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Adaptive Online Distributed Optimal Control of
Very-Large-Scale Robotic Systems

Pingping Zhu , Member, IEEE, Chang Liu , and Silvia Ferrari , Senior Member, IEEE

Abstract—Autonomous systems comprised of many co-
operative agents have the potential for enabling long-
duration tasks and data collection critical to the under-
standing of a wide range of phenomena in spatially and
temporally variable environments. The adaptive distributed
optimal control approach presented in this article ex-
tends online approximate dynamic programming to very-
large-scale robotics (VLSR) systems that must operate
and adapt to highly uncertain and variable environments.
Optimal mass transport theory is used to show that, in
the Wasserstein–Gaussian mixture model space, the VLSR
system’s cost to go can be represented by a value func-
tional of the robot distribution and dynamic environmental
maps. The approach is demonstrated on a cooperative path
planning problem in which knowledge of the obstacles in
the environment changes incrementally over time based
on in situ measurements. Numerical simulations show that
the proposed approach significantly outperforms existing
methods by finding an approximately optimal solution that
avoids obstacles and meets a desired final robot distribu-
tion using minimum energy.

Index Terms—Adaptive, cooperative, environmental
adaptation, multiagent reinforcement learning (MARL),
optimal control, path planning, very-large-scale robotic
(VLSR).

I. INTRODUCTION

W ITH THE advent of low-cost sensors and embedded
systems, very-large-scale robotic (VLSR) systems com-

prised of hundreds of autonomous robots are becoming a viable
solution for conducting long-duration autonomous tasks over
large regions of interest [1]. To date, significant progress has
been made on VLSR optimal control [2]–[5]; multiagent re-
inforcement learning (MARL) [6]–[13]; multiagent path plan-
ning [14], [15]; and swarm robotics [16]–[21] approaches. How-
ever, these and other VLSR methods assume that knowledge of
the environment is provided a priori. Therefore, the resulting
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planning and control laws may not be adaptable to changing in
situ conditions that autonomous robots are likely to encounter
when operating over a large region for long periods of time.

Online learning and replanning are typically too computation-
ally expensive due to the combinatorial nature of MARL [9].
In fact, even in known environments, optimal planning for N
cooperative robots has been shown to be PSPACE-hard [2].
Distributed optimal control (DOC) [3]–[5] and Nash certainty
equivalence (NCE) approaches [22], [23] overcome the scala-
bility issue by defining a macroscopic state, such as the robot
distribution or the robot mass, by virtue of a restriction op-
erator and accompanying consistency relationships mapping
robot kinodynamic equations onto a macroscopic evolution
equation. Although the computational burden is significantly
reduced [3]–[5], determining the optimal restriction operator
remains too time consuming for online adaptation in response
to in situ measurements. In VLSR long-duration applications
ranging from ocean robotics to space systems, robots operate in
the presence of significant uncertainties. At the same time, their
performance depends on environmental conditions that cannot
be accurately predicted a priori, thus requiring adaptation or
replanning subject to online measurements [1].

A model-free MARL approach based on mean field control
was recently proposed in [11] to address both scalability and
uncertainty issues by trial-and-error approximations of the value
function. Similarly to the DOC approach used in this article,
model-free MARL employs a macroscopic state represented
by the robot distribution or probability density function (PDF),
and a reward (or Lagrangian) function that depends both on
microscopic and macroscopic robot states. Then, the MARL
approach is cast as a Markov decision process on the Wasserstein
space of measures and implemented by learning a deterministic
control law offline. The microscopic robot control law is given
by a functional of the macroscopic and microscopic states.
However, by this approach only the social average reward can
be optimized and the robot decisions are myopic, namely, they
are based solely on the latest robot state and robot distribution.

This article presents new adaptive DOC (ADOC) theory for
VLSR systems that must operate optimally over time based on
in situ measurements that influence immediate and future coop-
erative sensing and navigation performance in highly uncertain
environments. The ADOC approach is assumed to be centralized
for simplicity but is applicable to a distributed system of robots
with a macroscopic evolution equation provided by a stochastic
differential equation (SDE), also known as distributed parameter
system [5]. Thus, the proposed ADOC approach can be viewed
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as a reinforcement learning-approximate dynamic programming
(RL-ADP) approach [24], [25] applicable to distributed parame-
ter systems for which environmental conditions must be learned
online.

The new ADOC theory presented in this article is based
on several key contributions. This article shows that when the
environmental information is changing over time, the system’s
cost to go cannot be expressed as a value function but requires
the use of a value functional. Then, the ADOC approach can be
formulated in a Wasserstein–Gaussian mixture model (GMM)
space using the optimal mass transport (OMT) theorem, by
assuming that the optimal time-varying robot distribution can
be learned and represented via GMMs. A fast ADOC online so-
lution is afforded by proving that the ADOC problem amounts to
solving a linear program in a subspace of the Wasserstein-GMM
space. The ADOC computational complexity, convergence, and
lower and upper bounds on the optimal value functional are also
derived in this article. The effectiveness of ADOC is demon-
strated on a VLSR obstacle avoidance problem, in which the
obstacles are sensed online. The numerical results show that the
ADOC approach significantly outperforms existing state-of-the-
art methods and scales up to VLSR systems with hundreds of
robots.

II. PROBLEM FORMULATION

Consider the problem of adaptively planning the trajectories
of a VLSR system comprised of N cooperative robots deployed
in a large obstacle-populated region of interest (ROI) W ⊂ R2.
Although the M obstacles, B1, . . . ,BM ⊂ W are unknown a
priori, an approximate map of the obstacle region B̂(t) is pro-
vided over time by sensors and mapping algorithms on-board the
N robots. At the initial time, t0, an obstacle map B̂0 = B̂(t0) is
provided based on prior information, and, thus, may be subject
to significant errors, potentially causing blocked passages and
narrow regions to be unknown a priori. Let the obstacle map
function (OMF) be defined as a binary time-varying function,
m(x, t) : W × R → {0, 1}, where 1 indicates that the position
x ∈ W is occupied by obstacles at time t, and 0 indicates that
it is unoccupied. Let M denote the space of all possible OMFs
in the ROI, such that m(·, t) ∈ M . In this article, the OMF is
obtained from a Hilbert occupancy map h(x, t) [26], as shown
in [27], such that

m(x, t) =

{
1, if h(x, t) > 0.5

0, otherwise
(1)

where h(·) provides the probability of obstacle occupancy.
The microscopic robot dynamics are modeled by a SDE

ẋi(t) = f [xi(t),ui(t), t] (2)

xi(t0) = xi0 , i = 1, . . ., N, (3)

wherexi ∈ W is the ith robot’s state or configuration,ui(t) ∈ U
is the ith robot’s control input, and xi0 is the ith robot’s initial
configuration. Also, it is assumed that the robot state is fully
observable and known with negligible errors.

