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Abstract—This paper presents a model-based approach for4
computing real-time optimal decision strategies in the pursuit-5
evasion game of Ms. Pac-Man. The game of Ms. Pac-Man is an6
excellent benchmark problem of pursuit-evasion game with mul-7
tiple, active adversaries that adapt their pursuit policies based8
on Ms. Pac-Man’s state and decisions. In addition to evading the9
adversaries, the agent must pursue multiple fixed and moving tar-10
gets in an obstacle-populated environment. This paper presents11
a novel approach by which a decision-tree representation of all12
possible strategies is derived from the maze geometry and the13
dynamic equations of the adversaries or ghosts. The proposed14
models of ghost dynamics and decisions are validated through15
extensive numerical simulations. During the game, the decision16
tree is updated and used to determine optimal strategies in real17
time based on state estimates and game predictions obtained itera-18
tively over time. The results show that the artificial player obtained19
by this approach is able to achieve high game scores, and to han-20
dle high game levels in which the characters speeds and maze21
complexity become challenging even for human players.

Q1

22

Index Terms—Cell decomposition, computer games, decision23
theory, decision trees, Ms. Pac-Man, optimal control, path plan-24
ning, pursuit-evasion games.25

I. INTRODUCTION26

T HE video game Ms. Pac-Man is a challenging example of27

pursuit-evasion games in which an agent (Ms. Pac-Man)28

must evade multiple dynamic and active adversaries (ghosts), as29

well as pursue multiple fixed and moving targets (pills, fruits,30

and ghosts), all the while navigating an obstacle-populated31

environment. As such, it provides an excellent benchmark prob-32

lem for a number applications including recognizance and33

surveillance [1], search-and-rescue [2], [3], and mobile robotics34

[4], [5]. In Ms. Pac-Man, each ghost implements a different35

decision policy with random seeds and multiple modalities that36

are a function of Ms. Pac-Man’s decisions. Consequently, the37

game requires decisions to be made in real time, based on38

observations of a stochastic and dynamic environment that is39

challenging to both human and artificial players [6]. This is40
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evidenced by the fact that, despite the recent series of artifi- 41

cial intelligence competitions inviting researchers to develop 42

artificial players to achieve the highest possible score, existing 43

artificial players have yet to achieve the performance level of 44

expert human players [7]. For instance, existing artificial play- 45

ers typically achieve average scores between 9000 and 18 000 46

and maximum scores between 20 000 and 35 000 [8]–[13]. In 47

particular, the highest score achieved at the last Ms. Pac-Man 48

screen capture controller competition was 36 280, while expert 49

human players routinely achieve scores over 65 000 and in 50

some cases as high as 920 000 [14]. 51

Recent studies in the neuroscience literature indicate that bio- 52

logical brains generate exploratory actions by comparing the 53

meaning encoded in new sensory inputs with internal repre- 54

sentations obtained from the sensory experience accumulated 55

during a lifetime or preexisting functional maps [15]–[19]. For 56

example, internal representations of the environment and of 57

the subject’s body (body schema), also referred to as inter- 58

nal models, appear to be used by the somatosensory cortex 59

(SI) for predictions that are compared to the reafferent sen- 60

sory input to inform the brain of sensory discrepancies evoked 61

by environmental changes, and generate motor actions [20], 62

[21]. Computational intelligence algorithms that exploit mod- 63

els built from prior experience or first principles have also been 64

shown to be significantly more effective, in many cases, than 65

those that rely solely on learning [22]–[24]. One reason is that 66

many reinforcement learning algorithms improve upon the lat- 67

est approximation of the policy and value function. Therefore, 68

a model can be used to establish a better performance baseline. 69

Another reason is that model-free learning algorithms need to 70

explore the entire state and action spaces, thus requiring signif- 71

icantly more data and, in some cases, not scaling up to complex 72

problems [25]–[27]. 73

Artificial players for Ms. Pac-Man to date have been devel- 74

oped using model-free methods, primarily because of the 75

lack of a mathematical model for the game components. One 76

approach has been to design rule-based systems that imple- 77

ment conditional statements derived using expert knowledge 78

[8]–[12], [28], [29]. While it has the advantage of being sta- 79

ble and computationally cheap, this approach lacks extensibility 80

and cannot handle complex or unforeseen situations, such as, 81

high game levels, or random ghosts behaviors. An influence 82

map model was proposed in [30], in which the game charac- 83

ters and objects exert an influence on their surroundings. It was 84

also shown in [31] that, in the Ms. Pac-Man game, Q-learning 85

and fuzzy-state aggregation can be used to learn in nondeter- 86

ministic environments. Genetic algorithms and Monte Carlo 87

searches have also been successfully implemented in [32]–[35] 88
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to develop high-scoring agents in the artificial intelligence89

competitions. Due to the complexity of the environment and90

adversary behaviors, however, model-free approaches have had91

difficulty handling the diverse range of situations encountered92

by the player throughout the game [36].93

The model-based approach presented in this paper over-94

comes the limitations of existing methods [14], [37]–[39] by95

using a mathematical model of the game environment and96

adversary behaviors to predict future game states and ghost97

decisions. Exact cell decomposition is used to obtain a graph-98

ical representation of the obstacle-free configuration space for99

Ms. Pac-Man in the form of a connectivity graph that captures100

the adjacency relationships between obstacle-free convex cells.101

Using the approach first developed in [40] and [41], the connec-102

tivity graph can be used to generate a decision tree that includes103

action and utility nodes, where the utility function represents a104

tradeoff between the risk of losing the game (capture by a ghost)105

and the reward of increasing the game score. The utility nodes106

are estimated by modeling the ghosts’ dynamics and decisions107

using ordinary differential equations (ODEs). The ODE mod-108

els presented in this paper account for each ghost’s personality109

and multiple modes of motion. Furthermore, as shown in this110

paper, the ghosts are active adversaries that implement adaptive111

policies, and plan their paths based on Ms. Pac-Man’s actions.Q2 112

Extensive numerical simulations demonstrate that the ghost113

models presented in this paper are able to predict the paths of114

the ghosts with an average accuracy of 94.6%. Furthermore,115

these models can be updated such that when a random behav-116

ior or error occurs, the dynamic model and corresponding117

decision tree can both be learned in real time. The game strate-118

gies obtained by this approach achieve better performance119

than beginner and intermediate human players, and are able120

to handle high game levels, in which the character speed and121

maze complexity become challenging even for human players.122

Because it can be generalized to more complex environments123

and dynamics, the model-based approach presented in this124

paper can be extended to real-world pursuit-evasion problems125

in which the agents and adversaries may consist of robots or126

autonomous vehicles, and motion models can be constructed127

from exteroceptive sensor data using, for example, graphical128

models, Markov decision processes, or Bayesian nonparametric129

models [2], [42]–[46].130

The paper is organized as follows. Section II reviews the131

game of Ms. Pac-Man. The problem formulation and assump-132

tions are described in Section III. The dynamic models of Ms.133

Pac-Man and the ghosts are presented in Sections IV and V,134

respectively. Section VI presents the model-based approach to135

developing an artificial Ms. Pac-Man player based on decision136

trees and utility theory. The game model and artificial player137

are demonstrated through extensive numerical simulations in138

Section VII.139

II. THE MS. PAC-MAN GAME140

Released in 1982 by Midway Games, Ms. Pac-Man is a141

popular video game that can be considered as a challenging142

benchmark problem for dynamic pursuit and evasion games. In143

the Ms. Pac-Man game, the player navigates a character named144

Fig. 1. Screen-capture of the Ms. Pac-Man game emulated on a computer. F1:1

Ms. Pac-Man through a maze with the goal of eating (travel- 145

ing over) a set of fixed dots, called pills, as well as one or 146

more moving objects (bonus items), referred to as fruits. The 147

game image has the dimensions 224 × 288 pixels, which can 148

be divided into a square grid of 8 × 8 pixel tiles, where each 149

maze corridor consists of a row or a column of tiles. Each pill 150

is located at the center of a tile and is eaten when Ms. Pac-Man 151

is located within that tile [47]. 152

Four ghosts, each with unique colors and behaviors, act as 153

adversaries and pursue Ms. Pac-Man. If the player and a ghost 154

move into the same tile, the ghost is said to capture Ms. Pac- 155

Man, and the player loses one of three lives. The game ends 156

when no lives remain. The ghosts begin the game inside a rect- 157

angular room in the center of the maze, referred to as the ghost 158

pen, and are released into the maze at various times. If the 159

player eats all of the pills in the maze, the level is cleared, 160

and the player starts the process over, in a new maze, with 161

incrementally faster adversaries. 162

Each maze contains a set of tunnels that allow Ms. Pac-Man 163

to quickly travel to opposite sides of the maze. The ghosts can 164

also move through the tunnels, but they do so at a reduced 165

speed. The player is given a small advantage over ghosts when 166

turning corners as well, where if a player controls Ms. Pac- 167

Man to turn slightly before an upcoming corner, the distance 168

Ms. Pac-Man must travel to turn the corner is reduced by up to 169

approximately 2 pixels [47]. A player can also briefly reverse 170

the characters’ pursuit-evasion roles by eating one of four spe- 171

cial large dots per maze referred to as power pills, which, for a 172

short period of time, cause the ghosts to flee and give Ms. Pac- 173

Man the ability to eat them [48]. Additional points are awarded 174

when Ms. Pac-Man eats a bonus item. Bonus items enter the 175

maze through a tunnel twice per level, and move slowly through 176

the corridors of the maze. If they remain uneaten, the items exit 177

the maze. A screenshot of the game is shown in Fig. 1, and the 178

game characters are displayed in Fig. 2. 179

In addition to simply surviving and advancing through 180

mazes, the objective of the player is to maximize the number 181

of points earned, or score. During the game, points are awarded 182
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Fig. 2. Game characters and objects. (a) Ms. Pac-Man. (b) Blinky: red.
(c) Pinky: pink. (d) Inky: blue. (e) Sue: orange. (f) Fruit: cherry.

F2:1
F2:2

when an object is eaten by Ms. Pac-Man. Pills are worth ten183

points each, a power pill gives 50 points, and the values of184

bonus items vary per level from 100 to 5000 points. When a185

power pill is active, the score obtained for capturing a ghost186

increases exponentially with the number of ghosts eaten in suc-187

cession, where the total value is
∑n

i=1 100(2
n) and n is the188

number of ghosts eaten thus far. Therefore, a player can score189

3000 points by eating all four ghosts during the duration of one190

power pill’s effect. For most players, the game score is highly191

dependent on the points obtained for capturing ghosts. When192

Ms. Pac-Man reaches a score of 10 000, an extra life is awarded.193

In this paper, it is assumed that the player’s objective is to max-194

imize its game score and, thus, decision strategies are obtained195

by optimizing the score components, subject to a model of the196

game and ghost behaviors.197

III. PROBLEM FORMULATION AND ASSUMPTIONS198

The Ms. Pac-Man player is viewed as a decision maker that199

seeks to maximize the final game score by a sequence of deci-200

sions based on the observed game state and predictions obtained201

from a game model. At any instant k, the player has access202

to all of the information displayed on the screen, because the203

state of the game s(k) ∈ X ⊂ R
n is fully observable and can204

be extracted without error from the screen capture. The time205

interval (t0, tF ] represents the entire duration of the game and,206

because the player is implemented using a digital computer,207

time is discretized and indexed by k = 0, 1, . . . , F , where F208

is a finite end-time index that is unknown. Then, at any time209

tk ∈ (t0, tF ], the player must make a decision uM (k) ∈ U(k)210

on the motion of Ms. Pac-Man, where U(k) is the space of211

admissible decisions at time tk. Decisions are made according212

to a game strategy as follows.213

Definition 3.1: A strategy is a class of admissible policies214

that consists of a sequence of functions215

σ = {c0, c1, . . .} (1)

where ck maps the state variables into an admissible decision216

uM (k) = ck[s(k)] (2)

such that ck[·] ∈ U(k), for all s(k) ∈ X .217

In order to optimize the game score, the strategy σ is based218

on the expected profit of all possible future outcomes, which is219

estimated from a model of the game. In this paper, it is assumed 220

that at several moments in time, indexed by ti, the game can 221

be modeled by a decision tree Ti that represents all possi- 222

ble decision outcomes over a time interval [ti, tf ] ⊂ (t0, tF ], 223

where Δt = (tf − ti) is a constant chosen by the user. If the 224

error between the predictions obtained by game model and 225

the state observations exceed a specified tolerance, a new tree 226

is generated, and the previous one is discarded. Then, at any 227

time tk ∈ [ti, tf ], the instantaneous profit can be modeled as a 228

weighted sum of the reward V and the risk R and is a function 229

of the present state and decision 230

L [s(k),uM (k)] = wV V [x(k),uM (k)] + wRR[x(k),uM (k)]
(3)

where wV and wR are weighting coefficients chosen by the 231

user. 232

The decision-making problem considered in this paper is 233

to determine a strategy σ∗
i = {c∗i , . . . , c∗f} that maximizes the 234

cumulative profit over the time interval [ti, tf ] 235

Ji,f [x(i), σi] =

f∑
k=i

L [x(k),uM (k)] (4)

such that, given Ti, the optimal total profit is 236

J∗
i,f [x(i), σ

∗
i ] = max

σi

{Ji,f [x(i), σi]} . (5)

