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Abstract—This paper presents a geometric transversals approach for
representing the probability of track detection as an analytic function of
time and target motion parameters. By this approach, the optimization
of the detection probability subject to sensor kinodynamic constraints
can be formulated as an optimal control problem. Using the proposed
detection probability function, the necessary conditions for optimality
can be derived using calculus of variations, and solved numerically
using a variational iteration method (VIM). The simulation results show
that sensor state and control trajectories obtained by this approach
bring about a significant increase in detection probability compared to
existing strategies, and require a computation that is significantly reduced
compared to direct methods.

Index Terms—Mobile sensor networks, geometric transversals, track
coverage, optimal control, target tracking, detection theory.

I. INTRODUCTION

THE problem of tracking moving targets by means of a mobile
sensor network is relevant to a wide range of applications,

including environmental and atmospheric monitoring, security and
surveillance, tracking of endangered species, and condition-based
diagnostics [1]–[3]. It has been previously shown that the quality-
of-service (QoS) of sensor networks performing cooperative target
tracking can be quantified by track coverage functions derived using
geometric transversals and probability theory, assuming targets move
at constant speed and heading in the region-of-interest (RoI) [4], [5].

Recently, the geometric transversals approach in [4] was extended
to maneuvering targets described by Markov motion models and used
to optimize the detection probability of static sensor networks [6].
This paper extends the results in [6] to the problem of tracking a
maneuvering target by a network of omnidirectional sensors mounted
on mobile vehicles, and referred to simply as mobile sensors. The
advantage of mobile sensors over static sensors is that, over time,
they can cover larger portions of the RoI, and they can plan their
paths based on where targets are expected to travel to at future
times. Although optimal control has been previously applied to
mobile sensor networks, its applicability is often limited by the
lack of suitable objective functions. This paper shows that, using
the proposed track coverage function, optimal control can be used
to obtain optimality conditions and solutions for maximizing the
detection probability over time, based on the probability distributions
describing the target Markov motion model.

There is considerable precedence in the tracking and estimation
literature for modeling target dynamics by Markov motion models
[7], [8]. Using the approach presented in this paper, mobile sensors
can be controlled based on the Markov transition probability den-
sity functions (PDFs) that are routinely outputted by tracking and
estimation algorithms [7], [9]. Because the track coverage function
is not quadratic, the optimal control problem may be solved using
direct or indirect numerical methods [10], [11]. Direct methods
determine near optimal solutions by discretizing the continuous-
time problem and transcribing it into a finite-dimensional nonlinear
program (NLP). Thus, they may become intractable for more than a
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few sensors. Using the proposed track coverage function, this paper
derives necessary conditions for optimality, also known as Euler-
Lagrange (EL) equations, and then determines a numerical solution
using a variational iteration method (VIM) that exploits the integro-
differential structure of the EL equations to reduce computational
complexity. The numerical simulations show that, by this approach,
the detection probability is significantly increased compared to exist-
ing potential field, greedy, grid, and random deployment algorithms.

II. SENSOR NETWORK MOTION PLANNING (SNMP) PROBLEM

FORMULATION

This paper considers the problem of planning the state and
control trajectories of a network of n mobile sensors that seek
to cooperatively detect a moving target in a two-dimensional RoI,
A = [0, Lx]× [0, Ly], during a fixed time interval (T0, Tf ]. Each
sensor is mounted on a vehicle that is assumed to obey linear and
time-invariant (LTI) equations of motion. Let si ∈ A and ui ∈ R2

denote the state and control of the ith vehicle, respectively, such that
s = [sT1 . . . s

T
n ]T and u = [uT1 . . .u

T
n ]T denote the state and control

of the sensor network, respectively. Then, the network dynamics can
be represented by the state-space equation,

ṡ(t) = As(t) + Bu(t), s(T0) = s0 (1)

where A and B are known matrices of constant parameters [12].
From the actuator limits, the control vector is subject to the inequality
constraint,

−1 ≤ u(t) ≤ 1, (2)

where 1 denotes a 2n × 1 vector of 1s, and the physical scaling
parameters are absorbed into B.