All robots are equipped with identical omnidirectional range
sensors that allow them to update the OMF based on in situ
measurements. The field of view (FOV) of the ith range sensor,
denoted by Si(t) ⊂ W , is represented by a circle of radius r
centered at xi(t). Then, the region covered by the sensors at
time t can be represented by S(t) = ∪N

i=1Si(t). Assuming con-
nectivity and information sharing, obstacle presence at position
x ∈ W is observed and updated at time t if and only if x ∈ S(t).

Let the VLSR macroscopic state be represented by a PDF,
℘(x, t) ∈ P(W), where P(W) is the space of PDFs with
support W [3]–[5]. Then, the VLSR system performance over
a time interval [t0, tf ] can be expressed by an integral cost
function

J [℘(x, t)] = φ[℘(tf ), ℘f ] +

∫ tf

t0

L [℘(x, t),m(x, t)]dt (4)

representing the cost required for the robots to move from a given
initial distribution℘0 at time t0 to a desired distribution℘f at tf .
The functionalsφ[℘(tf ), ℘f ] andL [℘(x, t),m(x, t)]denote the
terminal cost and the instantaneous cost or “Lagrangian,” respec-
tively. Because the VLSR system’s performance depends on the
changing obstacle map, m(·, ·), the Lagrangian is a functional
of the OMF for all t ∈ [t0, tf ]. The result is a new ADP problem
in which the functional structure of the Lagrangian is unknown
and must be learned from the range-sensor measurements over
time.

III. ADAPTIVE DOC APPROACH

Because sensor measurements become available at discrete
sampling times and must be fused to obtain the OMF, the DOC
problem is first discretized with respect to time. Let �t denote
the time required to obtain and process the obstacle measure-
ments, such that the time interval [t0, tf ] can be discretized
into Tf = (tf − t0)/�t time steps, indexed by tk = t0 + k�t,
where k = 1, . . . , Tf . The robot dynamics in (2) can be dis-
cretized and reformulated as

xk+1,i = xk,i + ẋk,iΔt, i = 1, . . . , N (5)

ẋk,i = f [xk,i,uk,i] (6)

where xk,i = xi(tk) and uk,i = ui(tk). Then, the macroscopic
cost function (4) can be approximated by

J(℘0:Tf
) � φ(℘Tf

, ℘f ) +

Tf−1∑
k=0

L (℘k,mk) (7)

where ℘0:Tf
= [℘0 · · ·℘Tf

], ℘k = ℘(·, tk) and mk = m(·, tk).
Because the OMF is time-varying and unknown for future

times, the cost function (7) cannot be optimized with respect
to the robot distribution using existing approaches [3]–[5]. An
online optimization approach for this new class of finite horizon
ADP problems is developed here by reformulating the objective
function as follows:

J(℘0:T ) = φ(℘Tf
, ℘f ) +

Tf−1∑
k=0

L [℘k,mk, C(℘k,mk)] (8)
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where C : P × M �→ P is the control law functional, and

℘k+1 = C(℘k,mk). (9)

In the rest of this article, C(℘k,mk) is abbreviated by Ck, and
L [℘k,mk, C(℘k,mk)] is abbreviated by L (℘k,mk, Ck).

Because the VLSR goal is to reach ℘f by time tf , there exists
at least one terminal macroscopic state℘T ∈ P that is cost-free,
and, thus, can be absorbed in the state for all k > T , such that
L (℘T ,mk, Ck) = 0 and C(℘T ,mk) = ℘T when ℘T = ℘f , or
when the distance between ℘T and ℘f is less than a user-defined
threshold. Then, the VLSR control problem can be assumed to
terminate upon reaching ℘T at time T ≤ Tf .

Unlike traditional ADP problems [24], [25], the control law
functional in (9) depends on the OMF, for which there exists
no evolution or dynamic equation because it is updated based
on exogenous measurements obtained by the robots over time.
Then, it is assumed the latest map mk is the best estimate of the
obstacle layout available at time tk. Without loss of generality,
the (1× T ) vector of OMFs, Mk = [m0 · · ·mk−1 mk · · ·mk],
is used to represent the map history. If and when an environ-
mental prediction model is available, the method can be easily
applied by modifying the definition of Mk.

A. ADOC Value Functional

The goal of the discrete-time ADOC approach is to learn the
optimal control law functional, C∗

k : P �→ P , online at every
kth time step based on the OMF, mk. Then, the optimal and
nonmyopic policy associated with Mk can be expressed by the
vector of functionals

Π∗
k � [C∗

0 · · · C∗
k−1 C∗

k · · · C∗
k] (10)

and must be determined over time so as to minimize (8). By
optimizing the policy subject to the robot kinodynamics (6),
reachability is guaranteed and the optimal robot distribution,
℘∗
k+1, can be realized by the robots using the microscopic control

described in Section VI-A.
Given a map and policy, Mk and Πk, at time step k, the

ADOC value functional is defined as

V(℘l, l |Mk,Πk, k)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ(℘T , ℘f ) +

∑k−1
τ=l L (℘τ ,Mk(τ), Cτ )

+
∑T−1

τ=k L (℘τ ,Mk(τ), Ck), 0 ≤ l < k

φ(℘T , ℘f ) +
∑T−1

τ=l L (℘τ ,Mk(τ), Ck), k ≤ l < T

φ(℘T , ℘f ), l = T

(11)

and is abbreviated by Vk(℘l,Mk, Ck) hereon. Then, from (8),
it can be shown that J(℘0:T ) = VT−1(℘0,MT−1). The ADOC
cost-to-go estimate or “Q-functional” is defined as

Qk(℘l,Mk, ℘l+1) � L (℘l,Mk(l), ℘l+1) + Vk(℘l+1,Mk)
(12)

and minimized as explained in the next subsection.

B. ADOC Optimal Control Law Functional

Learning a functional operator online is computationally chal-
lenging [28], [29], and, in this article, it is approached using
the critic-only Q-learning (CoQL) method developed in [30].
Applying Bellman’s equation to the ADOC value- and Q-
functionals introduced in the previous subsection, the optimal
Q-function can be obtained as follows:

Q∗
k(℘l,Mk, ℘

∗
l+1) = min

℘l+1

[L (℘l,mk, ℘l+1) + V∗
k(℘l+1,Mk)]

for any k ≤ l < T , where V∗
k(℘l+1,Mk) is the abbreviation

of the optimal value functional, V∗
k(℘l+1,Mk, C∗

k). Then, the
optimal robot distribution can be obtained by solving the opti-
mization problem

℘∗
k+1 = argmin

℘k+1

[Q∗
k(℘k,Mk, ℘k+1)]

= argmin
℘k+1

[L (℘k,mk, ℘k+1) + V∗
k(℘k+1,Mk)] . (13)

IV. BACKGROUND ON OPTIMAL MASS TRANSPORT

An efficient approach for the online optimization of the
ADOC Q-function is developed by measuring the cost of the
VLSR-distribution evolution using OMT theory [31], [32].
When compared to other approaches for measuring information
divergence, such as the Kullback–Leibler (KL) divergence or
the Cauchy–Schwarz (CS) divergence, OMT affords significant
computational savings and also provides important metric prop-
erties [32].