Because the random effects in the game are significant, any 237

time the observed state s(k) significantly differs from the model 238

prediction, the tree Ti is updated, and a new strategy σ∗
i is 239

computed, as explained in Section IV-C. A methodology is pre- 240

sented in Sections III–VI to model the Ms. Pac-Man game and 241

profit function based on guidelines and resources describing the 242

behaviors of the characters, such as [49]. 243

IV. MODEL OF MS. PAC-MAN BEHAVIOR 244

In this paper, the game of Ms. Pac-Man is viewed as a 245

pursuit-evasion game in which the goal is to determine the path 246

or trajectory of an agent (Ms. Pac-Man) that must pursue fixed 247

and moving targets in an obstacle-populated workspace, while 248

avoiding capture by a team of mobile adversaries. The maze 249

is considered to be a 2-D Euclidean workspace, denoted by 250

W ⊂ R
2, that is populated by a set of obstacles (maze walls), 251

B1,B2, . . ., with geometries and positions that are constant and 252

known a priori. The workspace W can be considered closed 253

and bounded (compact) by viewing the tunnels, denoted by T , 254

as two horizontal corridors, each connected to both sides of the 255

maze. Then, the obstacle-free space Wfree = W\{B1,B2, . . .} 256

consists of all the corridors in the maze. Let FW denote an iner- 257

tial reference frame embedded in W with origin at the lower 258

left corner of the maze. In continuous time t, the state of Ms. 259

Pac-Man is represented by a time-varying vector 260

xM (t) = [xM (t) yM (t)]
T (6)

where xM and yM are the x, y-coordinates of the centroid of 261

the Ms. Pac-Man character with respect to FW , measured in 262

units of pixels. 263
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Fig. 3. Control vector sign conventions.F3:1

The control input for Ms. Pac-Man is a joystick, or keyboard,264

command from the player that defines a direction of motion265

for Ms. Pac-Man. As a result of the geometries of the game266

characters and the design of the mazes, the player is only able267

to select one of four basic control decisions (move up, move268

left, move down, or move right), and characters are restricted to269

two movement directions within a straight-walled corridor. The270

control input for Ms. Pac-Man is denoted by the vector271

uM (t) = [uM (t)vM (t)]
T (7)

where uM ∈ {−1, 0, 1} represents joystick commands in272

the x-direction and vM ∈ {−1, 0, 1} defines motion in the273

y-direction, as shown in Fig. 3. The control or action space,274

denoted by U , for all agents is a discrete set275

U = [a1, a2, a3, a4] =

{[
0
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
0

]}
. (8)

Given the above definitions of state and control, it can be276

shown that Ms. Pac-Man’s dynamics can be described by a277

linear, ordinary differential equation (ODE)278

ẋM (t) = A(t)xM (t) +B(t)uM (t) (9)

where A and B are state–space matrices of appropriate dimen-279

sions [50].280

In order to estimate Ms. Pac-Man’s state, the ODE in (9)281

can be discretized, by integrating it with respect to time, using282

an integration step δt << Δt = (tf − ti). The time index ti283

represents all moments in time when a new decision tree is284

generated, i.e., the start of the game, the start of a new level,285

the start of game following the loss of one life, or the time when286

one of the actual ghosts’ trajectories is found to deviate from the287

model prediction. Then, the dynamic equation for Ms. Pac-Man288

in discrete time can be written as289

xM (k) = xM (k − 1) + αM (k − 1)uM (k − 1)δt (10)

where αM (k) is the speed of Ms. Pac-Man at time k, which290

is subject to change based on the game conditions. The control291

input for the Ms. Pac-Man player developed in this paper is292

determined by a discrete-time state-feedback control law293

uM (k) = ck [xM (k)] (11)

that is obtained using the methodology in Section VI, and may 294

change over time. 295

The ghosts’ dynamic equations are derived in Section V, in 296

terms of state and control vectors 297

xG(k) = [xG(k) yG(k)]
T (12)

uG(k) = [uG(k) vG(k)]
T (13)

that are based on the same conventions used for Ms. 298

Pac-Man, and are observed in real time from the game 299

screen. The label G belongs to a set of unique identifiers 300

IG = {G|G ∈ {R,B, P,O}}, where R denotes the red ghost 301

(Blinky), B denotes the blue ghost (Inky), P denotes the pink 302

ghost (Pinky), and O denotes the orange ghost (Sue). Although 303

an agent’s representation occupies several pixels on the screen, 304

its actual position is defined by a small 8 (pixel) × 8 (pixel) 305

game tile, and capture occurs when these positions overlap. 306

Letting τ [x] represent the tile containing the pixel at position 307

x = (x, y), capture occurs when 308

τ [xM (k)] = τ [xG(k)] , ∃G ∈ IG. (14)

Because ghosts’ behaviors include a pseudorandom com- 309

ponent, the optimal control law for Ms. Pac-Man cannot be 310

determined a priori, but must be updated based on real-time 311

observations of the game [51]. Like any human player, the Ms. 312

Pac-Man player developed by this paper is assumed to have 313

full visibility of the information displayed on the game screen. 314

Thus, a character state vector containing the positions of all 315

game characters and of the bonus item xF (k) at time k is 316

defined as 317

x(k) �
[
xT
M (k) xT

R(k) x
T
B(k) x

T
P (k) x

T
O(k) x

T
F (k)

]T
(15)

and can be assumed to be fully observable. Future game states 318

can be altered by the player via the game control vector uM (k). 319

While the player can decide the direction of motion (Fig. 3), 320

the speed of Ms. Pac-Man, αM (k), is determined by the game 321

based on the current game level, on the modes of the ghosts, 322

and on whether Ms. Pac-Man is collecting pills. Furthermore, 323

the speed is always bounded by a known constant ν, i.e., 324

αM (k) ≤ ν. 325

The ghosts are found to obey one of three modes that are 326

represented by a discrete variable δG(k), namely pursuit mode 327

[δG(k) = 0], evasion mode [δG(k) = 1], and scatter mode 328

[δG(k) = −1]. The modes of all four ghosts are grouped into 329

a vector m(k) � [δR(k) δB(k) δP (k) δO(k)]
T that is used to 330

determine, among other things, the speed of Ms. Pac-Man. 331

The distribution of pills (fixed targets) in the maze is repre- 332

sented by a 28× 36 matrix D(k) defined over an 8 (pixel) × 333

8 (pixel) grid used to discretize the game screen into tiles. 334

Then, the element in the ith row and jthe column at time k, 335

denoted by D(i,j)(k), represents the presence of a pill (+1), 336

power pill (−1), or an empty tile (0). Then, a function n : 337

R
28×36 → R, defined as the sum of the absolute values of all 338

elements of D(k), can be used to obtain the number of pills 339

(including power pills) that are present in the maze at time 340

k. For example, when Ms. Pac-Man is eating pills n[D(k)] < 341

n[D(k − 1)], and when it is traveling in an empty corridor, 342
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TABLE IT1:1
SPEED PARAMETERS FOR MS. PAC-MANT1:2

n[D(k)] = n[D(k − 1)]. Using this function, the speed of Ms.343

Pac-Man can be modeled as follows:344

αM (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β1ν, if m(k) �� 1 and n [D(k)] < n [D(k − 1)]

β2ν, if m(k) �� 1 and n [D(k)] = n [D(k − 1)]

β3ν, if m(k) � 1 and n [D(k)] < n [D(k − 1)]

β4ν, if m(k) � 1 and n [D(k)] = n [D(k − 1)]

(16)

where β1, β2, β3, and β4 are known parameters that vary with345

the game level, as shown in Table I.346

All elements of the matrix D(k) and vector m(k) are rear-347

ranged into a vector z(k) that represents the game conditions,348

and is obtained in real time from the screen (Section VII). As349

a result, the state of the game s(k) = [xT (k) zT (k)]T is fully350

observable. Furthermore, s(k) determines the behaviors of the351

ghosts as explained in Section V.352

V. MODELS OF ADVERSARY BEHAVIOR353

The Ms. Pac-Man character is faced by a team of antago-354

nistic adversaries, four ghosts, that try to capture Ms. Pac-Man355

and cause it to lose a life when successful. Because the game356

terminates after Ms. Pac-Man loses all lives, being captured by357

the ghosts prevents the player from increasing its game score.358

Evading the ghosts is, therefore, a key objective in the game of359

Ms. Pac-Man. The dynamics of each ghost, ascertained through360

experimentation and online resources [47], are modeled by a361

linear differential equation in the form:362

xG(k) = xG(k − 1) + αG(k − 1)uG(k − 1)δt (17)

where the ghost speed αG and control input uG depend on the363

ghost personality (G) and mode, as explained in the following364

subsections. The pursuit mode is the most common and rep-Q3 365

resents the behavior of the ghosts while actively attempting to366

capture Ms. Pac-Man. When in pursuit mode, each ghost uses367

a different control law as shown in the following subsections.Q4 368

When Ms. Pac-Man eats a power pill, the ghosts enter evasion369

mode and move slowly and randomly about the maze. The scat-370

ter mode only occurs during the first seven seconds of each371

level and at the start of gameplay following the death of Ms.372

Pac-Man. In scatter mode, the ghosts exhibit the same random373

motion as in evasion mode, but move at “normal” speeds.374

A. Ghost Speed375

The speeds of the ghosts depend on their personality, mode,376

and position. In particular, the speed of Inky, Pinky, and Sue377

TABLE II T2:1
SPEED PARAMETERS FOR BLUE, PINK, AND ORANGE GHOSTS T2:2

TABLE III T3:1
SPEED PARAMETERS FOR RED GHOST T3:2

can be modeled in terms of the maximum speed of Ms. Pac- 378

Man (ν), and in terms of the ghost mode and speed parameters 379

(Table II) as follows: 380

αG(k) =

⎧⎪⎨
⎪⎩
η1ν, if δG(k) = 1

η2ν, if δG(k) �= 1 and τ [xG(k)] /∈ T
η3ν, if δG(k) �= 1 and τ [xG(k)] ∈ T

(18)

where G = B,P,O. The parameter η1 (Table II) scales the 381

speed of a ghost in evasion mode. When ghosts are in scatter 382

or pursuit mode, their speed is scaled by parameter η2 or η3, 383

depending on whether they are outside or inside a tunnel T , 384

respectively. The ghost speeds decrease significantly when they 385

are located in T , accordingly, η2 > η3, as shown in Table II. 386

Unlike the other three ghosts, Blinky has a speed that 387

depends on the number of pills in the maze n[D(k)]. When 388

the value of n(·) is below a threshold d1, the speed of the 389

red ghost increases according to parameter η4, as shown in 390

Table III. When the number of pills decreases further, below 391

n[D(k)] < d2, Blinky’s speed is scaled by a parameter η5 ≥ η4 392

(Table III). The relationship between the game level, the speed 393

scaling constants, and the number of pills in the maze is pro- 394

vided in lookup table form in Table III. Thus, Blinky’s speed 395

can be modeled as 396

αG(k) =

{
η4ν, if n[D(k)]| ≤ d1

η5ν, if n[D(k)] ≤ d2
, for G = R (19)

and Blinky is often referred to as the aggressive ghost. 397

B. Ghost Policy in Pursuit Mode 398

Each ghost utilizes a different strategy for chasing Ms. Pac- 399

Man, based on its own definition of a target position denoted 400



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

by yG(k) ∈ W . In particular, the ghost control law greedily401

selects the control input that minimizes the Manhattan distance402

between the ghost and its target from a set of admissible con-403

trol inputs, or action space, denoted by UG(k). The ghost action404

space depends on the position of the ghost at time k, as well405

as the geometries of the maze walls, and is defined similarly406

to the action space of Ms. Pac-Man in (8). Thus, based on the407

distance between the ghost position xG(k) and the target posi-408

tion yG(k), every ghost implements the following control law409

to reach yG(k):410

uG(k) =

⎧⎨
⎩

c if c ∈ UG(k)
d if c /∈ UG(k),d ∈ UG(k)
[0 1]T if c /∈ UG(k),d /∈ UG(k)

(20)

where411

c � H(C) ◦ sgn[ξG(k)] (21)

d � H(D) ◦ sgn[ξG(k)] (22)