Assuming every sensor in the network is a passive, omnidirec-
tional sensor, the field-of-view (FoV) can be represented by a disk
Ci(t) = C[si(t), ri], with constant radius or effective range ri ∈ R,
and centered at si. Then, the probability that the ith sensor detects
a target at x(t) ∈ A, at time t, can be described by the Boolean
detection model [13]–[16],

Pb[si(t),x(t)] =

{
0 : ‖si(t)− x(t)‖ > ri
1 : ‖si(t)− x(t)‖ ≤ ri

, 1 ≤ i ≤ n (3)

where ‖ · ‖ denotes the L2-norm.
This paper considers the problem of planning the sensor motion

based on the Markov transition probability density functions (PDFs)
that are routinely outputted by tracking and estimation routines for
assimilating distributed sensor measurements [7]. Markov motion
models assume that the target obeys the kinematic equations,

ẋ(t) ,

[
ẋ(t)
ẏ(t)

]
=

[
v(t) cos θ(t)
v(t) sin θ(t)

]
, t ∈ (T0, Tf ] (4)

where v(t) is the target velocity, and θ(t) is the target heading. It
is also assumed that the target heading and velocity remain constant
during m subintervals (tj , tj+1], j = 1, . . . ,m, that are an exact
cover of (T0, Tf ]. At any time tj , j = 1, . . . ,m, the target may
change its heading and velocity and, thus, t1, . . . , tm are referred
to as maneuvering times. Now, letting xj , x(tj), θj , θ(tj),
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vj , v(tj), and integrating (4) over time yields the target motion
model,

xj+1 = xj + [vj cos θj vj sin θj ]
T∆tj , j = 1, . . . ,m (5)

where ∆tj , tj+1 − tj .
Because the target motion is unknown a priori, the target position,

speed, and heading, are all viewed as independent, continuous random
variables. Let Xj denote the random target position at tj , Θj denote
the random target heading in (tj , tj+1], and Vj denote the random
target speed in (tj , tj+1]. Then, Xj can take any value xj ∈ A
with a probability defined by the PDF fXj (xj), Θj can take any
value θj ∈ [θmin, θmax] with a probability defined by the PDF
fΘj (θj), and Vj can take any value vj ∈ [vmin, vmax] with a
probability defined by the PDF fVj (vj). From (5), the set of Markov
parameters at the jth time interval,Mj , {xj , θj , vj}, depends only
on the motion parameters at the previous time interval, or Mj−1.
Thus, it can be easily shown that the sequence {M1, . . . ,Mm} is
a Markov chain [17], andMj is a set of Markov motion parameters
that can be described by the PDFs fXj (xj), fΘj (θj), and fVj (vj),
j = 1, . . . ,m. For simplicity, in this paper, the maneuvering time(s),
tj , are assumed known a priori for all j.

An example of Markov motion realization (target track) obtained
from the PDFs in Table I is shown in Fig. 1, and an example of
sensor trajectory and FoV are plotted in Fig. 2. Since both the target
and the sensor move over time, a detection can only occur when
the target track intersects the region spanned by the sensor FoV in
Ω , A × (T0, Tf ] ⊂ R3. We are now ready to state the problem
addressed in this paper:

Problem II.1 (Sensor Network Motion Planning (SNMP)). Given
the PDFs of the Markov parameters Mj , j = 1, . . . ,m, for a target
traversing the RoI A ⊂ R2, find the network state and control
trajectories, s∗(t) and u∗(t), such that the probability of detection is
maximized over (T0, Tf ].
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Fig. 1. Example of target trajectory realization sampled from Markov motion
model in Table I.

III. PROBABILITY OF TRACK DETECTION

This section extends the results in [6] to mobile sensor networks
and derives an objective function representing the probability of track
detection as a function of the time-varying network state, s(t). Then,
the detection probability function can be optimized subject to the
network dynamic equation (1) using optimal control theory. From
the detection model (3), the ith sensor has a nonzero probability to
detect a target if and only if ‖x(t)−si(t)‖ ≤ ri. It can be shown that,
as the ith sensor moves along a trajectory si(t), the set of all tracks
detected is contained by a time-varying three-dimensional coverage
cone in Ω defined according to the following lemma:
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Fig. 2. Example of sensor trajectory and sensor FoV plotted at three moments
in time t1 = 1(s), t2 = 40(s), and t3 = 55(s).

