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Demining Sensor Modeling and Feature-Level
Fusion by Bayesian Networks

Silvia Ferrari, Member, IEEE, and Alberto Vaghi

Abstract—A method for obtaining the Bayesian network (BN)
representation of a sensor’s measurement process is developed so
that the problems of sensor fusion and management can be ap-
proached from a unified point of view. Uncertainty, reliability, and
causal information embedded in the sensor data are used to build
the BN model of a sensor. The method is applied to model ground-
penetrating radar, electromagnetic induction, and infrared sensors
for humanitarian demining. Structural and parameter learning al-
gorithms are employed to encode relationships among mine fea-
tures, sensor measurements, and environmental conditions in the
BN model. Inference is used to estimate target features in the pres-
ence of heterogeneous soil and varying environmental conditions.
A multisensor fusion technique operating on BN models is devel-
oped to exploit the complementarity of the sensor measurements.
Through the same approach, a BN classifier is obtained to estimate
the target typology. The BN models and classifier also compute
so-called confidence levels that quantify the uncertainty associated
with the feature estimates and the classification decisions. The ef-
fectiveness of the approach is demonstrated by implementing these
BN tools for the detection and classification of metal and plastic
landmines that are characterized by different shape, size, depth,
and metal content. Through BN fusion, the accuracy of the feature
estimates is improved by up to 64% with respect to single-sensor
measurements, and the number of objects that are both detected
and classified is increased by up to 62%.

Index Terms—Bayesian networks (BNs), classification, fusion,
landmine detection, sensor modeling.

1. INTRODUCTION

HE process of sensor fusion consists of combining the

measurement data from multiple and, possibly, heteroge-
neous sensors in order to infer the characteristics or features
of one or more targets. By taking into consideration the in-
formation obtained from different sensors the performance
of detection, tracking, and identification algorithms can be
significantly improved. The operational benefits of multisensor
systems over single-sensor systems include extended spatial
and temporal coverage, reduced uncertainty, and increased
robustness that are due to the redundancy and complemen-
tarity of the sensor measurements [1, pp. 1-13]. The process
is referred to as data-level, feature-level, or decision-level
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fusion, depending on the type of information that it com-
bines. Several techniques, such as Bayes, linear discriminant,
Dempster—Shafer, and voting methods, have been proposed
for correlating and integrating this information, while taking
into account the uncertainty associated with each sensor (see
[1] and [2] for a comprehensive review). These techniques
differ in the performance metric they optimize, and in how they
incorporate the sensor uncertainty declarations measured by
so-called confidence or belief functions.

In many applications, the sensors’ measurements and
uncertainty are greatly affected by their operational and en-
vironmental conditions. However, there are no systematic
approaches for incorporating these conditions in the fusion
process. Typically, confidence values (or levels) are chosen
based on available sensor parameters that relate to the accuracy
of the measurement process in a particular application. For
instance, in the detection of landmines, the sampled and pro-
jected energy of ground-penetrating radars (GPR) are used as
confidence values [3]. Other approaches obtain these values by
comparing the predictions of sensor simulations to the actual
sensor measurements [4], a procedure that also is used to extract
features from the raw data. Although they account for a priori
knowledge, these simulations require a detailed representation
of the physical processes involved in a particular measurement
process. This may require that a different simulation be devel-
oped for every sensor type by means of disparate formalisms,
such as, ordinary or partial differential equations, and sensor
data in the form of lookup tables. Thus, the respective results
may only be coupled with fusion and processing techniques
in an ad-hoc fashion. Also, due to the lack of a compact
mathematical representation or model they can only be used
in an open-loop fashion, i.e., by running a separate computer
simulation for every set of conditions considered during tests
or actual operation.

In this paper, a systematic approach for obtaining mathemat-
ical models of sensor measurements by means of Bayesian net-
works (BNs) is developed. These models are constructed based
both on expert knowledge and on sensor data collected from
tests or experiments a priori. The influence of operational and
environmental variables on a particular sensor type is captured
by its BN model, which can then be used for interpreting sensed
information, for instance by means of sensor fusion and fea-
ture extraction. Unlike sensor simulations, the BN model of any
sensor can be obtained by a common formalism, thereby al-
lowing heterogeneous sensor measurements to be processed by
means of unified techniques. Another advantage is that a BN
model comprises a mathematical representation of the sensor
that can be formally analyzed and used to derive closed-loop
control and decision-making policies.
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Fig. 1.

The BN approach is demonstrated by modeling electromag-
netic induction (EMI), GPR, and infrared (IR) sensors for the
detection and classification of metal or plastic buried landmines.
A BN model is obtained for each sensor type using a database
of measurements collected from several known minefields with
variable environmental conditions. Then, the three BN models
are used to process the measurements obtained from a field with
unknown buried objects and mines and known environmental
conditions. For a single sensor, target features are estimated
from the measurements through a BN inference algorithm (Sec-
tion III-B). When multiple sensors collect measurements from
the same minefield, feature-level fusion is carried out by com-
bining the Dempster—Shafer (D-S) method [5], [6] with the BN
approach (Section III-C). Finally, a BN classifier is developed to
determine the probability that objects detected are either mines
or false alarms (Section III-D).

II. BACKGROUND ON BNs

BNs organize the body of knowledge in a given system by
mapping causal relationships among all relevant variables. They
can be used to estimate unknown variables and make predictions
by combining probabilistic data with heuristic arguments. A
probabilistic model of a system is structured by building a graph
comprised of a set of variables or nodes, and a set of directed
links or arcs connecting the nodes. Each variable has a finite set
of mutually exclusive state values, and each arc represents a de-
pendency among the variables it connects. By attaching a table
of conditional probabilities to each node, the network also rep-
resents the extent to which the variables are likely to affect each
other. The nodes together with the arcs form a directed acyclic
graph (DAG) [7].