Let ℘1, ℘2 ∈ P(W) denote two PDFs with support W , and
let Π(℘1, ℘2) ⊂ P(W ×W) denote the set of all joint PDFs
characterized by marginals measures along the two coordinate
directions that coincide with ℘1 and ℘2, respectively, and such
that

Π(℘1, ℘2) �
{
π ∈ P(W ×W)

∫
x2∈W

π(·,x2)dx2 = ℘1, and
∫
x1∈W

π(x1, ·)dx1 = ℘2

}
.

(14)

Then, the Wasserstein metric is defined as

W2(℘1, ℘2) �
[

inf
π∈Π(℘1,℘2)

∫
W×W

‖x1 − x2‖2dπ(x1,x2)

]1/2
(15)

where ‖ · ‖ is the Euclidean distance [31], and can be shown
finite provided the second moments of ℘1 and ℘2 exist [33].

Furthermore, if both of the marginals ℘1 ∼ N (μ1,Σ1) and
℘2 ∼ N (μ2,Σ2) are Gaussian distributions, the Wasserstein
metric can be expressed as

W2(℘1, ℘2) =

{
‖μ1 − μ2‖2

+ tr

[
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
]}1/2

(16)
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where tr[·] denotes the trace of a matrix [32].
Although the Wasserstein metric of two Gaussian distribu-

tions can be obtained in closed form, there is no efficient
representation for general distributions [34]. Recently in [32],
a new metric in the space of all GMMs, G(W), referred to as
Wasserstein-GMM (WG) metric, and defined as

d(℘1, ℘2) �
{

min
π∈Π(ω1,ω2)

N1∑
ı=1

N2∑
j=1

[W2(g
ı
1, g

j
2)]

2π(ı, j)

}1/2

(17)
was proposed as an efficient approximation to the Wasserstein
metric for any two distributions ℘1, ℘2 ∈ G(W), where gı1
and gj2 are corresponding Gaussian mixture components with
weights ω1 and ω2, respectively. Then, Π(ω1,ω2) can be used
to denote the space of joint GMMs, referred to as Wasserstein-
GMM space.

V. ADOC SOLUTION IN WASSERSTEIN-GMM SPACE

Hereon, let the Wasserstein metric W2(℘k, ℘k+1) represent
the distance between two robot PDFs, ℘k and ℘k+1. For a fixed
time interval, �t, W2(℘k, ℘k+1) is proportional to the PDF
velocity

νk � W2(℘k, ℘k+1)

�t
(18)

and it can be shown that the following proportionalities hold:
Ek ∝ (νk)

2 ∝ [W2(℘k, ℘k+1)]
2, where Ek is the energy re-

quired to move from ℘k to ℘k+1. Then, the WG metric in (17)
can be adopted as the energy cost in the Lagrangian, provided
the robot distributions obey the following assumption.

Assumption 1: Assume that within an acceptable error the
optimal robot distribution can be approximated by GMMs, such
that

℘k =

Nk∑
ı=1

ωı
kg

ı
k, k = 0, . . . , T (19)

℘f =

L∑
j=1

ωj
fg

j
f (20)

where Nk and L are the numbers of Gaussian components gık
and gjf with means μı

k and μj
f , and covariance matrices Σı

k and

Σj
f , respectively.
Considering the kernel density estimation (KDE) with Gaus-

sian kernels as a special case of GMM [35], choose Nk ≤ N ,
where a relatively small number of Gaussian components is
typically required in practice to represent useful robot distri-
butions, and, thus, Nk  N . Now, let gk � [g1k · · · gNk

k ] and
gf � [g1f · · · gLf ] denote vectors of Gaussian components that
are used to approximate the robot time-varying and final PDFs,
respectively, by means of corresponding GMM weight vectors
ωk � [ω1

k · · ·ωNk

k ] and ωf � [ω1
f · · ·ωL

f ], respectively. Then,
℘k and ℘f are fully specified by the tuples of parameters
Θk = (Nk, gk,ωk) and Θf = (L, gf ,ωf ). It also follows that

the control law functional can be expressed as

Ck+1 =

Nk+1∑
j=1

ωj
k+1g

j
k+1 =

Nk∑
ı=1

Nk+1∑
j=1

πk(ı, j)g
j
k+1 (21)

where πk ∈ Π(ωk,ωk+1) is the joint probability distribution
and, given ℘k and mk, the control law is fully specified by the
tuple of parameters, Φk = (Nk+1, gk+1, πk).

The VLSR performance is represented by an integral cost
function of the robot PDF in the form (8), derived as follows.
First, the distance between two GMM PDFs ℘k and ℘k+1 is
defined as

d̃(℘k,mk, Ck) �
{ Nk∑

ı=1

Nk+1∑
j=1

[W2(g
ı
k, g

j
k+1)]

2πk(ı, j)

}1/2

and is minimized to obtain the WG metric

d(℘k, ℘k+1) = min
πk

[d̃(℘k,mk, Ck)]. (22)

Second, knowledge of the OMF can be used for obstacles
avoidance by minimizing its inner product with ℘k+1, such that
the Lagrangian is defined as

L (℘k,mk, Ck) = [d̃(℘k,mk, Ck)]2 + 〈Ck,mk〉W (23)

where 〈·, ·〉W is the inner product over W , and Ck = ℘k+1.
The VLSR performance at the final time depends on the robot

distance to the desired PDF,℘f , and is expressed by the terminal
cost

φ[℘(tf ), ℘f ] = φ(℘T , ℘f ) � [d(℘T , ℘f )]
2. (24)

Then, the VLSR integral cost function can be rewritten as

J � [d(℘T , ℘f )]
2 +

T−1∑
k=0

{
[d̃(℘k,mk, Ck)]2 + 〈℘k+1,mk〉W

}

and, from (11), the ADOC value functional is given by

Vk(℘k,Mk, Ck) = L (℘k,mk, Ck) + Vk(℘k+1,Mk, Ck).
(25)

A. ADOC Value Functional Approximation

As in classical RL-ADP approaches [24], [25], the optimal
cost to go, V∗

k(℘k+1,Mk) in the recurrence relationship (13)
is unknown and must be approximated over time. In particular,
the approximation is obtained here by using an upper bound
on the optimal value functional so as to derive convergence
guarantees (Section VII). Consider an approximate control law,
C̃k(℘τ ,mk) : P �→ P , obtained by holding the number of
Gaussian components (Nτ ) fixed, such that

Nτ+1 = Nτ (26)

πτ (ı, j) =

{
ωı
τ , if ı = j

0, otherwise
, ı, j = 1, . . . , Nτ (27)

℘τ+1 = C̃k(℘τ ,mk) ∀τ : k + 1 ≤ τ ≤ T − 1. (28)

Authorized licensed use limited to: Cornell University Library. Downloaded on March 10,2022 at 22:36:22 UTC from IEEE Xplore.  Restrictions apply. 