C �
[
1 −1
−1 1

]
|ξG(k)| (23)

D �
[
−1 1
1 −1

]
|ξG(k)| (24)

ξG(k) � [xG(k)− yG(k)] . (25)

Symbol ◦ denotes the Schur product, H(·) is the elementwise412

Heaviside step function defined such that H(0) = 1, sgn(·)413

is the elementwise signum or sign function, and | · | is the414

elementwise absolute value.415

In pursuit mode, the target position for Blinky, the red ghost416

(R), is the position of Ms. Pac-Man [47]417

yR(k) = xM (k) (26)

as shown in Fig. 4. As a result, the red ghost is most often seen418

following the path of Ms. Pac-Man. The orange ghost (O), Sue,419

is commonly referred to as the shy ghost, because it typically420

tries to maintain a moderate distance from Ms. Pac-Man. As421

shown in Fig. 5, when Ms. Pac-Man is within a threshold dis-422

tance cO of Sue, the ghost moves toward the lower left corner423

of the maze, with coordinates (x, y) = (0, 0). However, if Ms.424

Pac-Man is farther than cO from Sue, Sue’s target becomes the425

position of Ms. Pac-Man, i.e., [47]426

yO(k) =

{
[0 0]

T
, if ‖xO(k)− xM (k)‖2 ≤ cO

xM (k), if ‖xO(k)− xM (k)‖2 > cO
(27)

where cO = 64 pixels, and ‖ · ‖2 denotes the L2-norm.427

Unlike Blinky and Sue, the pink ghost (P ), Pinky, selects its428

target yP based on both the position and the direction of motion429

of Ms. Pac-Man. In most instances, Pinky targets a position in430

W that is at a distance cP from Ms. Pac-Man, and in the direc-431

tion of Ms. Pac-Man’s motion, as indicated by the value of the432

control input uM (Fig. 6). However, when Ms. Pac-Man is mov-433

ing in the positive y-direction (i.e., uM (k) = a1), Pinky’s target434

is cP pixels above and to the left of Ms. Pac-Man. Therefore,435

Pinky’s target can be modeled as follows [47]:436

yP (k) = xM (k) +G[uM (k)]cP (28)

Fig. 4. Example of Blinky’s target, yR. F4:1

where cP= [32 32]T pixels, and G(·) is a matrix function of 437

the control, defined as 438

G(a1) =

[
−1 0
0 1

]
G(a2) =

[
−1 0
0 0

]
(29)

G(a3) =

[
0 0
0 −1

]
G(a4) =

[
1 0
0 0

]
.

The blue ghost (B), Inky, selects its target yB based not only 439

on the position and direction of motion of Ms. Pac-Man, but 440

also on the position of the red ghost xR. As illustrated in Fig. 7, 441

Inky’s target is found by projecting the position of the red 442

ghost in the direction of motion of Ms. Pac-Man (uM ), about a 443

point 16 pixels from xM , and in the direction uM . When Ms. 444

Pac-Man is moving in the positive y-direction (uM (k) = a1), 445

however, the point for the projection is above and to the left of 446

Ms. Pac-Man at a distance of 6 pixels. The reflection point can 447

be defined as 448

yR
M (k) = xM (k) +G[uM (k)]cB (30)

where cB= [16 16]T , and the matrix function G(·) is defined 449

as in (29). The position of the red ghost is then projected about 450

the reflection point yR
M in order to determine the target for the 451

blue ghost [47] 452

yB(k) = 2 · yR
M (k)− xR(k) (31)

as shown by the examples in Fig. 7. 453

C. Ghost Policy in Evasion and Scatter Modes 454

At the beginning of each level and following the death of Ms. 455

Pac-Man, the ghosts are in scatter mode for seven seconds. In 456

this mode, the ghosts do not pursue the player but, rather, move 457

about the maze randomly. When a ghost reaches an intersec- 458

tion, it is modeled to select one of its admissible control inputs 459

UG(k) with uniform probability (excluding the possibility of 460

reversing direction). 461

If Ms. Pac-Man eats a power pill, the ghosts immediately 462

reverse direction and enter the evasion mode for a period of time 463

that decreases with the game level. In evasion mode, the ghosts 464

move randomly about the maze as in scatter mode but with a 465

lower speed. When a ghost in evasion mode is captured by Ms. 466

Pac-Man, it returns to the ghost pen and enters pursuit mode on 467

exit. Ghosts that are not captured return to pursuit mode when 468

the power pill becomes inactive. 469
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Fig. 5. Examples of Sue’s target, yO . (a) ‖xO(k)− xM (k)‖2 ≤ cO . (b) ‖xO(k)− xM (k)‖2 > cO .F5:1

Fig. 6. Examples of Pinky’s target, yP . (a) If uM (k) = a1. (b) If uM (k) = a2. (c) If uM (k) = a3. (d) If uM (k) = a4.F6:1

Fig. 7. Examples of Inky’s target, yB . (a) If uM (k) = a1.
(b) If uM (k) = a3.

F7:1
F7:2

VI. METHODOLOGY470

This paper presents a methodology for optimizing the deci-471

sion strategy of a computer player, referred to as the artificial472

Ms. Pac-Man player. A decision-tree representation of the473

game is obtained by using a computational geometry approach474

known as cell decomposition to decompose the obstacle-free475

workspace Wfree into convex subsets, or cells, within which476

a path for Ms. Pac-Man can be easily generated [40]. As477

explained in Section VI-A, the cell decomposition is used478

to create a connectivity tree representing causal relationships479

between Ms. Pac-Man’s position, and possible future paths480

[52]. The connectivity tree can then be transformed into a deci-481

sion tree with utility nodes obtained from the utility function482

defined in Section VI-B. The optimal strategy for the artificial 483

player is then computed and updated using the decision tree, as 484

explained in Section VI-C. 485

A. Cell Decomposition and the Connectivity Tree 486

As a preliminary step, the corridors of the maze are decom- 487

posed into nonoverlapping rectangular cells by means of a line 488

sweeping algorithm [53]. A cell, denoted κi, is defined as a 489

closed and bounded subset of the obstacle-free space. The cell 490

decomposition is such that a maze tunnel constitutes a single 491

cell, as shown in Fig. 8. In the decomposition, two cells κi 492

and κj are considered to be adjacent if and only if they share 493

a mutual edge. The adjacency relationships of all cells in the 494

workspace can be represented by a connectivity graph. A con- 495

nectivity graph G is a nondirected graph, in which every node 496

represents a cell in the decomposition of Wfree, and two nodes 497

κi and κj are connected by an arc (κi, κj) if and only if the 498

corresponding cells are adjacent. 499

Ms. Pac-Man can only move between adjacent cells, there- 500

fore, a causal relationship can be established from the adjacency 501

relationships in the connectivity graph, and represented by a 502

connectivity tree, as was first proposed in [52]. Let κ[x] denote 503

the cell containing a point x = [xy]T ∈ Wfree. Given an initial 504

position x0, and a corresponding cell κ[x0], the connectivity 505

tree associated with G, and denoted by C, is defined as an 506

acyclic tree graph with root κ[x0], in which every pair of nodes 507

κi and κj connected by an arc are also connected by an arc 508
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Fig. 8. Cell decomposition of Ms. Pac-Man second maze.F8:1

in G. As in the connectivity graph, the nodes of a connectivity509

tree represent void cells in the decomposition. Given the posi-510

tion of Ms. Pac-Man at any time k, a connectivity tree with root511

κ[xM (k)] can be readily determined from G, using the method-512

ology in [52]. Each branch of the tree then represents a unique513

sequence of cells that may be visited by Ms. Pac-Man, starting514

from xM (k).515

B. Ms. Pac-Man’s Profit Function516

Based on the game objectives described in Section II, the517

instantaneous profit of a decision uM (k) is defined as a518

weighted sum of the risk of being captured by the ghosts,519

denoted by R, and the reward gained by reaching one of tar-520

gets, denoted by V . Let d(·), p(·), f(·), and b(·) denote the521

rewards associated with reaching the pills, power pills, ghosts,522

and bonus items, respectively. The corresponding weights, ωd,523

ωp, ωf , and ωb denote known constants that are chosen heuristi-524

cally by the user, or computed via a learning algorithm, such as525

temporal difference [39]. Then, the total reward can be defined526

as the sum of the rewards from each target type527

V [s(k),uM (k)] = ωdd[s(k),uM (k)] + ωpp[s(k),uM (k)]

+ ωff [s(k),uM (k)] + ωbb[s(k),uM (k)]
(32)

and can be computed using the models presented in Section V,528

as follows.529

The pill reward function d(·) is a binary function that rep-530

resents a positive reward of 1 unit if Ms. Pac-Man is expected531

to eat a pill as result of the chosen control input uM , and is532

otherwise zero, i.e.,533

d[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= 1
1, if D[xM (k)] = 1.

(33)

A common strategy implemented by both human and artifi-534

cial players is to use power pills to ambush the ghosts. When535

utilizing this strategy, a player waits near a power pill until 536

the ghosts are near, it then eats the pill and pursues the ghosts 537

which have entered evasion mode. The reward associated with 538

each power pill can be modeled as a function of the minimum 539

distance between Ms. Pac-Man and each ghost G 540

ρG[xM (k)] � min |xM (k)− xG(k)| (34)

where | · | denotes the L1-norm. In order to take into account 541

the presence of the obstacles (walls), the minimum distance 542

in (34) is computed from the connectivity tree C obtained in 543

Section VI-A, using the A ∗ algorithm [53]. Then, letting ρD 544

denote the maximum distance at which Ms. Pac-Man should 545

eat a power pill, the power-pill reward can be written as 546

p[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= −1∑
G∈IG

g[x(k)], if D[xM (k)] = −1

(35)

where 547

g[xM (k),xG(k)] = ϑ− ×H{ρG[xM (k)]− ρD}
+ ϑ+ ×H{ρD − ρG[xM (k)]}. (36)

The parameters ϑ− and ϑ+ are the weights that represent the 548

desired tradeoff between the penalty and reward associated with 549

the power pill. 550

Because the set of admissible decisions for a ghost is a func- 551

tion of its position in the maze, the probability that a ghost 552

in evasion mode will transition to a state xG(k) from a state 553

xG(k − 1), denoted by P [xG(k)|xG(k − 1)], can be computed 554

from the cell decomposition (Fig. 8). Then, the instantaneous 555

reward for reaching (eating) a ghost G in evasion mode is 556

f [x(k),uM (k), z(k)]

=

{
0, if xG(k) �= xM (k)H[δG(k)−1]
P [xG(k)|xG(k−1)]ζ(k), if xG(k) = xM (k)

(37)

where δG(k) represents the mode of motion for ghost G 557

(Section IV), and the function 558

ζ(k) =

{
5−

∑
G∈IG

H[δG(k)− 1]

}2

(38)

is used to increase the reward quadratically with the number of 559

ghosts reached. 560

Like the ghosts, the bonus items are moving targets that, 561

when eaten, increase the game score. Unlike the ghosts, how- 562

ever, they never pursue Ms. Pac-Man, and, if uneaten after a 563

given period of time they simply leave the maze. Therefore, at 564

any time during the game, an attractive potential function 565

Ub(x) =

{
ρ2F (x), if ρF (x) ≤ ρb
0, if ρF (x) > ρb

, x ∈ Wfree (39)

can be used to pull Ms. Pac-Man toward the bonus item with a 566

virtual force 567

Fb(x) = −∇Ub(x) (40)
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that decreases with ρF . The distance ρF is defined by substitut-568

ing G with F in (34), ρb is a positive constant that represents569

the influence distance of the bonus item [53], and ∇ is the gra-570

dient operator. The instantaneous reward function for the bonus571

item is then defined such that the player is rewarded for moving572

toward the bonus item, i.e.,573

b [x(k),uM (k), z(k)] = sgn {Fb [xM (k)]} ◦ uM (k). (41)

The weight ωb in (32) is then chosen based on the type and574

value of the bonus item for the given game level.575

The instantaneous risk function is defined as the sum of the576

immediate risk posed by each of the four ghosts577

R [x(k),uM (k), z(k)] =
∑
G∈IG

RG [x(k),uM (k), z(k)] (42)

where the risk of each ghost RG depends on its mode of motion.578

In evasion mode (δG = 1), a ghost G poses no risk to Ms. Pac-579

Man, because it cannot capture her. In scatter mode (δG = 0),580

the risk associated with a ghost G is modeled using a repulsive581

potential function582

UG(x) =

{(
1

ρG(x) −
1
ρ0

)2

, if ρG(x) ≤ ρ0

0, if ρG(x) > ρ0
, x ∈ Wfree

(43)

that repels Ms. Pac-Man with a force583

FG(x) = −∇UG(x) (44)