Hence, a BN is defined by a triple (G,Q2, P), where G =
(X,.A) is a DAG with the set of nodes X = {z1,...,z,}, and
the set of arcs A = {(z;, ;) | i,z; € X, z; # x;} repre-
senting dependencies among the node variables. €2 is the space
of all possible state values or instantiations of the variables in
X, and P is a probability distribution over € realized by the
conditional probability tables (CPTs) attached to the nodes. If
there is an arc from z; to x;, x; is said to be a parent of x;.
Given anode z; € X, the notation pa(z;) is used to denote the
set of parents of z; in X.

A simple example of BN representing the dependency be-
tween two variables z; and z2 is shown in Fig 1. Suppose x>
is a variable with r, instantiations, x3, ..., x5, then p(x2) de-
notes its probability distribution over these values. p (z2 = %),
or simply p (x4), represents the probability of the £'" instanti-
ation of xo. The CPT attached to node x; is p(z1|z2), which
contains all probabilities p (x’l"|zg), withm = 1,...,71, and
£ =1,...,ry. These conditional probabilities are referred to as
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Two-node BN, with attached CPTs.

BN parameters. If 21 is instantiated (e.g., 21 = «7*), the proba-
bility that x5 assumes any one of its possible values is given by
Bayes’ rule

p (27" |z2) p(x2)
p(z7")

p (27") is obtained by marginalization of the CPTs, considering

all 75 instantiations of z», as follows:

ZP g’ ,5172 ZP

Then, x2 is inferred from x7* using (1). Typically, x5 is esti-
mated by choosing the value with the highest probability, i.e.,
&y = af with p (zh|a) > p(z5|a) for V& # £, and
the probability p (z5|27") constitutes the confidence level of the
estimate.

When processes and relationships between the variables of
interest are unknown, a BN model of the system can be es-
tablished by learning the structure (A) and CPTs (P) from a
batch of cases. Typically, each case comprises the instantia-
tions of all variables in X' observed or measured from the real
system. Learning techniques also have been devised to learn
from incomplete cases, where some of the variables are un-
known [8]. Two of these techniques are implemented and com-
pared in Section V to build the BN models of GPR, EMI, and IR
sensors. Once a BN model is obtained, it can be used to prop-
agate knowledge or evidence from the observable variables to
the unknown ones, similarly to (1)—(2). By using the separation
properties of the network and by building its equivalent junc-
tion tree, marginalization can be simplified and evidence can
be propagated rapidly even in large BNs [7]. These techniques
are implemented in Section V for target feature estimation and
classification.

The BN model of a system also can be used to automate and
optimize system processes such as control and decision-making.
In this case, the network can be expanded to include decision
nodes and reward or outcome variables, obtaining a so-called
decision graph. Then, optimal control techniques, such as dy-
namic programming [9], can be applied to the graph by ex-
ploiting the same separation properties used for inference. This
topic is the subject of work in progress and will be addressed in
a separate paper. The approach for modeling sensors by BN is
illustrated in the following section.

ey

p(w2]al") =

|~T2 ) ()

III. APPROACH
A. Sensor Modeling

A BN approach is developed for modeling key relationships
in a sensor measurement process that is assumed to be static,
using a system-theoretic perspective. Based on expert knowl-
edge of the sensor’s operating principles, the relevant variables
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are identified and discretized to determine the nodes of the BN
model. Then, the arcs connecting these nodes and the CPTs
are determined from a database of sensor data, through batch
learning algorithms. The predictive performance of the BN
model is tested on a validation set of sensor data that is not used
for training. If an important variable is missed, this performance
will prove unsatisfactory and the modeling procedure may be
repeated for a new set of nodes.

1) Node Selection: The nodes of a BN sensor model are se-
lected by considering the following sets of variables, which typ-
ically influence the measurement process.

¢ Sensor Mode: Most sensors are equipped with adjustable
parameters that affect the data collection process, the type
of information that is measured, and its reliability. The set
of parameters chosen to operate the sensor is referred to
as mode, and is denoted by M.

e Sensor State: Sensor characteristics that may be ob-
servable but only can be adjusted indirectly through the
mode’s parameters constitute the sensor state, which is
denoted by S.

* Environment: According to the physical phenomena un-
derlying the measurement process, the environment sur-
rounding the targets and the sensors may affect sensor
performance. The set of environmental variables that in-
fluence the measurements is denoted by F.

* Measured Target Features: The set of measured features
F' is computed from the raw sensor measurements, and
constitutes the information collected by the sensor to de-
tect, classify, and, possibly, track a target.

* Actual Target Features: The set of actual features, 7', con-
tains the true values of F', which normally are unknown
(except in tests and simulations) and must be inferred
from the measurements.

Depending on what type of sensor is being modeled, one or
more of these sets may be empty. For instance, in GPR, EMI,
and IR sensors, S is empty because the sensor state is uniquely
determined by the sensor mode. After the relevant nodes have
been selected, all of their possible instantiations must be iden-
tified such that they are countable and mutually exclusive. If
one or more variables are continuous, they can be discretized or
treated as continuous nodes with Gaussian distributions, as ex-
plained in [10]. For simplicity, in this paper, all continuous vari-
ables (e.g., the mine’s depth) are discretized. Subsequently, the
chosen sensor variables constitute the nodes of the BN sensor
model, X = {M, S, E, F, T}, that each have r; instantiations.
If, after the learning phase, the predictive performance of the
BN sensor model is unsatisfactory, the set of nodes and the cor-
responding instantiations may be modified and learning may
be repeated. For example, additional target features or environ-
mental variables may be considered and 7; may be increased to
improve the granularity of variables that have been discretized.

2) Learning: The final BN arcs and CPTs are determined by
a batch learning algorithm. First, an initial structure A is pro-
posed by the designer based on expert knowledge of the sensor
working principles. The architecture in Fig. 2 can be used as a
guide in building Ay, since it represents the typical relationships
between the variable sets or node clusters listed above. This

Sensor Mode, Sensor State, Environmental
M S Conditions, £
Measured Target Actual Target
Features, F |¢——————| Features, T C] : Cluster

Fig. 2. Typical relationships between the variable sets in sensor models.

step allows to incorporate relationships that are known a priori,
such as the influence of selected environmental variables and
sensor modes on the measured features. For example, the mine’s
depth measured by a GPR is known to be influenced by its
mode and by the soil uniformity. Therefore, arcs initially are
placed from the mode and soil-uniformity variables to the mea-
sured-mine-depth variable. Then, a database D = {Cy,...,C,}
of g independent cases is used to learn the BN structure that best
captures the sensor measurement process.