682 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 2, JUNE 2021

By recursively applying the approximate control law, the evolu-
tion of the robot PDF can be generated as follows:

℘τ =

Nk+1∑
j=1

ωj
k+1g

j
τ , τ = k + 1, . . . , T (29)

according to the Nk+1 trajectories of the Gaussian components.
Next, consider the L Gaussian components of the desired

goal PDF ℘f , denoted by the set {gjf}Lj=1. There are Nk+1 × L
trajectories of Gaussian components that are characterized by
the minimum cost function

L̃j,j
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
{
[W2(g

j
T , g

j
f )]

2

+
∑T−1

τ=k+1[W2(g
j
τ , g

j
τ+1)]

2 if k + 1 < T

+
∑T−1

τ=k+1〈gjτ+1,mk〉
}

[W2(g
j
T , g

j
f )]

2
, if k + 1 = T

(30)

and are indexed by j and j at the kth time step. Then, an upper
bound on the optimal ADOC value functional is provided by the
following theorem.

Theorem 1 (Upper bound of optimal value functional):
Given ℘k+1 and ℘f defined in (19) and (20), respectively,
there exists an upper bound of the optimal value func-
tional V∗

k(℘k+1,Mk), which is denoted by Ṽk(℘k+1,Mk) =

Vk(℘k+1,Mk, C̃k), such that

V∗
k(℘k+1,Mk) ≤ Ṽk(℘k+1,Mk) �

Nk+1∑
j=1

L∑
j=1

L̃j,j
k π̃k(j, j)

(31)
where π̃k(j, j) ∈ Π(ωk+1,ωf ) is the robot joint PDF.

The proof of Theorem 1 is provided in Appendix A. Hereon,
the upper bound in (31) is used to approximate the optimal value
functional V∗

k(℘k+1,Mk).

B. Optimal ADOC Control Law

From (13), (25), and (31), the optimal control law functional
at time k is given by

C∗
k ≈ argmin

Ck

[
L (℘k,mk, Ck) + Ṽk(℘k+1,Mk)

]

= argmin
Ck

{
[d̃(℘k,mk, Ck)]2 + 〈Ck,mk〉W

+

Nk+1∑
j=1

L∑
j=1

L̃j,j
k π̃k(j, j)

}
(32)

which amounts to a calculus of variations problem. However,
because the control law functional is parameterized by the tuple
Φk, the optimal control functional can be approximated by
means of the optimal parameters

Φ∗
k = argmin

Φk

{ Nk∑
ı=1

Nk+1∑
j=1

[W2(g
ı
k, g

j
k+1)]

2 πk(ı, j)

+

Nk∑
ı=1

Nk+1∑
j=1

〈gjk+1,mk〉W πk(ı, j)+

Nk+1∑
j=1

L∑
j=1

L̃j,j
k π̃k(j, j)

}

(33)

where the upper bound in (31) is used to approximate the optimal
value functional.

Imposing the following constraints on the GMM weights:

ωı
k =

Nk+1∑
j=1

πk(ı, j), ωj
f =

Nk+1∑
j=1

π̃k(j, j) (34)

ωj
k+1 =

Nk∑
ı=1

πk(ı, j) =
L∑

j=1

π̃k(j, j) (35)

the optimization problem in (33) can be rewritten as

Φ∗
k = argmin

Φk

Nk+1∑
j=1

[ Nk∑
ı=1

Lı,j
k πk(ı, j) +

L∑
j=1

L̃j,j
k π̃k(j, j)

]

(36)

where the energy cost associated with the motion of the Gaussian
components with respect to the OMF is

Lı,j
k = [W2(g

ı
k, g

j
k+1)]

2 + 〈gjk+1,mk〉W . (37)

From Φ∗
k, the optimal robot PDF, ℘∗

k+1, is approximated by
marginalizing over the approximate joint distribution π̂∗

k.
Substituting ℘̂∗

k+1, in (23), the Lagrangian can be expressed
as a function of the WG metric between ℘k and ℘̂∗

k+1

L (℘k,mk, Ĉ∗
k) = [d̃(℘k,mk, Ĉ∗

k)]
2 + 〈Ĉ∗

k(℘k,mk),mk〉W
= [d(℘k, ℘̂

∗
k+1)]

2 + 〈℘̂∗
k+1,mk〉W (38)

and the velocity of the robot PDF in (18) can be approximated
using the WG metric

νk ≈ d(℘k, ℘̂
∗
k+1)

Δt
(39)

and the Lagrangian accounts for the energy consumption Ek.

VI. ADOC NUMERICAL IMPLEMENTATION

An efficient ADOC numerical solution, applicable to online
adaptation by the VLSR system, is presented in this section
under the following assumption.

Assumption 2: The set of Gaussian components in (19)
is a subset of the union set of collocation Gaussian compo-
nents GC = {gjc}Kj=1 and desired Gaussian components Gf =

{gjf}Lj=1

{gjτ}Nτ
j=1 ⊆ G, where G � GC ∪Gf (40)

provided k + 1 ≤ τ ≤ T .
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Based on the assumption above, ℘τ belongs to the subspace
of the GMM defined as

G̃(W, G) �
{
℘

∣∣∣∣ ℘ =

L+K∑
j=1

ωjgj,

L+K∑
j=1

ωj = 1,

0 ≤ ωj ≤ 1, gj ∈ G, j = 1, . . . , L+K

}
(41)

where K is number of collocation components, and, thus,
Nk+1 = L+K. Then, the metricW2 in (37) and (30) can be cal-
culated in advance and, since gjτ ∈ G for all τ = k + 1, . . . , T ,
the nonlinear program (NLP) in (30) can be solved using a
shortest-path algorithm on a nonnegative weighted directed
graph [36], [37]. At every time step k, the directed graph,
G = (G, E), is formed by assigning a node to each Gaussian
component in G, and by connecting all the nodes pairwise using
a set of edges E . The costs associated with the edges are defined
in terms of the OMF, such that

cı,j =

{
[W2(g

ı, gj)]2 + 〈gj,mk〉W if gj /∈ Gf

[W2(g
ı, gj)]2 if gj ∈ Gf .