ρ0 is the influence distance of Ms. Pac-Man, such that when Ms.584

Pac-Man is farther than ρ0 from a ghost, the ghost poses zero585

risk. When a ghost is in the ghost pen or otherwise inactive, its586

distance to Ms. Pac-Man is treated as infinite.587

The risk of a ghost in scatter mode is modeled such that Ms.588

Pac-Man is penalized for moving toward the ghost, i.e.,589

RG [x(k),uM (k), z(k)] = sgn {FG[xM (k)]} ◦ uM (k) (45)

for δG(k) = −1. In pursuit mode [δG(k) = 0], the ghosts are590

more aggressive and, thus, the instantaneous risk is modeled as591

the repulsive potential592

RG [x(k),uM (k), z(k)] = UG(x). (46)

Finally, the risk of being captured by a ghost is equal to a593

large positive constant χ defined by the user594

RG [x(k),uM (k), z(k)] = χ, for τ [xM (k)] = τ [xG(k)].
(47)

This emphasizes the risk of losing a life, which would cause595

the game to end sooner and the score to be significantly lower.596

Then the instantaneous profit function is a sum of the reward597

V and risk R598

J [uM (k)] = V [s(k),uM (k)] +R[x(k),uM (k), z(k)] (48)

which is evaluated at each node in a decision tree constructed599

using the cell decomposition method described above.600

C. Decision Tree and Optimal Strategy 601

As was first shown in [52], the connectivity tree G obtained 602

via cell decomposition in Section VI-A can be transformed into 603

a decision tree Ti that also includes action and utility nodes. 604

A decision tree is a directed acyclic graph with a tree-like 605

structure in which the root is the initial state, decision nodes 606

represent all possible decisions, and state (or chance) nodes 607

represent the state values resulting from each possible decision 608

[54]–[56]. Each branch in the tree represents the outcomes of a 609

possible strategy σi and terminates in leaf (or utility) node that 610

contains the value of the strategy’s cumulative profit Ji,f . 611

Let the tuple Ti = {C,D, J,A} represent a decision tree 612

comprising a set of chance nodes C, a set of decision nodes 613

D, the utility function J , and a set of directed arcs A. At any 614

time ti ∈ (t0, tF ], a decision tree Ti for Ms. Pac-Man can be 615

obtained from G using the following assignments. 616616

1) The root is the cell κi ∈ G occupied by Ms. Pac-Man at 617

time ti. 618

2) Every chance node κj ∈ C represents a cell in G. 619

3) For every cell κj ∈ C, a directed arc (κj , κl) ∈ A is 620

added iff ∃(κj , κl) ∈ G, j �= l. Then, (κj , κl) represents 621

the action decision to move from κj to κl. 622

4) The utility node at the end of each branch represents the 623

cumulative profit Ji,f of the corresponding strategy, σi, 624

defined in (4). 625

Using the above assignments, the instantaneous profit can be 626

computed for each node as the branches of the tree are grown 627

using Ms. Pac-Man’s profit function, presented in Section VI-B. 628

When the slice corresponding to tf is reached, the cumulative 629

profit Ji,f of each branch is found and assigned to its utility 630

node. Because the state of the game can change suddenly as 631

result of random ghost behavior, an exponential discount factor 632

is used to discount future profits in Ji,f , and favor the profit 633

that may be earned in the near future. From Ti, the optimal 634

strategy σ∗
i is determined by choosing the action corresponding 635

to the branch with the highest value of Ji,f . As explained in 636

Section III, a new decision tree is generated when tf is reached, 637

or when the state observations differ from the model prediction, 638

whichever occurs first. 639

VII. SIMULATION RESULTS 640

The simulation results presented in this paper are obtained 641

from the Microsoft’s Revenge of the Arcade software, which is 642

identical to the original arcade version of Ms. Pac-Man. The 643

results in Section VII-A validate the ghost models presented in 644

Section V, and the simulations in Section VII-B demonstrate 645

the effectiveness of the model-based artificial player presented 646

in Section VI. Every game simulated in this section is played 647

from beginning to end. The artificial player is coded in C#, 648

and runs in real time on a laptop with a Core-2 Duo 2.13-GHz 649

CPU, and 8-GB RAM. At every instant, indexed by k, the state 650

of the game s(k) is extracted from screen-capture images of 651

the game using the algorithm presented in [41]. Based on the 652

observed state value s(k), the control input to Ms. Pac-Man uM 653

is computed from the decision tree Ti, and implemented using 654

simulated keystrokes. Based on s(k), the tree Ti is updated at 655
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Fig. 9. Example of simulated and observed trajectories for the red ghost in pursuit mode.F9:1

Fig. 10. Example of ghost-state error histories, and model updates (diamonds).F10:1

selected instants ti ∈ (t0, tf ], as explained in Section VI-C. The656

highest recorded time to compute a decision was 0.09 s, and the657

mean times for the two most expensive steps of extracting the658

game state and computing the decision tree are on the order of659

0.015 and 0.05 s, respectively.660

A. Adversary Model Validation661

The models of the ghosts in pursuit mode, presented in662

Section V-B, are validated by comparing the trajectories of the663

ghosts extracted from the screen capture code to those gen-664

erated by integrating the models numerically using the same665

game conditions. When the ghosts are in other modes, their ran-666

dom decisions are assumed to be uniformly distributed [47].667

The ghosts’ state histories are extracted from screen-capture668

images while the game is being played by a human player.669

Subsequently, the ghost models are integrated using the trajec-670

tory of Ms. Pac-Man extracted during the same time interval.671

Fig. 9 shows an illustrative example of actual (solid line) and672

simulated (dashed line) trajectories for the red ghost, in which673

the model generated a path identical to that observed from the674

game. The small error between the two trajectories, in this case,675

is due entirely to the screen-capture algorithm.676

The ghosts’ models are validated by computing the percent-677

age of ghost states that are predicted correctly during simulated678

games. Because the ghosts only make decisions at maze inter-679

sections, the error in a ghost’s state is computed every time the680

ghost is at a distance of 10 pixels from an intersection. Then,681

the state is considered to be predicted correctly if the error682

between the observed and predicted values of the state is less683

than 8 pixels. If the error is larger than 8 pixels, the predic-684

tion is considered to be incorrect. When an incorrect prediction685

TABLE IV T4:1
GHOST MODEL VALIDATION RESULTS T4:2

occurs, the simulated ghost state xG is updated online using the 686

observed state value as an initial condition in the ghost dynamic 687

equation (17). Fig. 10 shows the error between simulated and 688

observed state histories for all four ghosts during a sample time 689

interval. 690

The errors in ghost model predictions were computed by 691

conducting game simulations until approximately 20 000 deci- 692

sions were obtained for each ghost. The results obtained from 693

these simulations are summarized in Table IV. In total, 79 705 694

ghost decisions were obtained, for an average model accuracy 695

(the ratio of successes to total trials) of 96.4%. As shown in 696

Table IV, the red ghost model is the least prone to errors, fol- 697

lowed by the pink ghost model, the blue ghost model, and, last, 698

the orange ghost model, which has the highest error rate. The 699

model errors are due to imprecisions when decoding the game 700

state from the observed game image, computation delay, miss- 701

ing state information (e.g., when ghost images overlap on the 702

screen), and imperfect timing by the player when making turns, 703

which has a small effect on Ms. Pac-Man’s speed, as explained 704

in Section II. 705
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Fig. 11. Time histories of game scores obtained by human and AI players.F11:1

Fig. 12. Player score distribution for 100 games.F12:1

The difference in the accuracy of different ghost models706

arises from the fact that the differential equations in (26)–(28)707

and (31) include different state variables and game parameters.708

For example, the pink ghost model has a higher error rate than709

the red ghost model because its target position yP is a func-710

tion of Ms. Pac-Man state and control input, and these variables711

are both susceptible to observation errors, while the red ghost712

model only depends on Ms. Pac-Man state. Thus, the pink ghost713

model is subject not only to observation errors in xM , which714

cause errors in the red ghost model, but also to observation715

errors in uM .716

B. Game Strategy Performance717

The artificial player strategies are computed using the718

approach described in Section VI, where the weighting coeffi-719

cients are ωV = 1, ωR = 0.4, ωd = 8, ωp = 3, ωf = 15, ωb =720

0.5, χ = 20 000, ϑ− = −2.2, and ϑ+ = 1, and are chosen721

by the user based on the desired tradeoff between the multi-722

ple conflicting objectives of Ms. Pac-Man [50]. The distance723

parameters are ρ0 = 150 pixels and ρb = 129 pixels, and are724

chosen by the user based on the desired distance of influence725

for ghost avoidance and bonus item, respectively [53]. The time726

histories of the scores during 100 games are plotted in Fig. 11,727

and the score distributions are shown in Fig. 12. The minimum,728

average, and maximum scores are summarized in Table V.729

TABLE V T5:1
PERFORMANCE RESULT SUMMARY OF AI AND HUMAN PLAYERS T5:2

From these results, it can be seen that the model-based arti- 730

ficial (AI) player presented in this paper outperforms most of 731

the computer players presented in the literature [8]–[14], which 732

display average scores between 9000 and 18 000 and maximum 733

scores between 20 000 and 36 280, where the highest score of 734

36 280 was achieved by the winner of the last Ms. Pac-Man 735

screen competition at the 2011 Conference on Computational 736

Intelligence and Games [14]. 737

Because expert human players routinely outperform com- 738

puter players and easily achieve scores over 65 000, the AI 739

player presented in this paper is also compared to human play- 740

ers of varying skill levels. The beginner player is someone 741

who has never played the game before, the intermediate player 742

has basic knowledge of the game and some prior experience, 743

and the advanced player has detailed knowledge of the game 744

mechanics, and has previously played many games. All players 745
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completed the 100 games over the course of a few weeks, dur-746

ing multiple sittings, and over time displayed the performance747

plotted in Fig. 11. From Table V, it can be seen that the AI748

player presented in this paper performs significantly better than749

both the beginner and intermediate players on average, with750

its highest score being 43 720. However, the advanced player751

outperforms the AI player on average, and has a much higher752

maximum score of 65 200.753

It can also be seen in Fig. 11 that the beginner and intermedi-754

ate players improve their scores over time, while the advanced755

player does not improve significantly. In particular, when a sim-756

ple least squares linear regression was performed on these game757

scores, the slope values were found to be 10.23 (advanced), 2.01758

(AI), 74.32 (intermediate), and 36.67 (beginner). Furthermore,759

a linear regression t-test aimed at determining whether the slope760

of the regression line differs significantly from zero with 95%761

confidence was applied to the data in Fig. 11, showing that762

while the intermediate and beginner scores increase over time,763

the AI and advanced scores display a slope that is not statisti-764

cally significantly different from zero (see [57] for a description765

of these methods). This suggests that beginner and intermediate766

players improve their performance more significantly by learn-767

ing from the game, while the advanced player may have already768

reached its maximum performance level.769

From detailed game data (not shown for brevity), it was770

found that human players are able to learn (or memorize) the771

first few levels of the game, and initially make fewer errors772

than the AI player. On the other hand, the AI player displays773

better performance than the human players later in the game,774

during high game levels when the game characters move faster,775

and the mazes become harder to navigate. These conditions776

force players to react and make decisions more quickly, and777

are found to be significantly more difficult by human players.778

Because the AI player can update its decision tree and strategy779

very frequently, the effects of game speed on the AI player’s780

performance are much smaller than on human players. Finally,781

although the model-based approach presented in this paper does782

not include learning, methods such as temporal difference [39]783

will be introduced in future work to further improve the AI784

player’s performance over time.785

VIII. CONCLUSION786

A model-based approach is presented for computing optimal787

decision strategies in the pursuit-evasion game Ms. Pac-Man.788

A model of the game and adversary dynamics are presented in789

the form of a decision tree that is updated over time. The deci-790

sion tree is derived by decomposing the game maze using a cell791

decomposition approach, and by defining the profit of future792

decisions based on adversary state predictions, and real-time793

state observations. Then, the optimal strategy is computed from794

the decision tree over a finite time horizon, and implemented795

by an artificial (AI) player in real time, using a screen-capture796

interface. Extensive game simulations are used to validate the797

models of the ghosts presented in this paper, and to demonstrate798

the effectiveness of the optimal game strategies obtained from799

the decision trees. The AI player is shown to outperform begin-800

ner and intermediate human players, and to achieve the highest801

score of 43 720. It is also shown that although an advanced 802

player outperforms the AI player, the AI player is better able to 803

handle high game levels, in which the speed of the characters 804

and spatial complexity of the mazes become more challenging. 805
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A Model-Based Approach to Optimizing
Ms. Pac-Man Game Strategies in Real Time

1

2

Greg Foderaro, Member, IEEE, Ashleigh Swingler, Member, IEEE, and Silvia Ferrari, Senior Member, IEEE3

Abstract—This paper presents a model-based approach for4
computing real-time optimal decision strategies in the pursuit-5
evasion game of Ms. Pac-Man. The game of Ms. Pac-Man is an6
excellent benchmark problem of pursuit-evasion game with mul-7
tiple, active adversaries that adapt their pursuit policies based8
on Ms. Pac-Man’s state and decisions. In addition to evading the9
adversaries, the agent must pursue multiple fixed and moving tar-10
gets in an obstacle-populated environment. This paper presents11
a novel approach by which a decision-tree representation of all12
possible strategies is derived from the maze geometry and the13
dynamic equations of the adversaries or ghosts. The proposed14
models of ghost dynamics and decisions are validated through15
extensive numerical simulations. During the game, the decision16
tree is updated and used to determine optimal strategies in real17
time based on state estimates and game predictions obtained itera-18
tively over time. The results show that the artificial player obtained19
by this approach is able to achieve high game scores, and to han-20
dle high game levels in which the characters speeds and maze21
complexity become challenging even for human players.