Ideally, the BN would be obtained by considering the
weighted average over the inferences of every possible network
containing &x’. Since this approach is too computationally
expensive, a BN structure that maximizes a so-called scoring
metric is sought instead. Let Bs = (A, ©) be a BN structure
with parameters © = {6,,...,0,} where, 6; is the CPT
attached to node x;, containing all conditional probabilities
p(z; | pa(x;)). A scoring metric is chosen such that the proba-
bility of a network structure for a given database, p(Bs|D), is
maximized. Since p(D) is independent of Bg, the joint proba-
bility p(Bs, D), which is more easily computed, is maximized
in place of p(Bs|D).

The scoring metrics proposed in the literature (e.g.,
[11]-[13]) reduce computation by factorizing p(Bgs, D) based
on the following assumptions: all n nodes are discrete; all cases
in D are independent; all possible CPTs and structures are
equally probable before observation of the database D; and,
finally, an expert-based ordering of nodes is given such that
if a variable xo precedes x; (e.g., Fig. 1), then no causal arc
is allowed from z; to x». Consequently, the scoring metric
p(Bs, D) can be factorized as follows:

n Tn; TL—

where, if m; = pa(x;), rr, = H%Em r; is the number of all
possible instantiations of 7;. Then, for a given database D, q; ]k
is the number of cases where z; = a, " and 7rZ = 7r ,and ¢;; =
> & Qij% 1s the number of cases Where T = 7r,L regardless of the
value of z;.

The structure of each BN sensor model is learned from a
database of measurements obtained by the corresponding sensor
type from a set of known targets. Each case in the database is
an instantiation of X, i.e.,: Cy, = {M* S* E* F* T*} Thus,
it consists of the sensor mode, state, and measurements, of the
known target features, and of any known environmental condi-
tions. Often, signal processing techniques are necessary in order
to extract /' from the raw sensor measurements (e.g., [24]-[26]).
Then, the so-called K2 algorithm determines the BN structure
that maximizes (3) [8]. This structure can be expected to differ
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from Ay because the learning algorithm discovers nodal rela-
tionships that are not always known a priori from the sensor
data. In this paper, the K2 algorithm is implemented by the
function learn_struct_K2 in the MATLAB Bayesian Network
Toolbox [17]. This learning procedure is used in Section IV to
determine the GPR, EMI, and IR sensor models for landmine
detection and classification.

B. Inference

Once the BN model of a sensor has been determined through
the procedure outlined in Section III-A2, it can be used to es-
timate unknown variables based on knowledge of the observ-
able ones. During actual operation, a sensor collects measure-
ments from foreign targets under environmental conditions that
may or may not be known. In this paper, it is assumed that all
environmental variables are observable. However, the same ap-
proach can be applied when E is not fully observable. After
processing the raw sensor measurements, the sensor operational
conditions M and S, the measured features F', and all variables
in E are known. Then, the actual target features 1" are inferred
from the BN model. Information about an observable variable
is referred to as evidence. It may consist of an instantiation in
Q, e.g., z = z%, or of a statement about the impossibility of
some of its values, e.g., x # zt. For example, when the sensor
mode is known, the corresponding variable in S is instantiated.
The probability distribution of the unknown variables is inferred
from the available evidence, similarly to the simple example in
(1H-(2).

For a BN with more than two nodes, finding the joint prob-
ability p(X) = p(z1,...,x,), which is required for marginal-
ization, can be computationally expensive. In recent years, ef-
ficient algorithms have been developed to exploit the following
recursive factorization

p(X) = Hp(wi | pa(z;)) @)

as well as BN separation properties. The directed Markov prop-
erty, for example, states that a variable is conditionally indepen-
dent of its nondescendents given its parents. The factorization in
(4) can be significantly simplified by identifying all conditional
independencies among the variables in &, given the evidence.
This is achieved by a series of graphical manipulations that con-
struct an acyclic moral graph from the BN, and build a so-called
Jjunction tree that captures most of the original conditional inde-
pendencies [18, pp. 9-26]. In this paper, inference is realized
through the MATLAB commands jtree_inf_engine, enter_evi-
dence, and marginal_nodes [17].

The BN approach utilizes prior knowledge from tests and
field experiments (D) and evidence about the operational sensor
to estimate the features of an unknown target. Given the mea-
surements and the sensor operational and environmental con-
ditions, e = {M, S, E, F'}, the actual target features, T, are
inferred from the BN sensor model. Inference also provides a
measure of reliability of the estimated features in the form of a
probability distribution, p(T'|e), over all of their possible values.

IEEE SENSORS JOURNAL, VOL. 6, NO. 2, APRIL 2006

C. Sensor Fusion

When multiple sensors collect measurements from the same
target the BN modeling approach can be combined with a
feature-level fusion technique to improve feature estimation.
By employing the BN models, a systematic fusion approach is
developed that accounts for prior expert knowledge and data,
and for real-time operational and environmental conditions.
The D-S rule of evidence combination [5], [6] is used to de-
velop a fused probability interval for each state of the target’s
features. The D-S method is considered to be a generalization
of Bayesian inference, because it assigns probability not only
to individual variables but also to Boolean combinations of
variables. It is well suited for sensor fusion because it con-
siders evidence both in support and in negation of the inferred
features. When measurements from different sensors are in
disagreement, they are treated as contrasting expert opinions
about the target features. In the approach presented here, each
expert’s confidence level corresponds to the probability distri-
bution obtained through inference from the BN model.