Lemma III.1. The ith coverage cone defined as,

Ki(t) =

{
[x y z]T ∈ R3

∣∣ tj < z ≤ tj+1, (6)∥∥∥∥[x y]T − (z − tj)
(t− tj)

[si(t)− xj ]− xj

∥∥∥∥ ≤ (z − tj)
(t− tj)

ri

}
contains the set of all target tracks that intersect the ith sensor FoV,
Ci(t), at any time t ∈ (tj , tj+1].

Proof: Let the directed line segment mj(t) ⊂ Ω represent a
target track as it evolves from time tj to t, such that,

mj(t)=

{
y∈R3

∣∣∣∣∣ y = zj+α

([
xT (t)
t

]
−zj

)
, α ∈ (0, 1]

}
(7)

where zj = [xTj tj ]
T is the segment origin in an inertial frame

FΩ embedded in Ω. Then, any point a ∈ mj(t), represented as
a constant three-dimensional vector a = [ax ay az]

T , obeys the
equality, [ax ay]T = (az − tj)[x(t)− xj ]/(t− tj) + xj . From (3),
a target at a is detected if and only if∥∥∥∥[ax ay]T − (az − tj)

(t− tj)
[si(t)− xj ]− xj

∥∥∥∥ ≤ (az − tj)
(t− tj)

ri, (8)

Thus, from (6), any point on mj(t) contained by Ci(t) must be
contained by the coverage cone, and thus mj(t) ∈ Ki(t).

As illustrated in Fig. 3, the above lemma extends the definition of
the fixed spatio-temporal coverage cone presented in [6] to a time-
varying coverage cone Ki(t) that is a function of the sensor trajectory
si(t). Because Ki(t) is a circular cone that is possibly oblique, a
Lebesgue measure of the tracks contained by Ki(t) can be obtained
by considering the pair of two-dimensional (2D) cones, referred to as
heading cone and velocity cone [6], and reviewed in the next section.

A. Heading and Velocity Cones Representation

The heading cone, denoted by Kθ(t), contains all target headings
that lead to a detection by the ith sensor at any time t ∈ (tj , tj+1]
and, thus, it is obtained from the projection of Ki(t) onto the heading
plane

Ψθ , {[x y z]T ∈ Ω | z = tj} (9)
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Fig. 3. Time-varying coverage cone (green) with its and heading-cone (cyan)
and velocity-cone (yellow) representations (adapted from [6]).

Because Kθ is a 2D cone, it can be expressed as a linear combination
of two unit vectors in Ψθ ,

ĥij(t) =

cosαij(t) − sinαij(t)
sinαij(t) cosαij(t)

0 0

d̂ij(t),
cosφij(t)

sinφij(t)
0


l̂ij(t) =

 cosαij(t) sinαij(t)
− sinαij(t) cosαij(t)

0 0

d̂ij(t),

cosψij(t)
sinψij(t)

0


where,

d̂ij(t) = [si(t)− xj ]/‖si(t)− xj‖
αij(t) = sin−1 (ri/‖si(t)− xj‖)

such that the heading cone defined with respect to a local coordinate
frame Fj is:

Kθ[si(t), zj ] , {c1ĥij(t) + c2 l̂ij(t) | c1, c2 ≥ 0}, (10)

Examples of heading cone and heading plane are illustrated in Fig.
3, along with the unit vector representation.

The velocity cone, denoted by Kv(t), contains all target speeds that
lead to a detection by the ith sensor at any time t ∈ (tj , tj+1] and,
thus, it is obtained from the intersection of Ki(t) with the velocity
plane

Ψv ,


xy
z

∈Ω

∣∣∣∣∣
[

sin θj
cos θj

]T[
x
−y

]
=

[
sin θj
cos θj

]
xj , z≥ tj

 (11)

Similarly to the heading cone, Kv can be represented by two unit
vectors,

ς̂ij(t)=
[
sin ηij(t) cos θj sin ηij(t) sin θj cos ηij(t)

]T
ω̂ij(t)=

[
sinµij(t) cos θj sinµij(t) sin θj cosµij(t)

]T
where,

ηij(t), µij(t) = tan−1
[ 1

t− tj

(
[cos θj sin θj ](si(t)− xj)

∓
√
r2
i − ([sin θj − cos θj ](si(t)−xj))

2
)]

such that the velocity cone in Fj is:

Kv[si(t), zj ] , {c1ς̂ij(t) + c2ω̂ij(t) | c1, c2 ≥ 0}, (12)

Then, the pair of cones {Kθ(t),Kv(t)}, defined in (10) and (12),
can be used to represent all tracks in Ki(t), as summarized by the
following lemma (adapted from [6]):

Lemma III.2. A target track mj(t) is contained by the coverage
cone Ki(t) if and only if its projection in Ψθ is contained by the
heading cone Kθ(t), and its projection in Ψv is contained by the
corresponding velocity cone Kv(t).