Q1

22

Index Terms—Cell decomposition, computer games, decision23
theory, decision trees, Ms. Pac-Man, optimal control, path plan-24
ning, pursuit-evasion games.25

I. INTRODUCTION26

T HE video game Ms. Pac-Man is a challenging example of27

pursuit-evasion games in which an agent (Ms. Pac-Man)28

must evade multiple dynamic and active adversaries (ghosts), as29

well as pursue multiple fixed and moving targets (pills, fruits,30

and ghosts), all the while navigating an obstacle-populated31

environment. As such, it provides an excellent benchmark prob-32

lem for a number applications including recognizance and33

surveillance [1], search-and-rescue [2], [3], and mobile robotics34

[4], [5]. In Ms. Pac-Man, each ghost implements a different35

decision policy with random seeds and multiple modalities that36

are a function of Ms. Pac-Man’s decisions. Consequently, the37

game requires decisions to be made in real time, based on38

observations of a stochastic and dynamic environment that is39

challenging to both human and artificial players [6]. This is40
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evidenced by the fact that, despite the recent series of artifi- 41

cial intelligence competitions inviting researchers to develop 42

artificial players to achieve the highest possible score, existing 43

artificial players have yet to achieve the performance level of 44

expert human players [7]. For instance, existing artificial play- 45

ers typically achieve average scores between 9000 and 18 000 46

and maximum scores between 20 000 and 35 000 [8]–[13]. In 47

particular, the highest score achieved at the last Ms. Pac-Man 48

screen capture controller competition was 36 280, while expert 49

human players routinely achieve scores over 65 000 and in 50

some cases as high as 920 000 [14]. 51

Recent studies in the neuroscience literature indicate that bio- 52

logical brains generate exploratory actions by comparing the 53

meaning encoded in new sensory inputs with internal repre- 54

sentations obtained from the sensory experience accumulated 55

during a lifetime or preexisting functional maps [15]–[19]. For 56

example, internal representations of the environment and of 57

the subject’s body (body schema), also referred to as inter- 58

nal models, appear to be used by the somatosensory cortex 59

(SI) for predictions that are compared to the reafferent sen- 60

sory input to inform the brain of sensory discrepancies evoked 61

by environmental changes, and generate motor actions [20], 62

[21]. Computational intelligence algorithms that exploit mod- 63

els built from prior experience or first principles have also been 64

shown to be significantly more effective, in many cases, than 65

those that rely solely on learning [22]–[24]. One reason is that 66

many reinforcement learning algorithms improve upon the lat- 67

est approximation of the policy and value function. Therefore, 68

a model can be used to establish a better performance baseline. 69

Another reason is that model-free learning algorithms need to 70

explore the entire state and action spaces, thus requiring signif- 71

icantly more data and, in some cases, not scaling up to complex 72

problems [25]–[27]. 73

Artificial players for Ms. Pac-Man to date have been devel- 74

oped using model-free methods, primarily because of the 75

lack of a mathematical model for the game components. One 76

approach has been to design rule-based systems that imple- 77

ment conditional statements derived using expert knowledge 78

[8]–[12], [28], [29]. While it has the advantage of being sta- 79

ble and computationally cheap, this approach lacks extensibility 80

and cannot handle complex or unforeseen situations, such as, 81

high game levels, or random ghosts behaviors. An influence 82

map model was proposed in [30], in which the game charac- 83

ters and objects exert an influence on their surroundings. It was 84

also shown in [31] that, in the Ms. Pac-Man game, Q-learning 85

and fuzzy-state aggregation can be used to learn in nondeter- 86

ministic environments. Genetic algorithms and Monte Carlo 87

searches have also been successfully implemented in [32]–[35] 88

1943-068X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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to develop high-scoring agents in the artificial intelligence89

competitions. Due to the complexity of the environment and90

adversary behaviors, however, model-free approaches have had91

difficulty handling the diverse range of situations encountered92

by the player throughout the game [36].93

The model-based approach presented in this paper over-94

comes the limitations of existing methods [14], [37]–[39] by95

using a mathematical model of the game environment and96

adversary behaviors to predict future game states and ghost97

decisions. Exact cell decomposition is used to obtain a graph-98

ical representation of the obstacle-free configuration space for99

Ms. Pac-Man in the form of a connectivity graph that captures100

the adjacency relationships between obstacle-free convex cells.101

Using the approach first developed in [40] and [41], the connec-102

tivity graph can be used to generate a decision tree that includes103

action and utility nodes, where the utility function represents a104

tradeoff between the risk of losing the game (capture by a ghost)105

and the reward of increasing the game score. The utility nodes106

are estimated by modeling the ghosts’ dynamics and decisions107

using ordinary differential equations (ODEs). The ODE mod-108

els presented in this paper account for each ghost’s personality109

and multiple modes of motion. Furthermore, as shown in this110

paper, the ghosts are active adversaries that implement adaptive111

policies, and plan their paths based on Ms. Pac-Man’s actions.Q2 112

Extensive numerical simulations demonstrate that the ghost113

models presented in this paper are able to predict the paths of114

the ghosts with an average accuracy of 94.6%. Furthermore,115

these models can be updated such that when a random behav-116

ior or error occurs, the dynamic model and corresponding117

decision tree can both be learned in real time. The game strate-118

gies obtained by this approach achieve better performance119

than beginner and intermediate human players, and are able120

to handle high game levels, in which the character speed and121

maze complexity become challenging even for human players.122

Because it can be generalized to more complex environments123

and dynamics, the model-based approach presented in this124

paper can be extended to real-world pursuit-evasion problems125

in which the agents and adversaries may consist of robots or126

autonomous vehicles, and motion models can be constructed127

from exteroceptive sensor data using, for example, graphical128

models, Markov decision processes, or Bayesian nonparametric129

models [2], [42]–[46].130

The paper is organized as follows. Section II reviews the131

game of Ms. Pac-Man. The problem formulation and assump-132

tions are described in Section III. The dynamic models of Ms.133

Pac-Man and the ghosts are presented in Sections IV and V,134

respectively. Section VI presents the model-based approach to135

developing an artificial Ms. Pac-Man player based on decision136

trees and utility theory. The game model and artificial player137

are demonstrated through extensive numerical simulations in138

Section VII.139

II. THE MS. PAC-MAN GAME140

Released in 1982 by Midway Games, Ms. Pac-Man is a141

popular video game that can be considered as a challenging142

benchmark problem for dynamic pursuit and evasion games. In143

the Ms. Pac-Man game, the player navigates a character named144

Fig. 1. Screen-capture of the Ms. Pac-Man game emulated on a computer. F1:1

Ms. Pac-Man through a maze with the goal of eating (travel- 145

ing over) a set of fixed dots, called pills, as well as one or 146

more moving objects (bonus items), referred to as fruits. The 147

game image has the dimensions 224 × 288 pixels, which can 148

be divided into a square grid of 8 × 8 pixel tiles, where each 149

maze corridor consists of a row or a column of tiles. Each pill 150

is located at the center of a tile and is eaten when Ms. Pac-Man 151

is located within that tile [47]. 152

Four ghosts, each with unique colors and behaviors, act as 153

adversaries and pursue Ms. Pac-Man. If the player and a ghost 154

move into the same tile, the ghost is said to capture Ms. Pac- 155

Man, and the player loses one of three lives. The game ends 156

when no lives remain. The ghosts begin the game inside a rect- 157

angular room in the center of the maze, referred to as the ghost 158

pen, and are released into the maze at various times. If the 159

player eats all of the pills in the maze, the level is cleared, 160

and the player starts the process over, in a new maze, with 161

incrementally faster adversaries. 162

Each maze contains a set of tunnels that allow Ms. Pac-Man 163

to quickly travel to opposite sides of the maze. The ghosts can 164

also move through the tunnels, but they do so at a reduced 165

speed. The player is given a small advantage over ghosts when 166

turning corners as well, where if a player controls Ms. Pac- 167

Man to turn slightly before an upcoming corner, the distance 168

Ms. Pac-Man must travel to turn the corner is reduced by up to 169

approximately 2 pixels [47]. A player can also briefly reverse 170

the characters’ pursuit-evasion roles by eating one of four spe- 171

cial large dots per maze referred to as power pills, which, for a 172

short period of time, cause the ghosts to flee and give Ms. Pac- 173

Man the ability to eat them [48]. Additional points are awarded 174

when Ms. Pac-Man eats a bonus item. Bonus items enter the 175

maze through a tunnel twice per level, and move slowly through 176

the corridors of the maze. If they remain uneaten, the items exit 177

the maze. A screenshot of the game is shown in Fig. 1, and the 178

game characters are displayed in Fig. 2. 179

In addition to simply surviving and advancing through 180

mazes, the objective of the player is to maximize the number 181

of points earned, or score. During the game, points are awarded 182
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Fig. 2. Game characters and objects. (a) Ms. Pac-Man. (b) Blinky: red.
(c) Pinky: pink. (d) Inky: blue. (e) Sue: orange. (f) Fruit: cherry.

F2:1
F2:2

when an object is eaten by Ms. Pac-Man. Pills are worth ten183

points each, a power pill gives 50 points, and the values of184

bonus items vary per level from 100 to 5000 points. When a185

power pill is active, the score obtained for capturing a ghost186

increases exponentially with the number of ghosts eaten in suc-187

cession, where the total value is
∑n

i=1 100(2
n) and n is the188

number of ghosts eaten thus far. Therefore, a player can score189

3000 points by eating all four ghosts during the duration of one190

power pill’s effect. For most players, the game score is highly191

dependent on the points obtained for capturing ghosts. When192

Ms. Pac-Man reaches a score of 10 000, an extra life is awarded.193

In this paper, it is assumed that the player’s objective is to max-194

imize its game score and, thus, decision strategies are obtained195

by optimizing the score components, subject to a model of the196

game and ghost behaviors.197

III. PROBLEM FORMULATION AND ASSUMPTIONS198

The Ms. Pac-Man player is viewed as a decision maker that199

seeks to maximize the final game score by a sequence of deci-200

sions based on the observed game state and predictions obtained201

from a game model. At any instant k, the player has access202

to all of the information displayed on the screen, because the203

state of the game s(k) ∈ X ⊂ R
n is fully observable and can204

be extracted without error from the screen capture. The time205

interval (t0, tF ] represents the entire duration of the game and,206

because the player is implemented using a digital computer,207

time is discretized and indexed by k = 0, 1, . . . , F , where F208

is a finite end-time index that is unknown. Then, at any time209

tk ∈ (t0, tF ], the player must make a decision uM (k) ∈ U(k)210

on the motion of Ms. Pac-Man, where U(k) is the space of211

admissible decisions at time tk. Decisions are made according212

to a game strategy as follows.213

Definition 3.1: A strategy is a class of admissible policies214

that consists of a sequence of functions215

σ = {c0, c1, . . .} (1)

where ck maps the state variables into an admissible decision216

uM (k) = ck[s(k)] (2)

such that ck[·] ∈ U(k), for all s(k) ∈ X .217

In order to optimize the game score, the strategy σ is based218

on the expected profit of all possible future outcomes, which is219

estimated from a model of the game. In this paper, it is assumed 220

that at several moments in time, indexed by ti, the game can 221

be modeled by a decision tree Ti that represents all possi- 222

ble decision outcomes over a time interval [ti, tf ] ⊂ (t0, tF ], 223

where Δt = (tf − ti) is a constant chosen by the user. If the 224

error between the predictions obtained by game model and 225

the state observations exceed a specified tolerance, a new tree 226

is generated, and the previous one is discarded. Then, at any 227

time tk ∈ [ti, tf ], the instantaneous profit can be modeled as a 228

weighted sum of the reward V and the risk R and is a function 229

of the present state and decision 230

L [s(k),uM (k)] = wV V [x(k),uM (k)] + wRR[x(k),uM (k)]
(3)

where wV and wR are weighting coefficients chosen by the 231

user. 232

The decision-making problem considered in this paper is 233

to determine a strategy σ∗
i = {c∗i , . . . , c∗f} that maximizes the 234

cumulative profit over the time interval [ti, tf ] 235

Ji,f [x(i), σi] =

f∑
k=i

L [x(k),uM (k)] (4)

such that, given Ti, the optimal total profit is 236

J∗
i,f [x(i), σ

∗
i ] = max

σi

{Ji,f [x(i), σi]} . (5)