The probability that a variable is in one of its states, say
x = ', expresses the certainty of its knowledge and, thus, it
is considered to be in support of the state 2*. Ignorance of the
variable is quantified by the probability of its negation, p(z #
2%) = p(z*), which is a measure of the evidence that refutes x*.
The so-called plausability accounts for the evidence that does
not rule out a state, i.e., pl(z‘) = 1 — p(z*), and represents
the probability that can be moved in support of that state ().
Suppose z is a Boolean combination of the states {z*, ..., 2"},
whose probability is assessed from evidence collected by two
different sources, a and b. Then, the fused probability is obtained
from the following D-S rule of combination

> pa(a)py(a")

LeS

1- m%ij(,(xm)p;,(xm)

p(z) = Lm=1,....,r (5

where S is the set of variables in support of z and A is the
set of variables that negate z, i.e.,; {£ € S : (z), N (z*), = 2}
and {{ € N : (z)a N (2"), = 0}. ps(2") denotes the proba-
bility thatz = 2t according to source s, and N is the intersection
of two states.

When two or more sensors collect measurements from the
same target, the respective BN models are used to obtain the
probability distribution of each feature, z; € T, over its possible
r; states. Let e; = {M*,S°, E*, F*} be the evidence available
from the s** sensor measurements and operational conditions.
Then, its BN model is used to infer the target features and the
distribution p(7T'|es ), which includes p(z;|es ) or, simply, ps(z;).
Thus, if a feature x; is measured by two sensors, a and b, the
fused probability of each of its states can be obtained from (5),
which simplifies to

l l
P (xf) _ _ Pa (%)pb (xz) )

1= S (1= 8m)pa (24) po (=)

Lm=1

O¢m 1s the Kronecker delta, which equals one if £ = m, and
equals zero if £ # m. With the chosen modeling approach, the
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features have mutually exclusive states. Therefore, the proba-
bility of a feature variable being in a particular state is in sup-
port of that state, e.g., z¢. The probabilities associated with all
the other states (i.e., 2" with m # /) negate or refute z.

According to the approach illustrated above, the probability
distribution for target features p(7T'|e) is determined through in-
ference for a single sensor, or through inference and fusion for
multiple sensors. From this distribution, the value of each fea-
ture can be estimated by selecting the instantiation with the
highest probability, i.e., ; = zf with p (zfle) > p(z[e),
V' m # £, and z; € T. In many applications, knowing the prob-
ability or confidence level, p (zf|e), together with the estimate
of the features is of great value. For example, this knowledge
can be used to classify the target, as explained in the following
section.

D. Target Classification

In many sensor systems, the target features are measured in
order to determine the target typology. For example, in dem-
ining applications, the features of objects detected are needed
to determine whether they are mines or clutter. For moving tar-
gets, features are usually referred to as state variables, and their
dynamic estimate may be used not only for classification, but
also for identification. Through identification, a dynamic model
of the target can be built based on the behavior of observable
state variables over time. The BN approach developed here can
be extended to dynamic targets, which is the topic of work in
progress.

In BN target classification, it is assumed that the typology of
the target is related to its features. However, the precise rela-
tionships are unknown due to the complexity of the sensors, the
targets, and their environment. For example, a frequent pattern
is that an object that is large, buried, and cylindrical and is de-
tected under favorable environmental conditions (e.g., wet, clay,
uniform, nonmagnetic soil) typically is a mine. However, the ex-
isting patterns are not always known a priori. Thus, even after
the features can be estimated from the measurements, the tar-
gets may not be easily classified. Since the target typology influ-
ences its actual features, a BN classifier can be built by adding a
parent node representing the target’s typology to the BN sensor
model(s). If target classification involves multiple variables, a
set L of parent nodes can be added to X'.

For simplicity, let a single variable x; denote the target ty-
pology, with r; mutually-exclusive classifications. Then, z; is
a parent to all variables in 7" and to no other variable in X,
since the sensor characteristics and operating conditions are in-
dependent of x;, and viceversa. It follows that the BN classifier
must have the structure shown in Fig. 3. Its CPTs, p(T'|x;) are
learned from D using the technique described in Section ITI-A2.
If multiple sensors are involved, the BN classifier is modified
to account for fusion by connecting the nodes in 7' to the BN
models of all the sensors. With this approach, the patterns be-
tween target typology, features, sensor measurements and envi-
ronmental conditions are established and represented by a BN.
Therefore, they can be used to infer the features and the typology
of unknown targets, as well as the confidence levels associated
with these estimates in the form of probabilities.

)

M]—yg]

Fig. 3.

BN classifier.

IV. APPLICATION TO LANDMINE DETECTION
AND CLASSIFICATION

The BN modeling approach is used to estimate the features
of objects buried underground and to classify them as mines
or clutter. Since World War II, numerous conflicts resulted in
the planting of millions of landmines that cause about 10000
casualties each year, in nearly 60 countries [20]. Thanks to the
increasing availability of advanced sensor technologies and
signal processing software the effectiveness of future demining
systems can be greatly enhanced by the development of intel-
ligent sensor fusion and management systems. An intelligent
system is characterized by the ability to learn over time how
to optimize goals in complex, nonlinear environments whose
dynamics must ultimately be learned during operation (i.e., on
line) [21]. The objective of demining systems is to clear mine-
fields safely, rapidly, and at low cost. These objectives translate
into the need for maximizing the probability of detection of
buried mines, and for minimizing classification errors, or false
alarms, where cans or other debris are mistaken for mines.

In a typical demining system GPR, EMI, and IR sensors may
be employed to measure the depth d, size z, shape s, and metal
content ¢ of mines buried in heterogeneous soils, under var-
ious environmental conditions. Because they rely on different
operating principles and may function in different modes, these
sensors may be more or less effective depending on the environ-
mental conditions. Also, by providing complementary informa-
tion about the mines, the demining system performance can be
significantly improved through sensor fusion.

A. Simulated Demining System

In order to test the methodology on a realistic and control-
lable test bed a simulation of the landmine sensing system,
which includes sensors, targets, soils, and meteorological con-
ditions, is developed. A grid is superimposed on the minefield
dividing it into bins that contain at most one target (i.e., a
mine or clutter). GPR, EMI, and IR measurements of the target
features are reproduced and deteriorated according to the oper-
ating conditions and surrounding environment. Anti-tank mines
(ATM), anti-personnel mines (APM), unexploded ordnance
(UXO), and clutter objects (CLUT) have been reproduced
based on the Ordata Database [22].