The proof of Lemma III.2 is a simple extension of the proof in [6].

B. SNMP Objective Function

The extremals of the heading and velocity cones presented in the
previous section determine upper and lower bounds for the target
heading angle and speed, respectively, that lead to a detection by
the ith sensor, as functions of the time-varying sensor position
si. Let the intervals Hij(t) , [ψij(t), φij(t)] and Vij(t) ,
[tan ηij(t), tanµij(t)] respectively denote the headings and speeds
contained by the heading and velocity cones. Then, the probability
that the ith sensor detects the target at any time t ∈ (tj , tj+1] is the
probability that the Markov parameters are contained by the coverage
cone Ki(t),

Pd(i, j, t) =

∫
A×Hij(t)×Vij(t)

fXj ,Θj ,Vj (xj , θj , vj)dxjdθjdvj (13)

where fXj ,Θj ,Vj (·) is the joint PDF of the Markov parameters xj ,
θj , and vj . Since these parameters are independent random variables,
the probability of detection can be simplified to,

Pd(i, j, t) =

∫
A×Hij(t)×Vij(t)

fXj (xj)fΘj (θj)fVj (vj)dxjdθjdvj (14)

=

∫
xj∈A

fXj (xj)

φij(t)∫
ψij(t)

fΘj (θj)

tanµij(t)∫
tan ηij(t)

fVj (vj)dvjdθjdxj , ∀t∈(tj , tj+1]

It can be seen that using the 2D coverage cones reduces the region
of integration from Ω to the product space A × Hij(t) × Vij(t),
and thus reduces the computation required to evaluate the detection
probability.

Then, the objective function for the SNMP problem can be ob-
tained by integrating over time the probability of independent sensor
detections by the n sensors for all m time intervals, as follows:

J =− 1

n

n∑
i=1

m∑
j=1

∫ tj+1

tj

Pd(i, j, t)dt

=− 1

n

n∑
i=1

m∑
j=1

∫ tj+1

tj

∫
A
fXj (xj)

∫ φij(t)

ψij(t)

fΘj (θj)

×
∫ tanµij(t)

tan ηij(t)

fVj (vj)dvjdθjdxjdt (15)

The above objective function is to be optimized subject to the network
dynamics (1) and the inequality constraints on the network state and
control given by c[s(t)] ≤ 0(n−1)n×1 and (2), respectively. The
inequality constraint on the state is defined as the vector function
c = [c12 · · · cil · · · cn(n−1)]

T , where,

cil , (ri + rl)
2 − ‖si(t)− sl(t)‖2, i, l = 1, . . . , n, i 6= l

and is used to guarantee independent sensor detections (see [5] and
references therein for a comprehensive treatment of detection theory).
Therefore, the SNMP problem can be formulated as the following
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optimal control problem:

min J,

sbj. to ṡ(t) = As(t) + Bu(t),

c[s(t)] ≤ 0,

− 1 ≤ u(t) ≤ 1

(16)

Because J is not quadratic, the above SNMP optimal control problem
must be solved numerically for the optimal state and control trajec-
tories s∗(t) and u∗(t). Section IV derives the SNMP EL equations,
and explains how their numerical solution can be obtained via VIM.
The VIM numerical simulation results and complexity analysis are
presented in Section V.

IV. OPTIMAL CONTROL SOLUTION

In order to maximize the detection probability and minimize the
control usage, the SNMP objective function is chosen to be of the
Lagrange type, with Lagrangian

L [s(t),u(t), t] = −
n∑
i=1

m∑
j=1

∫
A
fXj (xj)

∫ φij(t)

ψij(t)

fΘj (θj)

×
∫ tanµij(t)

tan ηij(t)

fVj (vj)dvjdθjdxj + αuTu (17)

To find the necessary conditions for optimality, the Hamiltonian,

H , L [·] + λT (t) [As(t) + Bu(t)] + γT (t)c[s(t)]

= H [s(t),u(t),λ(t),γ(t)] (18)

is introduced, adjoining the constraints on the state and control to
(17) by means of the Lagrange multipliers λ and γ.