Because the random effects in the game are significant, any 237

time the observed state s(k) significantly differs from the model 238

prediction, the tree Ti is updated, and a new strategy σ∗
i is 239

computed, as explained in Section IV-C. A methodology is pre- 240

sented in Sections III–VI to model the Ms. Pac-Man game and 241

profit function based on guidelines and resources describing the 242

behaviors of the characters, such as [49]. 243

IV. MODEL OF MS. PAC-MAN BEHAVIOR 244

In this paper, the game of Ms. Pac-Man is viewed as a 245

pursuit-evasion game in which the goal is to determine the path 246

or trajectory of an agent (Ms. Pac-Man) that must pursue fixed 247

and moving targets in an obstacle-populated workspace, while 248

avoiding capture by a team of mobile adversaries. The maze 249

is considered to be a 2-D Euclidean workspace, denoted by 250

W ⊂ R
2, that is populated by a set of obstacles (maze walls), 251

B1,B2, . . ., with geometries and positions that are constant and 252

known a priori. The workspace W can be considered closed 253

and bounded (compact) by viewing the tunnels, denoted by T , 254

as two horizontal corridors, each connected to both sides of the 255

maze. Then, the obstacle-free space Wfree = W\{B1,B2, . . .} 256

consists of all the corridors in the maze. Let FW denote an iner- 257

tial reference frame embedded in W with origin at the lower 258

left corner of the maze. In continuous time t, the state of Ms. 259

Pac-Man is represented by a time-varying vector 260

xM (t) = [xM (t) yM (t)]
T (6)

where xM and yM are the x, y-coordinates of the centroid of 261

the Ms. Pac-Man character with respect to FW , measured in 262

units of pixels. 263
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Fig. 3. Control vector sign conventions.F3:1

The control input for Ms. Pac-Man is a joystick, or keyboard,264

command from the player that defines a direction of motion265

for Ms. Pac-Man. As a result of the geometries of the game266

characters and the design of the mazes, the player is only able267

to select one of four basic control decisions (move up, move268

left, move down, or move right), and characters are restricted to269

two movement directions within a straight-walled corridor. The270

control input for Ms. Pac-Man is denoted by the vector271

uM (t) = [uM (t)vM (t)]
T (7)

where uM ∈ {−1, 0, 1} represents joystick commands in272

the x-direction and vM ∈ {−1, 0, 1} defines motion in the273

y-direction, as shown in Fig. 3. The control or action space,274

denoted by U , for all agents is a discrete set275

U = [a1, a2, a3, a4] =

{[
0
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
0

]}
. (8)

Given the above definitions of state and control, it can be276

shown that Ms. Pac-Man’s dynamics can be described by a277

linear, ordinary differential equation (ODE)278

ẋM (t) = A(t)xM (t) +B(t)uM (t) (9)

where A and B are state–space matrices of appropriate dimen-279

sions [50].280

In order to estimate Ms. Pac-Man’s state, the ODE in (9)281

can be discretized, by integrating it with respect to time, using282

an integration step δt << Δt = (tf − ti). The time index ti283

represents all moments in time when a new decision tree is284

generated, i.e., the start of the game, the start of a new level,285

the start of game following the loss of one life, or the time when286

one of the actual ghosts’ trajectories is found to deviate from the287

model prediction. Then, the dynamic equation for Ms. Pac-Man288

in discrete time can be written as289

xM (k) = xM (k − 1) + αM (k − 1)uM (k − 1)δt (10)

where αM (k) is the speed of Ms. Pac-Man at time k, which290

is subject to change based on the game conditions. The control291

input for the Ms. Pac-Man player developed in this paper is292

determined by a discrete-time state-feedback control law293

uM (k) = ck [xM (k)] (11)

that is obtained using the methodology in Section VI, and may 294

change over time. 295

The ghosts’ dynamic equations are derived in Section V, in 296

terms of state and control vectors 297

xG(k) = [xG(k) yG(k)]
T (12)

uG(k) = [uG(k) vG(k)]
T (13)

that are based on the same conventions used for Ms. 298

Pac-Man, and are observed in real time from the game 299

screen. The label G belongs to a set of unique identifiers 300

IG = {G|G ∈ {R,B, P,O}}, where R denotes the red ghost 301

(Blinky), B denotes the blue ghost (Inky), P denotes the pink 302

ghost (Pinky), and O denotes the orange ghost (Sue). Although 303

an agent’s representation occupies several pixels on the screen, 304

its actual position is defined by a small 8 (pixel) × 8 (pixel) 305

game tile, and capture occurs when these positions overlap. 306

Letting τ [x] represent the tile containing the pixel at position 307

x = (x, y), capture occurs when 308

τ [xM (k)] = τ [xG(k)] , ∃G ∈ IG. (14)

Because ghosts’ behaviors include a pseudorandom com- 309

ponent, the optimal control law for Ms. Pac-Man cannot be 310

determined a priori, but must be updated based on real-time 311

observations of the game [51]. Like any human player, the Ms. 312

Pac-Man player developed by this paper is assumed to have 313

full visibility of the information displayed on the game screen. 314

Thus, a character state vector containing the positions of all 315

game characters and of the bonus item xF (k) at time k is 316

defined as 317

x(k) �
[
xT
M (k) xT

R(k) x
T
B(k) x

T
P (k) x

T
O(k) x

T
F (k)

]T
(15)

and can be assumed to be fully observable. Future game states 318

can be altered by the player via the game control vector uM (k). 319

While the player can decide the direction of motion (Fig. 3), 320

the speed of Ms. Pac-Man, αM (k), is determined by the game 321

based on the current game level, on the modes of the ghosts, 322

and on whether Ms. Pac-Man is collecting pills. Furthermore, 323

the speed is always bounded by a known constant ν, i.e., 324

αM (k) ≤ ν. 325

The ghosts are found to obey one of three modes that are 326

represented by a discrete variable δG(k), namely pursuit mode 327

[δG(k) = 0], evasion mode [δG(k) = 1], and scatter mode 328

[δG(k) = −1]. The modes of all four ghosts are grouped into 329

a vector m(k) � [δR(k) δB(k) δP (k) δO(k)]
T that is used to 330

determine, among other things, the speed of Ms. Pac-Man. 331

The distribution of pills (fixed targets) in the maze is repre- 332

sented by a 28× 36 matrix D(k) defined over an 8 (pixel) × 333

8 (pixel) grid used to discretize the game screen into tiles. 334

Then, the element in the ith row and jthe column at time k, 335

denoted by D(i,j)(k), represents the presence of a pill (+1), 336

power pill (−1), or an empty tile (0). Then, a function n : 337

R
28×36 → R, defined as the sum of the absolute values of all 338

elements of D(k), can be used to obtain the number of pills 339

(including power pills) that are present in the maze at time 340

k. For example, when Ms. Pac-Man is eating pills n[D(k)] < 341

n[D(k − 1)], and when it is traveling in an empty corridor, 342
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TABLE IT1:1
SPEED PARAMETERS FOR MS. PAC-MANT1:2

n[D(k)] = n[D(k − 1)]. Using this function, the speed of Ms.343

Pac-Man can be modeled as follows:344

αM (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β1ν, if m(k) �� 1 and n [D(k)] < n [D(k − 1)]

β2ν, if m(k) �� 1 and n [D(k)] = n [D(k − 1)]

β3ν, if m(k) � 1 and n [D(k)] < n [D(k − 1)]

β4ν, if m(k) � 1 and n [D(k)] = n [D(k − 1)]

(16)

where β1, β2, β3, and β4 are known parameters that vary with345

the game level, as shown in Table I.346

All elements of the matrix D(k) and vector m(k) are rear-347

ranged into a vector z(k) that represents the game conditions,348

and is obtained in real time from the screen (Section VII). As349

a result, the state of the game s(k) = [xT (k) zT (k)]T is fully350

observable. Furthermore, s(k) determines the behaviors of the351

ghosts as explained in Section V.352

V. MODELS OF ADVERSARY BEHAVIOR353

The Ms. Pac-Man character is faced by a team of antago-354

nistic adversaries, four ghosts, that try to capture Ms. Pac-Man355

and cause it to lose a life when successful. Because the game356

terminates after Ms. Pac-Man loses all lives, being captured by357

the ghosts prevents the player from increasing its game score.358

Evading the ghosts is, therefore, a key objective in the game of359

Ms. Pac-Man. The dynamics of each ghost, ascertained through360

experimentation and online resources [47], are modeled by a361

linear differential equation in the form:362

xG(k) = xG(k − 1) + αG(k − 1)uG(k − 1)δt (17)

where the ghost speed αG and control input uG depend on the363

ghost personality (G) and mode, as explained in the following364

subsections. The pursuit mode is the most common and rep-Q3 365

resents the behavior of the ghosts while actively attempting to366

capture Ms. Pac-Man. When in pursuit mode, each ghost uses367

a different control law as shown in the following subsections.Q4 368

When Ms. Pac-Man eats a power pill, the ghosts enter evasion369

mode and move slowly and randomly about the maze. The scat-370

ter mode only occurs during the first seven seconds of each371

level and at the start of gameplay following the death of Ms.372

Pac-Man. In scatter mode, the ghosts exhibit the same random373

motion as in evasion mode, but move at “normal” speeds.374

A. Ghost Speed375

The speeds of the ghosts depend on their personality, mode,376

and position. In particular, the speed of Inky, Pinky, and Sue377

TABLE II T2:1
SPEED PARAMETERS FOR BLUE, PINK, AND ORANGE GHOSTS T2:2

TABLE III T3:1
SPEED PARAMETERS FOR RED GHOST T3:2

can be modeled in terms of the maximum speed of Ms. Pac- 378

Man (ν), and in terms of the ghost mode and speed parameters 379

(Table II) as follows: 380

αG(k) =

⎧⎪⎨
⎪⎩
η1ν, if δG(k) = 1

η2ν, if δG(k) �= 1 and τ [xG(k)] /∈ T
η3ν, if δG(k) �= 1 and τ [xG(k)] ∈ T

(18)

where G = B,P,O. The parameter η1 (Table II) scales the 381

speed of a ghost in evasion mode. When ghosts are in scatter 382

or pursuit mode, their speed is scaled by parameter η2 or η3, 383

depending on whether they are outside or inside a tunnel T , 384

respectively. The ghost speeds decrease significantly when they 385

are located in T , accordingly, η2 > η3, as shown in Table II. 386

Unlike the other three ghosts, Blinky has a speed that 387

depends on the number of pills in the maze n[D(k)]. When 388

the value of n(·) is below a threshold d1, the speed of the 389

red ghost increases according to parameter η4, as shown in 390

Table III. When the number of pills decreases further, below 391

n[D(k)] < d2, Blinky’s speed is scaled by a parameter η5 ≥ η4 392

(Table III). The relationship between the game level, the speed 393

scaling constants, and the number of pills in the maze is pro- 394

vided in lookup table form in Table III. Thus, Blinky’s speed 395

can be modeled as 396

αG(k) =

{
η4ν, if n[D(k)]| ≤ d1

η5ν, if n[D(k)] ≤ d2
, for G = R (19)

and Blinky is often referred to as the aggressive ghost. 397

B. Ghost Policy in Pursuit Mode 398

Each ghost utilizes a different strategy for chasing Ms. Pac- 399

Man, based on its own definition of a target position denoted 400
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by yG(k) ∈ W . In particular, the ghost control law greedily401

selects the control input that minimizes the Manhattan distance402

between the ghost and its target from a set of admissible con-403

trol inputs, or action space, denoted by UG(k). The ghost action404

space depends on the position of the ghost at time k, as well405

as the geometries of the maze walls, and is defined similarly406

to the action space of Ms. Pac-Man in (8). Thus, based on the407

distance between the ghost position xG(k) and the target posi-408

tion yG(k), every ghost implements the following control law409

to reach yG(k):410

uG(k) =

⎧⎨
⎩

c if c ∈ UG(k)
d if c /∈ UG(k),d ∈ UG(k)
[0 1]T if c /∈ UG(k),d /∈ UG(k)