Soil composition (e.g., clay or sand), soil characteristics
(e.g., magnetic properties, moisture, uniformity), vegetation,
and time-varying meteorological conditions are modeled ac-
cording to [20], [23], and [24] and can be placed at random
or at user-specified positions in the minefield. When a sensor
detects an object, the simulation uses actual target features and
environmental/meteorological conditions to generate sensor
data with random noise and errors that are commensurate to the
given situation [see [25] for more details].
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TABLE 1

LIST OF NODES IN BAYESIAN NETWORK MODELS OF GPR, EMI, AND IR SENSORS

Set: Node: Instantiations and corresponding range:
GPR mode: mgpp depth search, resolution search, anti ground-bounce-effect search
M EMI mode: mgy; high-sensitivity search, low-sensitivity search, shape search
IR mode: mp; surface-mine search, shallow-buried-mine search
Soil moisture (%): s, dry [0-10], wet (10-40], saturated (> 40)
Soil composition: s, very-sandy, sandy, high-clay, clay, silt
Soil uniformity: s, yes, no
E Magnetic soil: sg yes, no
Vegetation: v no-vegetation, sparse, dense
Weather: w clear, overcast, raining
lumination low (7-10 a.m. and 6-9 p.m.), medium (10-1 p.m.), high (1-6 p.m.)
Depth (cm): d surface [0], shallow-buried (0-12], buried (12-60], deep-buried (> 60)
T Size (cm): z small (2-13], medium (13-24], large (24-40], extra-large (> 40)
Shape: s cylinder, box, sphere, long-slender, irregular
Metal content (gr): ¢ no-metal [0-3], low-metal (3-200], high-metal (> 200)

TABLE I
COMPOSITION OF DATABASE USED TO TRAIN THE BAYESIAN NETWORK SENSOR MODELS AND CLASSIFIER

Variable:

Number of training cases containing each instantiation:

Target category:

APM 1320, ATM 2456, UXO 1224, CLUT 3000

Soil moisture:

dry 2339, wet 4555, saturated 1606

Soil composition:

very-sandy 1743, sandy 1724, high-clay 1688, clay 1647, silt 1698

Magnetic soil:

yes 1971, no 6529

Vegetation:

no-vegetation 2796, sparse 2756, dense 2948

Depth:

surface 3136, shallow-buried 2981, buried 1083, deep-buried 800

Size: small 3102, medium 2510, large 2316, extra-large 72

Shape:

cylinder 3676, box 688, sphere 1320, long-slender 1224, irregular 1320

Metal content:

no-metal 2184, low-metal 4129, high-metal 1687

B. BN Modeling of GPR, EMI, and IR Sensors

The approach described in Section III-A is used to obtain
BN models of three sensor types: GPR, EMI, and IR. The set
of nodes X and the initial structure Aq of each model are de-
termined based on expert knowledge of the sensors and their
operating principles. The measured features, corresponding to
the target characteristics 7' = {d, z, s, ¢}, are denoted by F' =
{dms Zm, Sm, ¢m }- In this case, the chosen variables in T' and
F' have the same instantiations, as listed in Table I. However,
in general, there need not be a direct correspondence between
nodes in 7" and F'. The following three sections describe how
the remaining BN nodes (Table I) and initial structure are deter-
mined for each sensor model.

Following the selection of the nodes and instantiations,
the BN structure is refined and the CPTs are learned from
a database D of sensor measurements. In this application,
each case in D contains the measurements that are collected
from one of the sensors (GPR, EMI, or IR) from a target with
known features (7") and typology (z;), under known envi-
ronmental conditions (F), and sensor parameters (M); thus,
D = {DGPR7DEh417DIR}- D is referred to as training set,
and, here, it is generated through the demining simulation by

uniform sampling of the Ordata Database [22], which contains
over 5000 explosive items. In this research, D contains 5000
mines and its composition, described in Table II, is consistent
with that found in this existing database. Also, 3000 clutter
objects are reproduced to emulate metallic debris, cans, and
plastic objects of regular shapes that resemble anti-personnel
mines. All of these targets (Table II) are buried in a simulated
minefield whose environmental conditions are sampled uni-
formly from 660 possible configurations. Once sampled, each
environmental configuration is placed randomly in zones that
are two- to eight-bin wide, resulting in the distribution shown
in Table II. Each simulated demining sensor is used to measure
the features of these targets, under the assigned conditions
and using everyone of its modes, finally producing the data
Depr, Demi, and Dir. The influence of the training-set size
on the BN model performance is discussed in Section V-A. The
minimum number of cases required to model the GPR, EMI,
and IR sensors is found to be approximately 2000. When the
training data is limited, proper BN learning requires a modified
K2 algorithm that exploits a priori conditional independen-
cies between the nodes to reduce the search space of feasible
structures (e.g., [27]).
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(a)

Fig. 4.

—> Initial
== [ carned

Fig. 5.

1) GPR: GPR sensors emit radio waves that penetrate the
ground and process their reflections at the boundaries of ma-
terials characterized by different refraction indexes. An image
of underground vertical slices and of any objects buried within
is obtained by sensing discontinuities in electrical properties.
The measured object size, shape, and depth can be obtained
through signal processing techniques [28], such as edge extrac-
tion. The frequency of the radio wave and its bandwidth are
the sensor parameters that determine the search mode mgpr,
and must be tuned to achieve the best trade-off between pene-
tration depth, which increases at lower frequencies, and image
resolution, which improves at higher frequencies. Very high fre-
quencies may be required to overcome the so-called ground-
bounce effect (GBE), which may cause shallow-buried mines to
be missed because of ground discontinuities [20]. The influence
of soil properties, such as, uniformity, moisture, and composi-
tion, on the sensor performance is learned from the GPR data,
DgpR.