(42)

Then, a shortest path of length of L̃j,j
k in (30) can be found that

connects node gjk+1 to gjf .
From (36), the optimal control law functional can be approx-

imated by solving the following optimization problem:

π̂∗
k = argmin

πk

L+K∑
j=1

[ Nk∑
ı=1

Lı,j
k πk(ı, j) +

L∑
j=1

L̃j,j
k π̃k(j, j)

]

(43)

and the optimal robot PDF can be approximated by

℘̂∗
k+1 =

Nk∑
ı=1

⎡
⎣ K∑

j=1

π̂∗
k(ı, j)g

j
c +

L∑
j=1

π̂∗
k(ı, j +K)gjf

⎤
⎦

=
K∑
j=1

(ω̂j
k+1)

∗gjc +
L∑

j=1

(ω̂j+K
k+1 )∗gjf (44)

where the joint probability constraint (35) is applied. Also, for
known costs of the Gaussian components motion, Lı,j

k and L̃j,j
k

(for all ı, j, j, and k), the approximation of the optimal value
functional only depends on πk and π̃k and the optimal control
functional can be determined using LP algorithms.

From (44), ℘̂k+1, is fully specified by L+K weights, many
of which are equal to zero or small in magnitude. Therefore,
the computational complexity can be significantly reduced by
neglecting Gaussian components with weights below a user-
specified threshold, and only the remaining components are
normalized to approximate the optimal robot PDF.

The computational complexity of the algorithm for approx-
imating the ADOC control law (analyzed in Section VII and
shown in Table II) can be further reduced for online implemen-
tation by adopting the following assumption.

Assumption 3: The Gaussian components used to approxi-
mate the control law ℘τ+1 = Ck(℘τ ), at every time step τ =

TABLE I
PERFORMANCE COMPARISON

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON

k, . . . , T − 1, are characterized by a transportation distance
below a user-defined positive threshold, dth, such that

E = {eı,j|gı, gj ∈ G and W2(g
ı, gj) < dth} (45)

and

πτ (ı, j) = 0 if W2(g
ı
τ , g

j
τ+1) > dth

ı = 1, . . . , Nτ , and j = 1, . . . , L+K (46)

where the joint probability πτ is an Nτ × (L+K) matrix, and
gıτ and gjτ+1 are the Gaussian components approximating the
robot PDF at consecutive times τ and (τ + 1), respectively.

Now, let the index set of the Gaussian components used in the
control law approximation be denoted by

Iı
τ = {j|j ∈ I, gj ∈ G, and W2(g

ı
τ , g

j) ≤ dth} ⊂ I (47)

where I = {1, . . . , L+K} is the index set of all components
in G. Then, from Assumption 3, (43) can be rewritten as

π̂∗
k = argmin

πk

Nk∑
ı=1

L∑
j=1

{∑
j∈Iı

k

[
Lı,j
k πk(ı, j) + L̃j,j

k π̃k(j, j)

]}

(48)

where

πk(ı, j) = 0, ı = 1, . . . , Nk and j /∈ Iı
k (49)

π̃k(j, j) = 0, j = 1, . . . , L and j ∈ IC
k (50)

and

IC
k = {j|j ∈ I and j /∈ Ik}, Ik � ∪Nk

ı=1Iı
k (51)

such that (34)–(35) are satisfied. As a result, the LP in (48) can
be solved using only |Ik| × L shortest-paths, where “| · |” is the
cardinality operator.

Because the robot PDF velocity (39) depends on the colloca-
tion Gaussian components, the distance between two sequential
robot distributions is divided evenly by a user-defined interval,
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D, and other robot distributions are obtained via interpolation.
In particular, let the PDF distance d(℘k, ℘̂

∗
k+Tk

) be divided into
Tk = �d(℘k, ℘̂

∗
k+Tk

)/D� intervals, where “�·�” is the ceiling
operator. Then, (Tk − 1) robot PDFs are can be obtained via
interpolation between each pair of Gaussian components, gık and
gjk+Tk

, ı = 1, . . . , Nk and j = 1, . . . , Nk+Tk
, as shown in [32],

and the robot PDF velocity can be approximated by

ντ ≈ d(℘k, ℘̂
∗
k+Tk

)

Tk ·Δt
≈ D

Δt
� v̄, k ≤ τ ≤ k + Tk. (52)

Then, the robot PDFs travel with a relatively smooth velocity
field and when D  d(℘k, ℘̂

∗
k+Tk

) the PDF velocity can be
treated as a constant.

Furthermore, considering that there are Tk time steps from℘k

to ℘̂∗
k+Tk

, the costs associated with the edges in (42) is modified
as

cı,j =

⎧⎪⎨
⎪⎩
[W2(g

ı, gj)]2 + 〈gj,mk〉W
+
∑Tk−1

n=1 〈gnı,j,mk〉W if gj /∈ Gf

[W2(g
ı, gj)]2 if gj ∈ Gf

where gnı,j, n = 1, . . . , Tk − 1, are obtained via interpolation
between gı and gj ∈ G.

A. Optimal Robot Control Law

Once the optimal evolution of the VLSR macroscopic state,
represented here by the time-varying robot PDF, is obtained
at a time step k, it can be used by each robot to compute
a local optimal control law. For cooperative robots, the opti-
mal PDF depends on the robot relative positions, and, thus,
each robot control law also depends on the positions of other
robots in the system. A centralized artificial potential field
(APF) approach is adopted here that computes the microscopic
robot control inputs for all N robots, represented by the vector
Uk = [uT

k,1 · · ·uT
k,N ]T , so as to meet the desired PDF ℘̂∗

k+1 at
the next time step, based on the observed robot microscopic
states Xk = [xT

k,1 · · ·xT
k,N ]T .

The attractive potential designed to “push” the robots toward
the desired PDF is given by

Uatt =

∫
W

[
℘̂∗
k+1(x)− γ℘̃k+1(x;Xk,Uk)

]2
dx (53)

where ℘̃k+1(·) is the predicted robot PDF at time (k + 1)
conditioned on the observed robots’ positions and controls (Xk

and Uk). γ is a scalar parameter that determines the scattering
strength of the robots chosen, such that 0 < γ ≤ 1. The KDE
method can be used to estimate the robot PDF at the present time
(k) based on the VLSR observed position vector Xk [4], [5].

The repulsive potential is designed to “pull” the robots away
from obstacles and from each other, in order to avoid collisions.
Let ρi denote the minimum Euclidian distance between the robot
position xk,i and the obstacle region B̂(k) estimated from the
latest OMF, mk. Then, the repulsive obstacle potential for the
ith robot is

U i
obs =

1

2

(
1

ρi
− 1

�

)2

· 1(ρi, �)

where � is a distance threshold used to create a region of
influence within which obstacles repel robots, and 1(ρi, �) is
an indicator function that equals one if ρi ≤ �, and equals
zero otherwise. Also, let ρi,� = ‖xk+1,i − xk+1,�‖ represent the
distance between predicted robot positions xk+1,i and xk+1,�

(i �= �). Then, a repulsive potential between robots is obtained
as follows:

U i,�
rob =

1

2

(
1

ρi,�
− 1

ϕ

)2

· 1(ρi,�, ϕ) (54)

where ϕ is a distance threshold used to create a region of
influence within which each robot repels other robots.