(20)

where411

c � H(C) ◦ sgn[ξG(k)] (21)

d � H(D) ◦ sgn[ξG(k)] (22)

C �
[
1 −1
−1 1

]
|ξG(k)| (23)

D �
[
−1 1
1 −1

]
|ξG(k)| (24)

ξG(k) � [xG(k)− yG(k)] . (25)

Symbol ◦ denotes the Schur product, H(·) is the elementwise412

Heaviside step function defined such that H(0) = 1, sgn(·)413

is the elementwise signum or sign function, and | · | is the414

elementwise absolute value.415

In pursuit mode, the target position for Blinky, the red ghost416

(R), is the position of Ms. Pac-Man [47]417

yR(k) = xM (k) (26)

as shown in Fig. 4. As a result, the red ghost is most often seen418

following the path of Ms. Pac-Man. The orange ghost (O), Sue,419

is commonly referred to as the shy ghost, because it typically420

tries to maintain a moderate distance from Ms. Pac-Man. As421

shown in Fig. 5, when Ms. Pac-Man is within a threshold dis-422

tance cO of Sue, the ghost moves toward the lower left corner423

of the maze, with coordinates (x, y) = (0, 0). However, if Ms.424

Pac-Man is farther than cO from Sue, Sue’s target becomes the425

position of Ms. Pac-Man, i.e., [47]426

yO(k) =

{
[0 0]

T
, if ‖xO(k)− xM (k)‖2 ≤ cO

xM (k), if ‖xO(k)− xM (k)‖2 > cO
(27)

where cO = 64 pixels, and ‖ · ‖2 denotes the L2-norm.427

Unlike Blinky and Sue, the pink ghost (P ), Pinky, selects its428

target yP based on both the position and the direction of motion429

of Ms. Pac-Man. In most instances, Pinky targets a position in430

W that is at a distance cP from Ms. Pac-Man, and in the direc-431

tion of Ms. Pac-Man’s motion, as indicated by the value of the432

control input uM (Fig. 6). However, when Ms. Pac-Man is mov-433

ing in the positive y-direction (i.e., uM (k) = a1), Pinky’s target434

is cP pixels above and to the left of Ms. Pac-Man. Therefore,435

Pinky’s target can be modeled as follows [47]:436

yP (k) = xM (k) +G[uM (k)]cP (28)

Fig. 4. Example of Blinky’s target, yR. F4:1

where cP= [32 32]T pixels, and G(·) is a matrix function of 437

the control, defined as 438

G(a1) =

[
−1 0
0 1

]
G(a2) =

[
−1 0
0 0

]
(29)

G(a3) =

[
0 0
0 −1

]
G(a4) =

[
1 0
0 0

]
.

The blue ghost (B), Inky, selects its target yB based not only 439

on the position and direction of motion of Ms. Pac-Man, but 440

also on the position of the red ghost xR. As illustrated in Fig. 7, 441

Inky’s target is found by projecting the position of the red 442

ghost in the direction of motion of Ms. Pac-Man (uM ), about a 443

point 16 pixels from xM , and in the direction uM . When Ms. 444

Pac-Man is moving in the positive y-direction (uM (k) = a1), 445

however, the point for the projection is above and to the left of 446

Ms. Pac-Man at a distance of 6 pixels. The reflection point can 447

be defined as 448

yR
M (k) = xM (k) +G[uM (k)]cB (30)

where cB= [16 16]T , and the matrix function G(·) is defined 449

as in (29). The position of the red ghost is then projected about 450

the reflection point yR
M in order to determine the target for the 451

blue ghost [47] 452

yB(k) = 2 · yR
M (k)− xR(k) (31)

as shown by the examples in Fig. 7. 453

C. Ghost Policy in Evasion and Scatter Modes 454

At the beginning of each level and following the death of Ms. 455

Pac-Man, the ghosts are in scatter mode for seven seconds. In 456

this mode, the ghosts do not pursue the player but, rather, move 457

about the maze randomly. When a ghost reaches an intersec- 458

tion, it is modeled to select one of its admissible control inputs 459

UG(k) with uniform probability (excluding the possibility of 460

reversing direction). 461

If Ms. Pac-Man eats a power pill, the ghosts immediately 462

reverse direction and enter the evasion mode for a period of time 463

that decreases with the game level. In evasion mode, the ghosts 464

move randomly about the maze as in scatter mode but with a 465

lower speed. When a ghost in evasion mode is captured by Ms. 466

Pac-Man, it returns to the ghost pen and enters pursuit mode on 467

exit. Ghosts that are not captured return to pursuit mode when 468

the power pill becomes inactive. 469
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Fig. 5. Examples of Sue’s target, yO . (a) ‖xO(k)− xM (k)‖2 ≤ cO . (b) ‖xO(k)− xM (k)‖2 > cO .F5:1

Fig. 6. Examples of Pinky’s target, yP . (a) If uM (k) = a1. (b) If uM (k) = a2. (c) If uM (k) = a3. (d) If uM (k) = a4.F6:1

Fig. 7. Examples of Inky’s target, yB . (a) If uM (k) = a1.
(b) If uM (k) = a3.

F7:1
F7:2

VI. METHODOLOGY470

This paper presents a methodology for optimizing the deci-471

sion strategy of a computer player, referred to as the artificial472

Ms. Pac-Man player. A decision-tree representation of the473

game is obtained by using a computational geometry approach474

known as cell decomposition to decompose the obstacle-free475

workspace Wfree into convex subsets, or cells, within which476

a path for Ms. Pac-Man can be easily generated [40]. As477

explained in Section VI-A, the cell decomposition is used478

to create a connectivity tree representing causal relationships479

between Ms. Pac-Man’s position, and possible future paths480

[52]. The connectivity tree can then be transformed into a deci-481

sion tree with utility nodes obtained from the utility function482

defined in Section VI-B. The optimal strategy for the artificial 483

player is then computed and updated using the decision tree, as 484

explained in Section VI-C. 485

A. Cell Decomposition and the Connectivity Tree 486

As a preliminary step, the corridors of the maze are decom- 487

posed into nonoverlapping rectangular cells by means of a line 488

sweeping algorithm [53]. A cell, denoted κi, is defined as a 489

closed and bounded subset of the obstacle-free space. The cell 490

decomposition is such that a maze tunnel constitutes a single 491

cell, as shown in Fig. 8. In the decomposition, two cells κi 492

and κj are considered to be adjacent if and only if they share 493

a mutual edge. The adjacency relationships of all cells in the 494

workspace can be represented by a connectivity graph. A con- 495

nectivity graph G is a nondirected graph, in which every node 496

represents a cell in the decomposition of Wfree, and two nodes 497

κi and κj are connected by an arc (κi, κj) if and only if the 498

corresponding cells are adjacent. 499

Ms. Pac-Man can only move between adjacent cells, there- 500

fore, a causal relationship can be established from the adjacency 501

relationships in the connectivity graph, and represented by a 502

connectivity tree, as was first proposed in [52]. Let κ[x] denote 503

the cell containing a point x = [xy]T ∈ Wfree. Given an initial 504

position x0, and a corresponding cell κ[x0], the connectivity 505

tree associated with G, and denoted by C, is defined as an 506

acyclic tree graph with root κ[x0], in which every pair of nodes 507

κi and κj connected by an arc are also connected by an arc 508
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Fig. 8. Cell decomposition of Ms. Pac-Man second maze.F8:1

in G. As in the connectivity graph, the nodes of a connectivity509

tree represent void cells in the decomposition. Given the posi-510

tion of Ms. Pac-Man at any time k, a connectivity tree with root511

κ[xM (k)] can be readily determined from G, using the method-512

ology in [52]. Each branch of the tree then represents a unique513

sequence of cells that may be visited by Ms. Pac-Man, starting514

from xM (k).515

B. Ms. Pac-Man’s Profit Function516

Based on the game objectives described in Section II, the517

instantaneous profit of a decision uM (k) is defined as a518

weighted sum of the risk of being captured by the ghosts,519

denoted by R, and the reward gained by reaching one of tar-520

gets, denoted by V . Let d(·), p(·), f(·), and b(·) denote the521

rewards associated with reaching the pills, power pills, ghosts,522

and bonus items, respectively. The corresponding weights, ωd,523

ωp, ωf , and ωb denote known constants that are chosen heuristi-524

cally by the user, or computed via a learning algorithm, such as525

temporal difference [39]. Then, the total reward can be defined526

as the sum of the rewards from each target type527

V [s(k),uM (k)] = ωdd[s(k),uM (k)] + ωpp[s(k),uM (k)]

+ ωff [s(k),uM (k)] + ωbb[s(k),uM (k)]
(32)

and can be computed using the models presented in Section V,528

as follows.529

The pill reward function d(·) is a binary function that rep-530

resents a positive reward of 1 unit if Ms. Pac-Man is expected531

to eat a pill as result of the chosen control input uM , and is532

otherwise zero, i.e.,533

d[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= 1
1, if D[xM (k)] = 1.

(33)

A common strategy implemented by both human and artifi-534

cial players is to use power pills to ambush the ghosts. When535

utilizing this strategy, a player waits near a power pill until 536

the ghosts are near, it then eats the pill and pursues the ghosts 537

which have entered evasion mode. The reward associated with 538

each power pill can be modeled as a function of the minimum 539

distance between Ms. Pac-Man and each ghost G 540

ρG[xM (k)] � min |xM (k)− xG(k)| (34)

where | · | denotes the L1-norm. In order to take into account 541

the presence of the obstacles (walls), the minimum distance 542

in (34) is computed from the connectivity tree C obtained in 543

Section VI-A, using the A ∗ algorithm [53]. Then, letting ρD 544

denote the maximum distance at which Ms. Pac-Man should 545

eat a power pill, the power-pill reward can be written as 546

p[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= −1∑
G∈IG

g[x(k)], if D[xM (k)] = −1

(35)

where 547

g[xM (k),xG(k)] = ϑ− ×H{ρG[xM (k)]− ρD}
+ ϑ+ ×H{ρD − ρG[xM (k)]}. (36)

The parameters ϑ− and ϑ+ are the weights that represent the 548

desired tradeoff between the penalty and reward associated with 549

the power pill. 550

Because the set of admissible decisions for a ghost is a func- 551

tion of its position in the maze, the probability that a ghost 552

in evasion mode will transition to a state xG(k) from a state 553

xG(k − 1), denoted by P [xG(k)|xG(k − 1)], can be computed 554

from the cell decomposition (Fig. 8). Then, the instantaneous 555

reward for reaching (eating) a ghost G in evasion mode is 556

f [x(k),uM (k), z(k)]

=

{
0, if xG(k) �= xM (k)H[δG(k)−1]
P [xG(k)|xG(k−1)]ζ(k), if xG(k) = xM (k)

(37)

where δG(k) represents the mode of motion for ghost G 557

(Section IV), and the function 558

ζ(k) =

{
5−

∑
G∈IG

H[δG(k)− 1]

}2

(38)

is used to increase the reward quadratically with the number of 559

ghosts reached. 560

Like the ghosts, the bonus items are moving targets that, 561

when eaten, increase the game score. Unlike the ghosts, how- 562

ever, they never pursue Ms. Pac-Man, and, if uneaten after a 563

given period of time they simply leave the maze. Therefore, at 564

any time during the game, an attractive potential function 565

Ub(x) =

{
ρ2F (x), if ρF (x) ≤ ρb
0, if ρF (x) > ρb

, x ∈ Wfree (39)

can be used to pull Ms. Pac-Man toward the bonus item with a 566

virtual force 567

Fb(x) = −∇Ub(x) (40)
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that decreases with ρF . The distance ρF is defined by substitut-568

ing G with F in (34), ρb is a positive constant that represents569

the influence distance of the bonus item [53], and ∇ is the gra-570

dient operator. The instantaneous reward function for the bonus571

item is then defined such that the player is rewarded for moving572

toward the bonus item, i.e.,573

b [x(k),uM (k), z(k)] = sgn {Fb [xM (k)]} ◦ uM (k). (41)

The weight ωb in (32) is then chosen based on the type and574

value of the bonus item for the given game level.575

The instantaneous risk function is defined as the sum of the576

immediate risk posed by each of the four ghosts577

R [x(k),uM (k), z(k)] =
∑
G∈IG

RG [x(k),uM (k), z(k)] (42)

where the risk of each ghost RG depends on its mode of motion.578

In evasion mode (δG = 1), a ghost G poses no risk to Ms. Pac-579

Man, because it cannot capture her. In scatter mode (δG = 0),580

the risk associated with a ghost G is modeled using a repulsive581

potential function582

UG(x) =

{(
1

ρG(x) −
1
ρ0

)2

, if ρG(x) ≤ ρ0

0, if ρG(x) > ρ0
, x ∈ Wfree

(43)

that repels Ms. Pac-Man with a force583

FG(x) = −∇UG(x) (44)

