,Z1

i , λ) =
p(Zk−1

i | Xi, λ). Thus, the measurement distribution at tk is

p(Zk
i = z|Mk−1

i , λ) =
∑

Xi∈X

p(Zk
i = z|Xi)p(Xi|Mk−1

i , λ).

(11)
The posterior belief inside the expectation in (10) can be cal-
culated using Bayes’ rule for every value z ∈ Z ,

p(Xi | Zk
i = z,Mk−1

i , λ)

=
p(z | Xi, λ)p(Xi | Mk−1

i , λ)∑
xℓ∈X p(z | Xi = xℓ, λ)p(Xi = xℓ | Mk−1

i , λ)

(12)

such that, expected α-divergence (10) can be computed from
(11) and (12). Similarly, based on the definition of conditional
mutual information in (7), the expected conditional mutual
information can be obtained as follows,

φ̂I(Xi;Z
k
i | Mk−1

i , λ) ≡ EZk
i

{
I(Xi;Z

k
i | Mk−1

i , λ)
}

= H(Xi | Mk−1
i , λ)−

∑
z∈Z

H(Xi | Zk
i = z,Mk−1

i , λ)

× p(Zk
i = z | Mk−1

i , λ). (13)

where, the entropy H(Xi | Zk
i = z,Mk−1

i , λ) is computed
from (12), using (5).

The expected Cauchy-Schwartz information function, de-
rived from (8), is,

φ̂C(Xi;Z
k
i | Mk−1

i , λ)

≡ EZk
i

{
C[p(Xi | Zk

i ,Mk−1
i , λ), p(Xi | Mk−1

i , λ)]
}

=
∑
z∈Z

C[p(Xi | Zk
i = z,Mk−1

i , λ), p(Xi | Mk−1
i , λ)]

× p(Zk
i = z | Mk−1

i , λ) (14)
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and is an alternative measure of the distance between the prior
and the posterior belief state for a target i, prior to obtaining
the measurement value {Zk

i = z}. The information value of
the ith target can also be represented by the expected infor-
mation potential gain,

φ̂V (Xi;Z
k
i | Mk−1

i , λ)

≡ EZk
i

{
V [p(Xi | Zk

i ,Mk−1
i , λ)]− V [p(Xi | Mk−1

i , λ)]
}

=
∑
z∈Z

V [p(Xi | Zk
i = z,Mk−1

i , λ)]p(Zk
i = z | Mk−1

i , λ)

− V [p(Xi | Mk−1
i , λ)] (15)

derived from the information potential in (9). The expected
quadratic entropy reduction is similarly obtained,

φ̂HR2
(Xi;Z

k
i | Mk−1

i , λ)

≡ EZk
i

{
HR2 [p(Xi | Mk−1

i , λ)]−HR2 [p(Xi | Zk
i ,Mk−1

i , λ)]
}

= HR2 [p(Xi | Mk−1
i )]−

∑
z∈Z

HR2 [p(Xi | Zk
i = z,Mk−1

i , λ)]

× p(Zk
i = z | Mk−1

i , λ) (16)

where HR2(X) = − lnV (x). Both (15) and (16) can be com-
puted from (12) and (5), using the sensor model (4) and the
prior measurements Mk−1

i .

5. NUMERICAL SIMULATIONS AND RESULTS

In this section, the information value functions are utilized to
select the measurement sequence in the target tracking prob-
lem described in Section 2. The noise in (4) is modeled us-
ing a standard deviation σ = 0.3. Five greedy sensor plan-
ning strategies are implemented by maximizing each of the
information value functions presented in Section 4. After the
measurements are obtained, the actual sensor performance is
evaluated using the tracking error,

e =

n∑
i=1

√
(p̂ci − pi)2 + (q̂i − qi)2 (17)

where [pi qi]T ≡ [vi θi]
T are the actual target parameters, and

[p̂i q̂i]
T ≡ [v̂i θ̂i]

T = Xi are the estimated values.
The tracking errors are averaged over 40 time intervals

∆tj . The results, summarized in Fig. 2, show that with all of
the value functions presented in Section 4 the tracking error e
decreases over time, thereby producing an effective measure-
ment sequence. In particular, the expected conditional mutual
information, defined in (13), outperforms other functions in
that it leads to the fastest and, overall, greatest decrease in e.

6. CONCLUSIONS

An approach is presented for estimating the information value
of future sensor measurements in sensor planning for tracking

 

e 

t 

Fig. 2. Time history of average tracking errors

maneuvering targets. The approach derives expected informa-
tion value functions from probabilistic models of the sensors
and the targets, conditioned on prior information. Five value
functions are derived and implemented to select the measure-
ment sequence with the best tracking performance. It was
found that all value functions lead to a reduction of the track-
ing error over time, and that expected conditional mutual in-
formation constitutes the most effective value function.
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