Then, the total VLSR potential field can be obtained from a
weighted combination of the attractive and repulsive potentials

U = w1 · Uatt + w2 · Urep (55)

where w1 and w2 are user-defined weights representing the
desired tradeoff between attractive and repulsive objectives, and

Urep =

N∑
i=1

U i
obs +

∑
1≤i�=�≤N

U i,�
rob. (56)

Once the potential field in (55) is determined from the desired
robot PDF, the robot control inputs at time k are computed
according to the (microscopic) control law

uk,i = − ∂U

∂uk,i
, i = 1, . . . , N (57)

which is designed to minimize the potential function U by a
local gradient-based approach, summarized in Algorithm 1.

VII. ADOC ALGORITHM ANALYSIS

The ADOC approach is designed based on a novel value
functional defined in (11), where the policy is updated at each
time step, indexed by k. Because the ADOC solution is obtained
online, the optimal policy Π∗

k is obtained incrementally by
minimizing the value functional in (11) with respect to Ck, where
the control law history Π∗

k−1 is given. This observation, along
with the results in the previous section, is used to find a lower
bound on the optimal value functional according to the following
theorem.

Theorem 2 (Lower bound on optimal value functional):
Given the OMF Mk at the kth time step, the optimal value
functional V∗

k(℘l,Mk) provides a lower bound for all optimal
value functionals obtained during previous time steps, such that

V∗
k(℘l,Mk) ≤ V∗

q(℘l,Mk), 0 ≤ q ≤ k and 0 ≤ l ≤ T

for all ℘l ∈ P(W).
The proof of Theorem 2 is provided in Appendix B.
Now, let

J̃(Πk) � Vk(℘0,MT−1), 0 ≤ k < T (58)

denote the ADOC cost function associated with Πk given ℘0

and MT−1. From (8), it can be shown that

J(℘0:T ) = J̃(ΠT−1) = VT−1(℘0,MT−1) (59)
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Algorithm 1: ADOC Numerical Implementation.
Initialization:
Initialize the set of K collocation Gaussian components,
GC

Construct the directed graph G = (G, E)
Let Tk = 0, l = 0, and k = 0
Procedure:

1: while (k ≤ T ) and (℘k �= ℘f ) do
2: Update mk using environmental observations
3: if l == Tk then
4: Compute ∪Nk

ı=1{Lı,j
k |j ∈ Iı

k} from (37)
5: Update G according to (53)
6: Compute {L̃j,j

k |j ∈ Ik and j = 1, . . . , L} by
finding shortest path in G

7: Obtain π̂∗
k by solving the LP problem in (48)

8: Approximate ℘̂∗
k+Tk

from π̂∗
k according to (44)

9: Let Tk = �d(℘k, ℘̂
∗
k+Tk

)/D�
10: l = 0
11: Generate robot PDFs by interpolating between ℘k

and ℘̂∗
k+Tk

12: end if
13: Update the interpolation offset step, l = l + 1
14: Update the next robot PDF, ℘̂∗

k+1

15: Generate Uk according to (57)
16: Update Xk+1 according to (5) and (6)
17: Update time step, k = k + 1
18: end while

and that the ADOC cost function associated with Π∗
k for

0 ≤ k < T converges to an upper bound of the minimum cost
function J(℘∗

0:T ), as stated in the following corollary.
Corollary 2.1: For any two ADOC optimal policies, Π∗

k

andΠ∗
q , where 0 ≤ q ≤ k ≤ (T − 1), the following inequalities

hold:

J(℘∗
0:T ) ≤ J̃(Π∗

T−1) ≤ J̃(Π∗
k) ≤ J̃(Π∗

q) (60)

and, thus, it follows that the optimal ADOC cost function J̃(Π∗
k)

converges monotonically to J̃(Π∗
T−1), which is an upper bound

of the optimal cost function.
Corollary 2.1 can be easily proven from (58) and Theorem 2,

by applying the optimal control law functional in (13). J(℘∗
0:T )

is obtained by minimizing (8) with respect to ℘0:T , while the
policy Π∗

k is improved incrementally by updating only one
control law functional at every time step, up to time (T − 1).
Hence, Π∗

T−1 is a suboptimal solution.
Furthermore, the ADOC approach relies on approximating

the upper bound of the value functional (Theorem 1). The
optimal control law is approximated at each time step by solving
(36). To reduce the computational complexity and obtain a
tractable solution, the upper bound of the value functional is
calculated only once per OMF, and is not updated iteratively as
in conventional ADP approaches. Finally, the performance of
the ADOC approach also depends on the choice of collocation
Gaussian components. Although the uniform grid adopted in this

Fig. 1. VLSR system must travel from the initial robot distribution in
(a) to the goal robot distribution in (b) avoiding obstacles sensed in situ,
starting with the initial OMF (c) and learning the actual OMF (d) online.

Fig. 2. Evolution of robot PDF optimized by ADOC, shown at four
sample moments in time, where the gray regions represent the obstacle
map updated online based on onboard sensor measurements.

article provides good performance, adaptive and multiresolution
methods will be the subject of future research.

VIII. SIMULATIONS AND RESULTS

The effectiveness of the ADOC approach is demonstrated on
a VLSR system comprised of N = 500 mobile robots charac-
terized by single-integrator dynamics

ẋi(t) = ui(t), xi(t0) = xi0 , i = 1, . . . , N (61)

where xi = [xi yi]
T is the robot position, xi and yi are the

robot xy-coordinates in inertial frame, and the control input
ui is a vector of linear velocities in the x- and y-directions.
The VLSR system must travel from a given initial distribution
℘0 =

∑Q
ı=1 ω

ı
0g

ı
0 to a desired distribution ℘f =

∑L
j=1 ω

j
fg

j

while avoiding collisions with partially unknown or uncertain
obstacles in the ROI, W = [0,W ]× [0, H], where Q = 4, L =
3, W = 20 km, and H = 16 km.

The initial and desired robot PDFs are shown in Fig. 1(a) and
(b), respectively. At the initial time t0, 500 robots characterized
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Fig. 3. Robot trajectories and final positions (diamonds) obtained by
(a) ADOC, (b) PDF-APF, (c) SAPF, and (d) SPP, for the same set of
initial positions (circles), and the same time-varying OMF (grey region).

by the distribution ℘0 [Fig. 3(a)] begin traveling through the
ROI based on the OMF shown in Fig. 1(c). The actual obstacle
region, shown in Fig. 1(d) is not yet available to them and,
for example, the robots are unaware of the blocked passage
in the upper-right corner of the ROI. Using an onboard range
sensor characterized by an FOV with r = 1 km, the robots are
able to update their knowledge of the obstacles and fuse their
measurements to update the OMF incrementally over time.