The relevant GPR nodes (Xgpgr) and initial structure illus-
trated in Fig. 4 are chosen based on prior expert knowledge [29]
using the architecture in Fig. 2. All nodes and instantiations are
selected according to the procedure in Section III-A1 and are
defined in Table I. Then, BN learning algorithms are employed
to determine the additional arcs [shown in bold in Fig. 4(b)]
and the CPTs that maximize the scoring metric in (3) for the
given sensor data (Dgpr ). From the refined structure it can be
seen that additional relationships between the target features,
measurements, and environmental variables are revealed by the
sensor data. Also, the results presented in Section V show that
this structure estimates target features more accurately then the
one based solely on expert knowledge.

2) EMI: EMI sensors detect metal objects by measuring the
secondary magnetic field produced by eddy currents that are in-

—> [Initial arc

== [ earned arc

(a) Initial BN structure based on GPR variable sets (b) and final GPR BN structure learned from data.

Initial and final BN structure of EMI (a) and IR (b) sensor models.

duced by a time-varying magnetic field [20]. The primary field
is produced by an electrical current flowing in a transmit coil
of wire, and the secondary field is sensed by measuring the
voltage induced in a receiving coil. Detection of metal con-
tent is declared when the measured voltage exceeds a chosen
threshold that is determined by whether the sensor is in a high
or low sensitivity mode. The main disadvantage of EMI sen-
sors is their inability to detect plastic mines and mines buried in
magnetic soils. However, if their measurements are augmented
by other sensors that do not rely on metal content, such as GPR,
the overall system performance can greatly benefit from their
employment.

The EMI sensor mode is represented by the variable mgp1.
The other relevant nodes (Xgpp) are determined from expert
knowledge of EMI detectors, such as, the Geonics EM-61 and
the AN/PSS-12 [30], as defined in Table I. The initial arcs
[Fig. 5(a)] also are determined from these studies, and the final
BN model is learned from EMI sensor data, Dy, as shown
in Fig. 5(a). This model is then used for inference, fusion, and
classification, as demonstrated in Section V.

3) IR: IR sensors detect anomalies in IR radiation that is ei-
ther emitted by mines, soil, or vegetation. Based on the loca-
tion of the sensor, the radiation data can be processed to build
an image of an horizontal area and to estimate the depth of the
object therein. Images can be obtained for depths up to 12 cm.
Therefore, IR sensors only can be used to obtain the size and
shape of surface or shallow-buried objects. Because they rely
on temperature variations, their performance also is highly in-
fluenced by environmental conditions, such as, time, weather,
vegetation, and soil properties.

The mode of IR sensors mr influences the measured target
features (F') and is uniquely determined by its height above the
ground. Hence, the height needs not be included as a sensor state
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TABLE III
PERFORMANCE OF STRUCTURAL LEARNING ALGORITHMS FOR GPR BN MODEL
Algorithm: | Initial structure | Structural EM | Expert-order K2 | E-order K2 | F-order K2
jd . 0.1588 0.1706 0.1728 0.1721 0.1684
jz . 0.1529 0.1338 0.1346 0.1360 0.1360
js : 0.3669 0.2507 0.2434 0.2515 0.2537

variable in the model. Based on the IR working principles and
detailed studies of Agema Thermovision 900 sensors [16], [24],
[29], the relevant variables (Table I) and initial dependencies
are determined, as shown in Fig. 5(b). As in the case of GPR
and EMI sensors, the initial structure is refined and the CPTs
are learned from the simulated IR sensor data, Dir, by means
of BN learning algorithms. The final BN model is shown in
Fig. 5(b), where the arcs learned from the data are highlighted
in bold. For this sensor, the data reveals that the vegetation and
illumination only influence the measurements through the soil-
moisture variable.

Section V-A describes a comparative study of BN learning
algorithms applied to GPR sensor modeling. Based on this
study, a BN model is obtained for each sensor type (Figs. 4-5)
using the K2 structural learning algorithm and the EM param-
eter learning algorithm. These three models are then used to
estimate target features based on single-sensor measurements
(Section V-B), and to perform GPR/IR and GPR/IR/EMI sensor
fusion (Section V-C) and target classification (Section V-D).

V. RESULTS

The demining system simulation (Section IV-A) is used to
produce both the training set D, described in Section IV-B, and
a validation set, ), of cases with sensor data. The validation
set contains cases that are not used for training, i.e., DNV =
(), and is used to test the performance of the BN model under
new conditions, such as those that might be encountered during
actual operation. Similarly, when a database is available from
experiments it can be partitioned into the two sets D and ) that
are used to train and test the BN models, respectively. Suppose
the BN model of a sensor is used to infer a variable vy € X
given evidence from a case in the validation set, e.g., C, € V,
where, C, = {z¥ | ; = 2}, V ; € X'}. Then, the true value of
the inferred variable, :vJ’i , 1s known from C,,. Inference in the BN
model provides not only the most likely value of z ¢, but also a
probability distribution over all of its possible state values, i.e.,
(711)

An error metric that takes into account the BN confidence
level is obtained by weighting the distance from the true value
of the inferred variable by the respective probability

,form =

Tt =pys-8s 0
ps is a 1 x 7y vector of probabilities obtained by the infer-
[p (:17} | e) --~p(x;f | e)] g is a
1 x ry vector containing the distance gy between the true
value of z; (ie., :cjc) and all of its possible instantiations:

gf =
discrete metric that is feature specific and satisfies the following

ence algorithm: py =

[gf :L},LE?) T (:L;f:r“jc)] The distance g is a

conditions: Jf = 0.5, when p(zf | €) is uniform, and Jf = 1
is the maximum value of (7) [25]. When the same feature or
variable z s is inferred for ¢ targets, an average error metric
J; = Jy/tis used to evaluate performance.

The validation minefield V used to verify the BN approach
developed in the previous sections is divided into 10 x 12 bins
and contains 65 mines and 30 clutter-objects with position and
features assigned randomly (as explained in Section IV-A).
The information associated with each bin constitutes a case C,
in V. The field’s surface is 30% magnetic, 46% saturated, and
50% covered in dense vegetation, thus presenting unfavorable
conditions for EMI, GPR, and IR sensors, respectively. All of
the sensor measurements are collected while the field is in clear
weather and medium illumination. Together with the sensor
mode, each bin’s environmental conditions and measurements
constitute the evidence used for inference in the BN sensor
models.