Then, the SNMP Euler-Lagrange equations are,

λ̇(t) = − (∂L [·]/∂s)T −ATλ(t)− (∂c[·]/∂s)T γ(t) (19)

λ(Tf ) = 0 (20)

(∂L [·]/∂u)T + BTλ(t) + (∂c[·]/∂u)T γ(t) = 0 (21)

where ∂L /∂s =
[
(∂L /∂s1)T · · · (∂L /∂sn)T

]T
. Letting

ξij , ζij = (ψij ∓ φij)/2, the partial derivatives of the Lagrangian
with respect to the state can be approximated as,

∂L

∂si
≈


ρ

∫
A

{
fXj (xj)ξij(si,xj) sin [ζij(si,xj)]

}
dxj

ρ

∫
A

{
fXj (xj)ξij(si,xj) cos [ζij(si,xj)]

}
dxj


, gi[si(t)] (22)

where ρ = −8 ln(π/2)/(|Vj | |Θj |(t − tj)) and | · | denotes the
variable’s range, and the partial derivative of the Lagrangian with
respect to the control is ∂L /∂u = αuT (t). Since ∂c/∂u = 0, (21)
simplifies to αu(t) + BTλ = 0 and, thus,

u(t) = − 1

α
BTλ(t) (23)

Now, from the transition matrix solution of the state-space form (1),
s(t) = eA(t−T0)s0 +

∫ t
T0

Bu(τ)dτ , and, thus, from (23) it follows
that

s(t) = eA(t−T0)s0 −
1

α

∫ t

T0

BBTλ(τ)dτ (24)

Because γ = 0 when c[s(t)] 6= 0, it also follows from (24) that the
first optimality condition (19) can be simplified to,

λ̇(t) = −g[s(t)]

(∫ t

0

BBTλ(τ)dτ

)
−ATλ(t) (25)

TABLE I
MARKOV MOTION MODEL PROBABILITY DENSITY FUNCTIONS (PDFS)

Interval Heading PDF Velocity PDF
(tj , tj+1] (s) fΘj

(θj) fVj
(vj)

(0, 10] (s) (j = 1) U(−π/3,−π/6) U(13, 16)
(10, 20] (s) (j = 2) U(−π/16, π/16) U(18, 22)
(20, 30] (s) (j = 3) U(π/2, 2π/3) U(11, 14)
(30, 40] (s) (j = 4) U(−π/2,−π/3) U(21, 26)
(40, 50] (s) (j = 5) U(−π/8, π/8) U(10, 14)

where the vector function g[·] ,
[
gT1 [·] · · · gTn [·]

]
is defined

according to (22). Thus (25) represents a set of integro-differential
equations with boundary conditions (20).

Many algorithms have been developed for solving integro-
differential equations, including the Adomian decomposition method
[18], the homotopy perturbation method [19], and the VIM [20].
In this paper, VIM is chosen to solve (25) because its intermediate
approximations are known to converge rapidly to an accurate solution.
VIM starts with a linear trial function and obtains higher order terms
iteratively as follows,

λ(`+1)(t) = λ(`)(t)− (26)∫ t

T0

{
ATλ(`)(σ)− g[s(t)]

[∫ σ

T0

BBTλ(`)(τ)dτ

]}
dσ

where the superscript ` denotes the `th-order approximation.
By exploiting the integro-differential structure of the EL equations,

VIM can significantly reduce computational complexity when com-
pared to direct methods of solution. In direct methods, the dynamic
equation and objective function are discretized and transcribed into an
NLP that, typically, is solved using sequential quadratic programming
(SQP) [21]. The computational complexity of SQP direct methods is
O(n3K3M), where n is the number of sensors, K is the number
of collocation points, and M is the number of iterations required for
convergence [21]. The indirect VIM, on the other hand, requires a
computation time of O(nK2) to evaluate (26) using Euler integration.
Therefore, the computation complexity for VIM is O(nK2M), where
in practice M is quite small. Therefore, the VIM solution is efficient
for mobile sensor networks with a few dozen sensors. For larger
n, efficient solutions can be obtained by combing the results in this
paper with the distributed optimal control approach presented in [22].