An online ADOC solution to this VLSR path planning prob-
lem is obtained by using the set of K collocation Gaussian
components

Gc =

{
gc = N (μ,Σ)

∣∣∣μ = [ξ − 0.5, ζ − 0.5]km

for ξ = 1, 2, . . . ,W and ζ = 1, 2, . . . , H

and Σ =

[
0.5 0

0 0.5

]
km2

}
. (62)

The component distance threshold is chosen as dth = 4 km, and
time is discretized using an interval Δt = 0.01 hr. A relatively
constant distribution velocity in (52) is obtained by letting D =
0.05 km. Finally, the individual (microscopic) control law is
obtained by constructing attractive and repulsive potentials with
user-defined parametersγ = 0.85,� = 0.3 km, andϕ = 0.1 km.

An example of ADOC solution is plotted in Fig. 2 along with
the OMF, which is updated based on in situ measurements at
every time step Δt and is shown by the gray obstacle region. It
can be seen in Fig. 2(b) that, after approximately three hours,
the blocked passage is observed by robots. Thanks to the ADOC
approach, the VLSR system is able to adapt in real time and find
a new optimal solution that allows the robots to reach the desired
distribution efficiently [Fig. 2(c)–(d)].

A. Performance Comparison

To the best of the authors’ knowledge none of the existing
VLSR methods are applicable to the online planning and con-
trol problem tackled in this article (described in Section II).
For comparison, three methods are developed by extending
state-of-the-art techniques referred to as PDF-based APF (PDF-
APF), sampling-based APF (SAPF), and sampling-based path-
planning (SPP). In the PDF-APF approach, an attractive po-
tential field is generated by replacing ℘̂∗

k+1(x) in (53) with
the desired PDF ℘f . Subsequently, APF robot control laws
are obtained by means of the gradient-descent method shown
in (57), based on the same online OMF used by the ADOC
algorithm.

In the SAPF approach, the desired final robot positions, de-
noted by the set Xf = {xf,i}Ni=1, are first obtained by sampling
℘f . Subsequently, since the robots are interchangeable, the
desired positions are used to generate individual robot attractive
potentials, and, thus, to control the robots independently of
each other. In the SPP approach, the robot positions in the
set Xf = {xf,i}Ni=1 are paired with the initial robot positions
in X0 = {xi(t0)}Ni=1 based on the shortest relative distance.
Subsequently, a shortest-path algorithm is used at every time step
(k) to find the best robot trajectory based on the latest OMF, mk.
All methods avoid collisions by means of the repulsive potentials
in (56). For comparison, the robot velocities are chosen to abide
to ‖ui‖ = 5 km/hr for all i, although in principle they too
could be optimized via ADOC in order to minimize energy
consumption. Similarly, the same user-defined parameters, �,
ϕ, and dth, are used in all four methods and the same maximum
time Tf = 2000 is adopted.

Fig. 3(a)–(d) shows the VLSR trajectories obtained for the
500 robots using ADOC, PDF-APF, SAPF, and SPP. It can be
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seen that using ADOC and SPP the robots are able to reach
the goal distribution in the allotted time, while with PDF-APF
and SAPF many of the robots fall behind or remain stuck
nearby some of the obstacles found in situ. Table I shows the
VLSR performance obtained by the four methods . All of the
simulations are conducted on the same computer with an 18-core
CPU and 16 G RAM. It can be seen that the solution time, T ,
required by the robots to reach the goal PDF is significantly lower
for ADOC than for all other methods. The total runtime is also
significantly reduced by ADOC despite its ability to optimize the
VLSR system performance (not afforded by other methods). The
optimized ADOC performance can be assessed by computing
the average cost-to-go

D̄(k) =
1

N

N∑
i=1

T−1∑
τ=k

‖xi [(τ + 1)Δt]− xi(τΔt)‖ (63)

and the average energy-cost per kg

Ē(k) =
η

2N

N∑
i=1

k∑
τ=1

[‖xi(τΔt)− xi [(τ − 1)Δt] ‖
Δt

]2
(64)

where η is a unit-conversion factor. As shown in Table I, despite
using the same knowledge of the obstacle region, by leveraging
new optimality conditions derived from Bellman’s optimality
principle, the ADOC approach allows the cooperative robots to
minimize time, distance traveled, and energy consumption.

B. Computational Complexity Comparison

The results shown in Table I show that the time required to
obtain the ADOC solution is significantly lower than the time
required by other methods of solution. This section derives the
computational complexity of each algorithm, summarized in
Table II. As a first step, the computational complexity required
by the construction of the artificial potentials at the kth time
step is analyzed. Let Bk denote the number of collocation
points evenly sampled on the updated OMF contours at the
kth time step, as well as on the ROI boundaries, ∂W . Then,
the (microscopic) robot control law computation at the kth
time step requires the times shown in Table II, based on both
repulsive and attractive potential fields. Because Nk  N and
L  N , computing the robot control law requires time O(N2)
for all four methods. The square power results from the artificial
potential calculation and, therefore, when robots are outside
the potential’s region of influence the computational complexity
decreases to O(N).

From [36] and [37], the computational complexity of search-
ing a directed graph G = (G, E) for the shortest path connecting
two of its nodes is O(|E|+ |G| log |G|). Letting ESPP

i and GSPP
i

denote the set of arcs and nodes generated by the SPP algorithm
for every robot i, the computation required by the path-planning
ADOC and SPP methods at every time step k is found to
be as shown in Table II. Therefore, when Nk · |Ik| · L < N ,
ADOC requires significantly less computation than SPP, be-
cause typically L  K. Furthermore, since Nk, |Ik|, and L are
independent of the number of robots (N ), the ADOC approach

developed in this article is scalable to very large systems of
cooperative robots.

IX. CONCLUSION

This article develops a novel adaptive optimal control ap-
proach, referred to as ADOC, that is applicable to online coop-
erative VLSR systems applications, such as sensing and naviga-
tion. Unlike existing adaptive dynamic programming and adap-
tive control approaches, ADOC is developed to solve environ-
mental adaptation problems in which the system performance,
represented by the Lagrangian of the cost function, changes over
time due to in situ measurements and observations. By opti-
mizing the spatio-temporal evolution of the VLSR macroscopic
state, such as the robot PDF, the ADOC approach provides online
solutions that scale up to very large numbers of cooperative
robots. The novel technical contributions in this article show
that the online adaptive control of multiscale dynamical systems
can be formulated as a new adaptive dynamic programming
problem in the Wasserstein-GMM space, thus allowing for the
application of OMT theory. The numerical simulation results
presented in this article show that ADOC not only outperforms
other VLSR planning methods, by optimizing the macroscopic
system performance incrementally over time but it also reduces
the solution time and the total amount of time required by the
robots to complete the desired task.