A. Learning the BN Sensor Models

The performance of two structural learning algorithms is in-
vestigated using the error metric defined above. After selecting
the GPR BN nodes and initial structure (Section IV), the struc-
tural K2 and EM algorithms are used to refine the structure
based on Dgpr. Both the K2 and the EM structures are tested by
performing inference on resolution-search GPR measurements
collected from the validation field V), leading to the error met-
rics in Table III for the mine features d, z, and s. The K2 algo-
rithm allows the user to specify the initial order of the BN nodes,
from parents to children. Table III shows the performance of BN
structures obtained by choosing F and F’ as the first parents (¥
order and F’ order, respectively), and by using an expert-based
order that is obtained from Fig. 4. As can be expected, using
expert knowledge to initialize the learning procedure not only
improves the BN performance, but also produces a BN structure
that better reflects the sensor operating principles and has lower
complexity (i.e., a smaller number of arcs). Although Table III
shows a small improvement with respect to EM learning, the K2
algorithm is considered to be better suited for this application
because it incorporates expert knowledge and displays lower
computational times. Similar results are obtained by learning
EMI and IR sensor model structures. Hence, the K2 algorithm
is used to determine the final structures of the three BN sensor
models (shown in Figs. 4-5).

The EM parameter learning algorithm is used to learn the BN
parameters, or CPTs, from the database of sensor data, D, de-
scribed in Section IV-B. The size of this training set is chosen
to be commensurate with the size of the on-line Ordata Data-
base [22]. Hence, D contains GPR, EMI, and IR sensor mea-
surements and environmental information for 5000 mines and
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Fig. 6. Effect of training-set size over the inference performance of the GPR BN model learned.

3000 clutter objects. If a training set is inadequate in size and in
variation of significant variables, the learned BN model will dis-
play poor inference performance over the validation set. That is,
the inference algorithm may be unable to provide a prediction
for some of the cases in V. Instead, a set of zero marginal prob-
abilities is produced for one or more of the inferred features in-
dicating that the algorithm failed. Also, the predictive accuracy,
which is evaluated through the error metric .J ¢, may not be satis-
factory for the sensor application, indicating that more training
cases may be needed to learn a better structure and CPTs.
These conditions are illustrated by learning the CPTs of the
GPR sensor model [Fig. 4(b)] using training sets of different
size that are sampled uniformly from Dgpr. The resulting error
metric .J; and number of predictions ¢, obtained by testing these
BNs over V are plotted with respect to the number of training
cases, ¢, in Fig. 6. As the the size of the training set increases,
the number of predictions approaches the total number of tar-
gets (¢t = 95), such that if an adequate value of ¢ is used the
BN always is capable of providing an estimate for the target
features and £, = ¢. The improved accuracy of these estimates
is reflected in the reduction of the error .J; with increasing q.
When the BN is unable to make a prediction, the bin is as-
signed an error J; = 0.75, for convention, because this case
is considered to be worse than one with a uniform probability
distribution (J; = 0.5), but it is better than a case where the
BN provided an incorrect estimate with a high confidence level
(Jg = 1). Initially, when ¢ is very small and almost no pre-
dictions are made, J; ~ 0.75. As t, — t, and the size of the
training set becomes adequate, the average error .J; represents
the accuracy of the predictions provided by the BN. Eventually,
this error approaches an asymptote, which here is .J; ~ 0.2,
such that beyond a certain value of ¢ the BN accuracy can no
longer be improved by increasing the size of the training set.
Therefore, if this level of performance is unsatisfactory, the BN
sensor model must be improved by changing one or more of the

following: the set of nodes X, the instantiations of one or more
nodes, e.g., {a:i : x}7 e ,:1:;"' , the structure A, or the compo-
sition of the training set (see [25] for additional experiments).
From Fig. 6 it can be concluded that, for the GPR BN model,
q > 2000 provides acceptable performance, while ¢ > 3600
is required for maximum performance. Thus, if the sensor data
available is limited to fewer cases, a different learning algorithm
may be required to increase the number and accuracy of the pre-
dictions without changing the value of g, as shown in [27].

B. Inference From Single-Sensor Measurements

The BN model of a sensor can be used to infer the features
of an unknown target from the measurements of a single sensor,
given its mode and environmental conditions. This procedure is
illustrated by simulating a GPR in resolution-search mode that
measures the features of the objects buried in V. Using the GPR
BN model in Fig. 4(b), the size, shape, and depth of these objects
are inferred and the corresponding confidence levels are com-
puted. In Fig. 7(b), the inferred depth of each target and its prob-
ability are plotted with respect to their location in the minefield.
In this figure, the bins are numbered in the = and y directions,
and the depth value is represented by the chromatic scale in
the legend, with white indicating an empty bin. These inference
results can be compared to the actual mine depth [Fig. 7(a)],
which is available from each validation case C, € V. The cor-
responding error metric Jy, computed from (7), is plotted in
Fig. 7(c). The error metric defined in (7) varies between 0 and 1,
where J; = 1 represents an incorrect estimate that is provided
by the BN with a high confidence level. .J; = 0 represents a
perfect estimate, and J = 0.5 corresponds to a feature inferred
with a uniform probability distribution, for which any of its pos-
sible values are equally likely. Since the prior probabilities of the
mine features are uniform, if Jy < 0.5 the estimated feature has
value, and if J; < 0.2 the estimated feature is close to the real
one. Sensor failure indicates that an object was not detected due
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TABLE IV
AVERAGE ERROR METRIC FOR MINE FEATURES
INFERRED BY THE GPR BN MODEL

GPR Mode: Jg: T, Jg:

Depth search 0.18792 | 0.16840 | 0.31245
Resolution search | 0.15945 | 0.09220 | 0.29483
Anti GBE search | 0.16793 | 0.09134 | 0.27247

to the simulated GBE, a physical limitation of GPR sensors that
can only be overcome through sensor fusion.