ρ0 is the influence distance of Ms. Pac-Man, such that when Ms.584

Pac-Man is farther than ρ0 from a ghost, the ghost poses zero585

risk. When a ghost is in the ghost pen or otherwise inactive, its586

distance to Ms. Pac-Man is treated as infinite.587

The risk of a ghost in scatter mode is modeled such that Ms.588

Pac-Man is penalized for moving toward the ghost, i.e.,589

RG [x(k),uM (k), z(k)] = sgn {FG[xM (k)]} ◦ uM (k) (45)

for δG(k) = −1. In pursuit mode [δG(k) = 0], the ghosts are590

more aggressive and, thus, the instantaneous risk is modeled as591

the repulsive potential592

RG [x(k),uM (k), z(k)] = UG(x). (46)

Finally, the risk of being captured by a ghost is equal to a593

large positive constant χ defined by the user594

RG [x(k),uM (k), z(k)] = χ, for τ [xM (k)] = τ [xG(k)].
(47)

This emphasizes the risk of losing a life, which would cause595

the game to end sooner and the score to be significantly lower.596

Then the instantaneous profit function is a sum of the reward597

V and risk R598

J [uM (k)] = V [s(k),uM (k)] +R[x(k),uM (k), z(k)] (48)

which is evaluated at each node in a decision tree constructed599

using the cell decomposition method described above.600

C. Decision Tree and Optimal Strategy 601

As was first shown in [52], the connectivity tree G obtained 602

via cell decomposition in Section VI-A can be transformed into 603

a decision tree Ti that also includes action and utility nodes. 604

A decision tree is a directed acyclic graph with a tree-like 605

structure in which the root is the initial state, decision nodes 606

represent all possible decisions, and state (or chance) nodes 607

represent the state values resulting from each possible decision 608

[54]–[56]. Each branch in the tree represents the outcomes of a 609

possible strategy σi and terminates in leaf (or utility) node that 610

contains the value of the strategy’s cumulative profit Ji,f . 611

Let the tuple Ti = {C,D, J,A} represent a decision tree 612

comprising a set of chance nodes C, a set of decision nodes 613

D, the utility function J , and a set of directed arcs A. At any 614

time ti ∈ (t0, tF ], a decision tree Ti for Ms. Pac-Man can be 615

obtained from G using the following assignments. 616616

1) The root is the cell κi ∈ G occupied by Ms. Pac-Man at 617

time ti. 618

2) Every chance node κj ∈ C represents a cell in G. 619

3) For every cell κj ∈ C, a directed arc (κj , κl) ∈ A is 620

added iff ∃(κj , κl) ∈ G, j �= l. Then, (κj , κl) represents 621

the action decision to move from κj to κl. 622

4) The utility node at the end of each branch represents the 623

cumulative profit Ji,f of the corresponding strategy, σi, 624

defined in (4). 625

Using the above assignments, the instantaneous profit can be 626

computed for each node as the branches of the tree are grown 627

using Ms. Pac-Man’s profit function, presented in Section VI-B. 628

When the slice corresponding to tf is reached, the cumulative 629

profit Ji,f of each branch is found and assigned to its utility 630

node. Because the state of the game can change suddenly as 631

result of random ghost behavior, an exponential discount factor 632

is used to discount future profits in Ji,f , and favor the profit 633

that may be earned in the near future. From Ti, the optimal 634

strategy σ∗
i is determined by choosing the action corresponding 635

to the branch with the highest value of Ji,f . As explained in 636

Section III, a new decision tree is generated when tf is reached, 637

or when the state observations differ from the model prediction, 638

whichever occurs first. 639

VII. SIMULATION RESULTS 640

The simulation results presented in this paper are obtained 641

from the Microsoft’s Revenge of the Arcade software, which is 642

identical to the original arcade version of Ms. Pac-Man. The 643

results in Section VII-A validate the ghost models presented in 644

Section V, and the simulations in Section VII-B demonstrate 645

the effectiveness of the model-based artificial player presented 646

in Section VI. Every game simulated in this section is played 647

from beginning to end. The artificial player is coded in C#, 648

and runs in real time on a laptop with a Core-2 Duo 2.13-GHz 649

CPU, and 8-GB RAM. At every instant, indexed by k, the state 650

of the game s(k) is extracted from screen-capture images of 651

the game using the algorithm presented in [41]. Based on the 652

observed state value s(k), the control input to Ms. Pac-Man uM 653

is computed from the decision tree Ti, and implemented using 654

simulated keystrokes. Based on s(k), the tree Ti is updated at 655
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Fig. 9. Example of simulated and observed trajectories for the red ghost in pursuit mode.F9:1

Fig. 10. Example of ghost-state error histories, and model updates (diamonds).F10:1

selected instants ti ∈ (t0, tf ], as explained in Section VI-C. The656

highest recorded time to compute a decision was 0.09 s, and the657

mean times for the two most expensive steps of extracting the658

game state and computing the decision tree are on the order of659

0.015 and 0.05 s, respectively.660

A. Adversary Model Validation661

The models of the ghosts in pursuit mode, presented in662

Section V-B, are validated by comparing the trajectories of the663

ghosts extracted from the screen capture code to those gen-664

erated by integrating the models numerically using the same665

game conditions. When the ghosts are in other modes, their ran-666

dom decisions are assumed to be uniformly distributed [47].667

The ghosts’ state histories are extracted from screen-capture668

images while the game is being played by a human player.669

Subsequently, the ghost models are integrated using the trajec-670

tory of Ms. Pac-Man extracted during the same time interval.671

Fig. 9 shows an illustrative example of actual (solid line) and672

simulated (dashed line) trajectories for the red ghost, in which673

the model generated a path identical to that observed from the674

game. The small error between the two trajectories, in this case,675

is due entirely to the screen-capture algorithm.676

The ghosts’ models are validated by computing the percent-677

age of ghost states that are predicted correctly during simulated678

games. Because the ghosts only make decisions at maze inter-679

sections, the error in a ghost’s state is computed every time the680

ghost is at a distance of 10 pixels from an intersection. Then,681

the state is considered to be predicted correctly if the error682

between the observed and predicted values of the state is less683

than 8 pixels. If the error is larger than 8 pixels, the predic-684

tion is considered to be incorrect. When an incorrect prediction685

TABLE IV T4:1
GHOST MODEL VALIDATION RESULTS T4:2

occurs, the simulated ghost state xG is updated online using the 686

observed state value as an initial condition in the ghost dynamic 687

equation (17). Fig. 10 shows the error between simulated and 688

observed state histories for all four ghosts during a sample time 689

interval. 690

The errors in ghost model predictions were computed by 691

conducting game simulations until approximately 20 000 deci- 692

sions were obtained for each ghost. The results obtained from 693

these simulations are summarized in Table IV. In total, 79 705 694

ghost decisions were obtained, for an average model accuracy 695

(the ratio of successes to total trials) of 96.4%. As shown in 696

Table IV, the red ghost model is the least prone to errors, fol- 697

lowed by the pink ghost model, the blue ghost model, and, last, 698

the orange ghost model, which has the highest error rate. The 699

model errors are due to imprecisions when decoding the game 700

state from the observed game image, computation delay, miss- 701

ing state information (e.g., when ghost images overlap on the 702

screen), and imperfect timing by the player when making turns, 703

which has a small effect on Ms. Pac-Man’s speed, as explained 704

in Section II. 705
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Fig. 11. Time histories of game scores obtained by human and AI players.F11:1

Fig. 12. Player score distribution for 100 games.F12:1

The difference in the accuracy of different ghost models706

arises from the fact that the differential equations in (26)–(28)707

and (31) include different state variables and game parameters.708

For example, the pink ghost model has a higher error rate than709

the red ghost model because its target position yP is a func-710

tion of Ms. Pac-Man state and control input, and these variables711

are both susceptible to observation errors, while the red ghost712

model only depends on Ms. Pac-Man state. Thus, the pink ghost713

model is subject not only to observation errors in xM , which714

cause errors in the red ghost model, but also to observation715

errors in uM .716

B. Game Strategy Performance717

The artificial player strategies are computed using the718

approach described in Section VI, where the weighting coeffi-719

cients are ωV = 1, ωR = 0.4, ωd = 8, ωp = 3, ωf = 15, ωb =720

0.5, χ = 20 000, ϑ− = −2.2, and ϑ+ = 1, and are chosen721

by the user based on the desired tradeoff between the multi-722

ple conflicting objectives of Ms. Pac-Man [50]. The distance723

parameters are ρ0 = 150 pixels and ρb = 129 pixels, and are724

chosen by the user based on the desired distance of influence725

for ghost avoidance and bonus item, respectively [53]. The time726

histories of the scores during 100 games are plotted in Fig. 11,727

and the score distributions are shown in Fig. 12. The minimum,728

average, and maximum scores are summarized in Table V.729

TABLE V T5:1
PERFORMANCE RESULT SUMMARY OF AI AND HUMAN PLAYERS T5:2

From these results, it can be seen that the model-based arti- 730

ficial (AI) player presented in this paper outperforms most of 731

the computer players presented in the literature [8]–[14], which 732

display average scores between 9000 and 18 000 and maximum 733

scores between 20 000 and 36 280, where the highest score of 734

36 280 was achieved by the winner of the last Ms. Pac-Man 735

screen competition at the 2011 Conference on Computational 736

Intelligence and Games [14]. 737

Because expert human players routinely outperform com- 738

puter players and easily achieve scores over 65 000, the AI 739

player presented in this paper is also compared to human play- 740

ers of varying skill levels. The beginner player is someone 741

who has never played the game before, the intermediate player 742

has basic knowledge of the game and some prior experience, 743

and the advanced player has detailed knowledge of the game 744

mechanics, and has previously played many games. All players 745
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completed the 100 games over the course of a few weeks, dur-746

ing multiple sittings, and over time displayed the performance747

plotted in Fig. 11. From Table V, it can be seen that the AI748

player presented in this paper performs significantly better than749

both the beginner and intermediate players on average, with750

its highest score being 43 720. However, the advanced player751

outperforms the AI player on average, and has a much higher752

maximum score of 65 200.753

It can also be seen in Fig. 11 that the beginner and intermedi-754

ate players improve their scores over time, while the advanced755

player does not improve significantly. In particular, when a sim-756

ple least squares linear regression was performed on these game757

scores, the slope values were found to be 10.23 (advanced), 2.01758

(AI), 74.32 (intermediate), and 36.67 (beginner). Furthermore,759

a linear regression t-test aimed at determining whether the slope760

of the regression line differs significantly from zero with 95%761

confidence was applied to the data in Fig. 11, showing that762

while the intermediate and beginner scores increase over time,763

the AI and advanced scores display a slope that is not statisti-764

cally significantly different from zero (see [57] for a description765

of these methods). This suggests that beginner and intermediate766

players improve their performance more significantly by learn-767

ing from the game, while the advanced player may have already768

reached its maximum performance level.769

From detailed game data (not shown for brevity), it was770

found that human players are able to learn (or memorize) the771

first few levels of the game, and initially make fewer errors772

than the AI player. On the other hand, the AI player displays773

better performance than the human players later in the game,774

during high game levels when the game characters move faster,775

and the mazes become harder to navigate. These conditions776

force players to react and make decisions more quickly, and777

are found to be significantly more difficult by human players.778

Because the AI player can update its decision tree and strategy779

very frequently, the effects of game speed on the AI player’s780

performance are much smaller than on human players. Finally,781

although the model-based approach presented in this paper does782

not include learning, methods such as temporal difference [39]783

will be introduced in future work to further improve the AI784

player’s performance over time.785

VIII. CONCLUSION786

A model-based approach is presented for computing optimal787

decision strategies in the pursuit-evasion game Ms. Pac-Man.788

A model of the game and adversary dynamics are presented in789

the form of a decision tree that is updated over time. The deci-790

sion tree is derived by decomposing the game maze using a cell791

decomposition approach, and by defining the profit of future792

decisions based on adversary state predictions, and real-time793

state observations. Then, the optimal strategy is computed from794

the decision tree over a finite time horizon, and implemented795

by an artificial (AI) player in real time, using a screen-capture796

interface. Extensive game simulations are used to validate the797

models of the ghosts presented in this paper, and to demonstrate798

the effectiveness of the optimal game strategies obtained from799

the decision trees. The AI player is shown to outperform begin-800

ner and intermediate human players, and to achieve the highest801

score of 43 720. It is also shown that although an advanced 802

player outperforms the AI player, the AI player is better able to 803

handle high game levels, in which the speed of the characters 804

and spatial complexity of the mazes become more challenging. 805
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