APPENDIX A
UPPER BOUND OF OPTIMAL VALUE FUNCTIONAL

Proof: First, consider the case of k + 1 < T . According to
(25), the value functional Vk(℘k+1,mk, C̃k) associated to C̃k,
which is described in (26) and (27), can be expressed by

Vk(℘k+1,Mk, C̃k) = [d(℘T , ℘f )]
2

+
T−1∑

τ=k+1

[
d̃(℘τ ,mk, C̃k)

]2
+

T−1∑
τ=k+1

〈℘τ+1,mk〉W . (65)

According to (22), the following inequality is obtained:

[d(℘T , ℘f )]
2 ≤

Nk+1∑
j=1

L∑
j=1

[
W2(g

j
T , g

j)
]2

π̃k(j, j). (66)

By recursively applying (26) and (27), the term,
[d̃(℘τ ,mk, C̃k)]2, k + 1 ≤ τ ≤ T − 1, can be expressed
as

[
d̃(℘τ ,mk, C̃k)

]2
=

Nk+1∑
j=1

Nk+1∑
ı=1

[W2(g
j
τ , g

ı
τ+1)]

2πk(j, ı)

=

Nk+1∑
j=1

[
W2(g

j
τ , g

j
τ+1)

]2
ωj
k+1

=

Nk+1∑
j=1

L∑
j=1

[
W2(g

j
τ , g

j
τ+1)

]2
π̃k(j, j).

(67)
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Substituting (66) and (67) into (65), one can have

Vk(℘k+1,Mk, C̃k) ≤
Nk+1∑
j=1

L∑
j=1

{[
W2(g

j
T , g

j)
]2

+
T−1∑

τ=k+1

[
W2(g

j
τ , g

j
τ+1)

]2
+

T−1∑
τ=k+1

〈gjτ ,mk〉W
}
π̃k(j, j).

(68)

Because (68) holds for any trajectories of Gaussian components
from gjk+1 to κj , j = 1, . . . , Nk+1 and j = 1, . . . , L, the follow-
ing inequality can be obtained:

Vk(℘k+1,Mk, C̃k) ≤
Nk+1∑
j=1

L∑
j=1

min

{[
W2(g

j
T , g

j)
]2

+
T−1∑

τ=k+1

[
W2(g

j
τ , g

j
τ+1)

]2
+

T−1∑
τ=k+1

〈gjτ ,mk〉W
}
π̃k(j, j)

=

Nk+1∑
j=1

L∑
j=1

L̃j,j
k π̃k(j, j). (69)

Next, consider the case of k + 1 = T . According to (66), the
upper bound of Vk(℘T ,Mk, C̃k) is expressed by

Vk(℘T ,Mk, C̃k) ≤
Nk+1∑
j=1

L∑
j=1

[
W2(g

j
T , g

j)
]2

π̃k(j, j)

=

Nk+1∑
j=1

L∑
j=1

L̃j,j
k π̃k(j, j). (70)

Finally, considering the definition of the optimal value func-
tional, the theorem is proved.

APPENDIX B
LOWER BOUND OF OPTIMAL VALUE FUNCTIONAL

Proof: First, consider the case of q = k − 1, 0 < k < T , and
k ≤ l < T . From any robot PDF℘l, by using the optimal control
law functional obtained at the qth time step, C∗

q , recursively, a
trajectory of robot PDFs {℘τ}Tτ=l are generated associated with
the OMF mk.

In addition, consider the optimal value functional
V∗
k(℘l,Mk), k ≤ l < T . According to (11) and the Bellman

equation, V∗
k(℘l,Mk) can be expressed by

V∗
k(℘l,Mk) = min

℘l+1

[L (℘l,mk, ℘l+1) + V∗
k(℘l+1,Mk)]

= L (℘l,mk, ℘
∗
l+1) + V∗

k(℘
∗
l+1,Mk)

≤ L (℘l,mk, ℘l+1) + V∗
k(℘l+1,Mk) (71)

where ℘l+1 = C∗
q(℘l,mk) and ℘∗

l+1 = C∗
k(℘l,mk).

By recursively utilizing (71), the following inequality is ob-
tained:

V∗
k(℘l,Mk) ≤ L (℘l,mk, ℘l+1) + V∗

k(℘l+1,Mk)

≤ L (℘l,mk, ℘l+1)

+ L (℘l+1,mk, ℘l+2) + V∗
k(℘l+2,Mk)

. . .

≤
T−1∑
τ=l

L (℘τ ,mk, ℘τ+1) + V∗
k(℘T ,Mk)

=

T−1∑
τ=l

L (℘τ ,mk, ℘τ+1) + V∗
q(℘T ,Mk)

= V∗
q(℘l,Mk), k ≤ l < T (72)

where V∗
k(℘T ,Mk) = V∗

q(℘T ,Mk) = [d(℘T , ℘f )]
2 according

to (11). Because this holds for l = T as well, according to (11),
(72) can be rewritten by

V∗
k(℘l,Mk) ≤ V∗

q(℘l,Mk), k ≤ l ≤ T. (73)

Next, consider the case of q = k − 1 and 0 ≤ l ≤ q. Assume
that the optimal policy Πq exists, which includes a sequence
of optimal control law functionals C∗

τ , τ = l, . . . , q. By using
these optimal control law functionals sequentially, a trajectory
of robot PDFs {℘τ}qτ=l is generated associated with {mτ}qτ=l.
Moreover, similarly, by using the optimal control law functional
C∗
q recursively, a trajectory of robot PDFs {℘τ}Tτ=q is generated

from ℘q to ℘T associate with mk. Thus, a trajectory of robot
PDFs, {℘τ}Tτ=l is generated from ℘l to ℘T .

Again, according to (11) and the Bellman equation,
V∗
k(℘l,Mk) can be expressed by

V∗
k(℘l,Mk) =

q∑
τ=l

L (℘τ ,mτ , C∗
τ ) + V∗

k(℘k,Mk)

≤
q∑

τ=l

L (℘τ ,mτ , C∗
τ ) + V∗

q(℘k,Mk)

= V∗
q(℘l,Mk), 0 ≤ l ≤ q (74)

where the inequality is obtained by applying (73). Merging (73)
and (74), it is shown that for q = k − 1

V∗
k(℘l,Mk) ≤ V∗

q(℘l,Mk), 0 ≤ l ≤ T. (75)

Finally, by recursively applying (75), the theorem is proved.
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