V. SIMULATION RESULTS

Consider the Markov motion model in Table I for a target traversing
the RoI over a time interval (T0, Tf ] = (0, 50](s), where m = 5.
At t1 = T0 = 0 (s), the PDF of the target position, fX1(x1),
is a 2D multivariate Gaussian distribution, denoted by N (µ,Σ),
with mean µ = [20 180]T (m) and covariance matrix Σ =
diag([10 10])(m2), where, diag(·) denotes an operator that places
a row vector on the diagonal of a zero matrix. The heading and
velocity PDFs are uniform distributions, denoted by U(a, b), with
support [a, b], as shown in Table I. Then, the PDFs of x2, . . . , x5,
can be computed recursively, as shown in [6].

Simulation results are presented for two example cases, one
network with n = 9 and ri = 6 (m) (Fig. 4), and one network
with n = 20 and ri = 5 (m) (Fig. 5). Figures 4-5 show the
sensor trajectories and FoVs, and the PDF of the target position, at
four sample instants in time. It can be seen that by the geometric
transversals approach the sensors plan their motion such that the
detection probability in (T0, Tf ] is maximized. The optimal control
histories of a randomly chosen sensor (red arrow in Fig. 5) are plotted
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Fig. 4. Optimal sensor trajectories for n = 9 and ri = 6 (m), given the
target motion model in Table I.
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Fig. 5. Optimal sensor trajectories for n = 20 and ri = 5 (m), given the
target motion model in Table I.

in Fig. 6 to illustrate that control inputs obtained by this approach
are smooth and obey the desired bounds in (2).

The effectiveness of the geometric transversals approach is illus-
trated by comparing the probability of detection obtained by the
network in Fig. 5 to that obtained by potential field, greedy, uniform
grid, and random algorithms. In potential field [23], the PDF of the
target position is used to build an attractive potential, and a repulsive
force fr = −cr/‖sı(t)− s(t)‖2 is used to prevent collisions
between sensors, where cr = 1 [23]. The greedy algorithm proposed
in [24] places the sensors at n fixed locations, such that the network
coverage is maximized while retaining line-of-sight relationships
between sensors. The grid and random algorithms proposed in [25]
place the sensors at n fixed locations in A according to a uniformly
spaced grid or by sampling a uniform distribution.

The results in Fig. 7 are representative of extensive simulations
performed using different sensor networks, target models, and initial
conditions. Because the network performance is highly sensitive to
initial conditions, the average probability of detection, denoted by
Pe, is computed by considering over 100 initial conditions, sampled
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Fig. 6. Optimal control histories of one sensor chosen at random from the
network in Fig. 5 (as shown by red arrow).

 

 

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

t (s) 

∑
𝑃 𝑑

(𝑖
,𝑗

,𝑡
)

𝑛 𝑖=
1

  

 

Geometric Transversals 
Potential Field 
Grid  
Greedy  
Random  
 

Fig. 7. Performance comparison for sensor network in Fig. 5, with n = 20,
ri = 5 (m), and the target motion model in Table I.

uniformly at random from the RoI, holding network and target
parameters constant. The mean performance (Pe) and three standard
deviations (SDs) obtained by the five algorithms are plotted in Fig.
8 and show that the geometric transversals approach significantly
outperforms other algorithms over the entire time interval (T0, Tf ].

 
0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

t (s) 

𝑃𝑒 

 

3 SD Geometric Transversals 
Potential Field 
Grid 
Greedy 
Random 

Fig. 8. Probability of detection averaged over 100 initial conditions for
n = 20, ri = 5 (m), and the target motion model in Table I.

VI. SUMMARY AND CONCLUSIONS

This paper presents a geometric transversals approach for planning
the motion of a mobile sensor network such that its detection
probability is maximized over time. By this approach, the approach
derives a track coverage objective function in closed form, based
on the transition PDFs of the target Markov motion model. By this
novel approach, the probability of detection can be optimized subject
to the sensor kinodynamic equations, and inequality constraints on
the sensor state and control. The necessary conditions for optimality
are derived and reduced to a set of integro-differential equations
that are solved numerically using a variational iteration method. The
results show that by this approach the computational complexity is
significantly reduced compared to a direct method, and the detection
probability is significantly increased compared to existing potential
field, greedy, grid, or random algorithms.
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