Through a similar process, the performance of the GPR, EMI,
and IR BN models without fusion is tested over V using dif-
ferent sensor modes. The average error metrics are listed in
Tables IV-VI according to the mode and to the features mea-
sured by each sensor. These results are consistent with the ex-
pert knowledge of demining sensor systems. For instance, shape
is more difficult to estimate than depth or size, causing .J, to be
greater than .J; and .J ., except when the shape-search mode is
used. Also, the fact that EMI measurements generally are less
reliable than those of GPR and IR is reflected in the higher error
metrics that are obtained from the EMI BN model, as shown in
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Fig. 7. (b) Mine depth inferred by GPR BN model based on the measurements performed in resolution-search mode on the mine field in (a). (c) Respective error
distribution.

TABLE V
AVERAGE ERROR METRIC FOR MINE FEATURES
INFERRED BY THE EMI BN MODEL

EMI Mode: Jg: Jy:
High-sensitivity search | 0.39444 n.a.
Low-sensitivity search | 0.38617 n.a.

Shape search 0.38393 | 0.34580

TABLE VI

AVERAGE ERROR METRIC FOR MINE FEATURES
INFERRED BY THE IR BN MODEL

IR Mode: J,: Jg:
Surface-mine search 0.19345 | 0.40312
Shallow-buried-mine search | 0.08307 | 0.30590

Table V. However, EMI sensors may still be useful to comple-
ment other measurements, as demonstrated by the fusion results
described in the next section. Additional numerical experiments
[25] show that by accounting for environmental and operating
conditions in processing the measurements of a single sensor
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TABLE VII
SIZE AND SHAPE ERROR METRICS BEFORE AND AFTER FUSION OF GPR, EMI, AND IR DATA

Sensor Fusion
(sensors used)

GPR Only
(fusion improvement)

EMI Only
(fusion improvement)

IR Only
(fusion improvement)
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without fusion, the number of targets whose features were esti-
mated correctly increased on average by 10%. A much greater
improvement is obtained by using the BN models for sensor fu-
sion, as demonstrated in Section V-C.

C. Heterogeneous Sensor Fusion

BN feature-level fusion (Section III-C) is used to obtain a
probability distribution for the target features based on the ev-
idence from all three demining sensors and from known envi-
ronmental conditions, i.e., p(T | egpr, eEMmr, €1r ). By fusing
GPR and EMI target-size measurements over the validation field
V the average error metric is improved by 64.9% with respect
to using only GPR measurements, and by 66.7% with respect
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(b) Object type inferred by BN classifier based on GPR, EMI, and IR measurements obtained from the mine field in (a). Respective error distribution (c).

to using only EMI measurements (Table VII). Fusion of GPR,
EMI, and IR shape measurements also improves the average
error metric with respect to using any of these three sensors
alone without fusion. For example, when the GPR measure-
ments are fused with those of the EMI and IR sensors, the error
in estimating the shape is decreased by 42.8% (Table VII).

The results also show that BN fusion drastically reduces
sensor failure by exploiting the complementarity of the sensors.
For instance, failure to estimate the targets shape in V occurs
only for five of the 95 objects after BN fusion is performed.
Instead, when GPR, EMI, and IR measurements are processed
individually failure to estimate the target shape occurs for 19,
40, and 64 objects, respectively. The reason is that EMI sensors
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are only able to detect metal objects, and IR sensors are only
able to detect surface or shallow-buried objects. However, GPR
sensors also can detect plastic, buried, and deep-buried objects
(Fig. 7) and with the availability of EMI and IR measurements
the GPR estimate of size and shape becomes more accurate, as
shown in Table VII.

D. Target Classification

The BN classifier developed in Section III-D and illustrated
in Fig. 3 is used to infer the typology of each object in V), based
on the features estimated from the fused GPR, EMI, and IR
measurements. The objects’ actual classification is shown in
Fig. 8(a), where a grey scale is used to represent clutter, mines,
and empty bins. According to the technique presented in Sec-
tion III-D, the fused probability distribution of the target fea-
tures, p(T | egpr,€eEMI, €Ir), can be used as soft evidence
in the BN classifier to infer the target typology, by computing
p(z; | ecpr,eEmI, er). The most probable typology and its
corresponding confidence level are obtained from this distribu-
tion and are plotted in Fig. 8(b). In this case, among the 95
objects buried in the validation field (V) six clutter bins were
erroneously classified as mines (false alarms), and 18 mines
were missed (missed detections): three due to sensor failure
and 15 due to incorrect classification, as illustrated in Fig. 8(c).
These results are representative of extensive numerical simula-
tions carried out in [25]. For validation fields with challenging
environmental conditions (such as V), the average accuracy of
the BN classifier is approximately 75%. As can be expected,
when milder conditions are simulated, both the classification
and the feature-inference errors are significantly decreased on
average.

VI. CONCLUSION

A novel, unified BN approach to sensor modeling, fusion, and
target classification is developed and demonstrated on a demi-
ning application. The approach uses a priori expert knowledge
of the sensor’s operating principles and available databases of
actual sensor data to build a probabilistic model of the measure-
ment process. The demining sensor system investigated is com-
prised of GPR, EMI, and IR sensors that measure the shape, size,
depth, and metal content of objects buried in a field with hetero-
geneous soil and environmental conditions. The results show
that the BN models are capable of inferring target features by
systematically taking into account single or fused sensor mea-
surements and known environmental conditions. The BN mod-
eling approach is combined with the D-S fusion technique in
order to exploit the complementarity of the sensors. The sensor
models also are used to develop a BN classifier that estimates
the target typology based on the inferred features and its en-
vironment. By systematically combining heterogeneous sensor
measurements, the accuracy of the feature estimates is improved
by up to 64% and the number of objects detected and classified
by the demining system is increased by up to 62%, with respect
to single-sensor measurements. Also, the tools developed in this
paper allow the operator or sensor manager to make informed
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decisions pertaining the quality of target estimation and clas-
sification, by computing corresponding confidence levels that
are based on the sensor’s physical limitations and operational
environment.
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