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Abstract—This paper presents a distributed optimal control
approach for managing omnidirectional sensor networks de-
ployed to cooperatively track moving targets in a region of inter-
est. Several authors have shown that, under proper assumptions,
the performance of mobile sensors is a function of the sensor
distribution. In particular, the probability of cooperative track
detection, also known as track coverage, can be shown to be an
integral function of a probability density function representing
the macroscopic sensor network state. Thus, a mobile sensor
network deployed to detect moving targets can be viewed as a
multiscale dynamical system in which a time-varying probability
density function can be identified as a restriction operator, and
optimized subject to macroscopic dynamics represented by the
advection equation. Simulation results show that the distributed
control approach is capable of planning the motion of hundreds
of cooperative sensors, such that their effectiveness is significantly
increased compared to that of existing uniform, grid, random and
stochastic gradient methods.

Index Terms—Optimal Control, Distributed Control, Mobile
Sensor Networks, Track Coverage, Target Tracking, Multiscale
Dynamical Systems.

I. INTRODUCTION

THIS paper presents a distributed optimal control (DOC)
approach for optimizing the trajectories of a network of

many cooperative mobile sensors deployed to perform track
detection in a region of interest (ROI). Considerable attention
has been given to the problem of controlling mobile sensors in
order to maximize coverage in a desired ROI, as required when
no prior target information is available [1]–[10]. When prior
information such as target measurements or expert knowledge
are available, optimal control and information-driven strategies
have been shown to significantly outperform other methods
[9]–[16]. Due to the computational complexity associated with
solving the optimality conditions and evaluating information
theoretic functions, however, these methods typically do not
scale to networks with hundreds of sensors because the com-
putation they require increases exponentially with the number
of agents [17].

Distributed optimal control has been recently shown to over-
come the computational complexity associated with classical
optimal control for systems in which the network performance
or cost function is a function of a suitable restriction operator,
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such as a probability density function (PDF) or maximum
likelihood estimator (MLE) [18]–[21]. Several authors have
shown that, in many instances, the performance of networks
of cooperative agents, such as sensors and robotic vehicles,
is a function of a PDF representing the density of the agents
over the ROI [22]–[26]. Thus, one approach that has been
proposed to deploy many cooperative agents is to sample a
known PDF to obtain a set of agent positions in the ROI
[26]. Another approach is to use a known PDF to perform
locational optimization, and obtain a corresponding network
representation using centroidal Voronoi partitions [27], [28].
Alternatively, agent trajectories can be computed using a
hierarchical control approach that first establishes a virtual,
adaptive network boundary, and then computes the agent
control inputs to satisfy the boundary in a lower-dimensional
space [29].

While these existing approaches are effective at reducing
the dimensionality of an otherwise intractable optimal con-
trol problem, they assume that the optimal PDF (or virtual
boundary) are given a priori. As a result, the agents may
be unable to reach the desired PDF when in the presence
of dynamic constraints and/or inequality constraints on the
state and controls. Conversely, if a conservative PDF is given
to guarantee reachability, the network performance may be
suboptimal. Furthermore, because existing methods assume
stationary agent distributions, they cannot fully exploit the
capabilities of mobile sensors, or take into account time-
varying environmental conditions. The DOC approach, re-
cently developed by the authors in [19], overcomes these
limitations by optimizing a time-varying agent PDF subject
to the agent dynamics.

To date, DOC optimality conditions have been derived and
used to solve network control problems in multi-agent path
planning and navigation [19], [21]. This paper presents con-
servation law results that show the closed-loop DOC system is
Hamiltonian. Based on these results, an efficient numerical so-
lution is obtained using a finite volume discretization scheme
that has a computational complexity far reduced compared to
classical optimal control. The DOC method is then applied to a
network control problem in which omnidirectional sensors are
deployed to cooperatively detect moving targets in an obstacle-
populated ROI. Several authors have shown that the tracking
and detection capability of many real sensor networks, such
as passive acoustic sensors, can be represented in closed-form
by assuming the sensors are omnidirectional and prior targets
measurements can be assimilated into Markov motion models
(see [10], [11], [30]–[33] and references therein). In this paper,
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the DOC approach is used to optimize the detection capability
of this class of sensor networks for hundreds of cooperative
agents, while also minimizing their energy consumption and
avoiding collisions with the obstacles. The results show that
the DOC approach significantly improves the probability of
detection compared to other scalable strategies known as
uniform, grid, random and stochastic gradient methods [34],
[35].

II. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the problem of optimizing the state
and control trajectories of a network of N mobile sensors
used to detect a moving target in an obstacle-populated ROI,
A = [0, L] × [0, L] ⊂ R2, during a fixed time interval,
t ∈ (T0, Tf ], where T0 and Tf are both given. Each sensor is
mounted on a robot or vehicle whose motion is governed by
a small system of ODEs,

ṡi(t) = f [si(t),ui(t), t], si(T0) = si0 , i = 1, . . . , N (1)

where si(t) = [xT
i (t), θi(t)]

T ∈ S is the ith vehicle state com-
prised of the vehicle position, xi = [xi, yi]

T ∈ A, and heading
angle θi ∈ [0, 2π), ui ∈ U ⊂ Rm is the vehicle control vector,
and U is the space of m admissible control inputs. Here, the
superscript “T ” denotes the transpose of matrices and vectors.
Each sensor is assumed to be omnidirectional, with a constant
effective range r ∈ R, defined as the maximum range at which
the received signal exceeds a desired threshold [9]. Then, the
field-of-view (FOV) of every sensor can be modeled by a disk
C(xi, r) ⊂ R2, with radius r and center at xi.

Since xi, i = 1, . . . , N , is a time-varying continuous vector,
let ℘x denote the time-varying PDF of xi, defined as a non-
negative function that satisfies the normalization property,∫

A
℘x(x, t)dx = 1 (2)

and such that the probability of event x ∈ B ⊂ A is,

P (x ∈ B, t) =
∫
B
℘x(x, t)dx (3)

where, B is any subset of the ROI, and, for brevity, ℘x

is abbreviated to ℘ in the remainder of this paper. By this
approach, each sensor can be viewed as a fluid particle in the
Lagrangian approach, and ℘ can be viewed as the forward
PDF of particle position [36]. Therefore, N℘ represents the
density of sensors in A.

There is considerable precedence in both target tracking lit-
erature and practice for modeling target dynamics by Markov
motion models that assimilate multiple, distributed sensor
measurements [37], [38]. These tracking algorithms have the
ability to incrementally update the target model over time
and output Markov transition probability density functions
(PDFs) that describe the uncertainty associated with the target
based on prior sensor measurements. This paper shows that the
target PDFs obtained by the tracking algorithms can be used
as feedback to a distributed optimal control algorithm, such
that the sensor motion can be planned in order to maximize
the expected number of target detections over a desired time
interval. Subsequently, the target PDFs can be updated to

reflect the new knowledge obtained by the sensor network
controlled via DOC.

Let the target (T) motion be described by the unicycle
kinematic equations,

ẋT (t) =

[
ẋT (t)
ẏT (t)

]
=

[
vT (t) cos θT (t)
vT (t) sin θT (t)

]
, t ∈ (T0, Tf ]

(4)
where xT (t) = [xT (t), yT (t)]

T ∈ A is the target state, vT (t)
is the target velocity, and θT (t) is the target heading angle.
Because many vehicles and targets of interest move at constant
heading over some period of time, Markov motion models
assume that the target heading and velocity are constant during
a sequence of time sub-intervals, (tj , tj+1] ⊂ (T0, Tf ], j =
1, . . . ,m, that together comprise an exact cover of (T0, Tf ]. At
any time tj , j = 1, . . . ,m, the target may change both heading
and velocity, and, thus, tj is also referred to as maneuvering
time. Then, letting xTj

, xT (tj), θTj
, θT (tj), and vTj

,
vT (tj), and integrating (4) with respect to time, the target can
be described by the motion model,

xTj+1 = xTj + [vTj cos θTj vTj sin θTj ]
T∆tj , (5)

where ∆tj = tj+1 − tj , and j = 1, . . . ,m.
Because the actual target track is unknown a priori, the

track parameters vTj
, θTj

, and xTj
can be viewed as random

variables [37], [38]. Then, assuming for simplicity that they are
independent random variables, prior target information can be
provided in terms of target PDFs, fTj (x), fΘj (θ), and fVj (v),
which are typically computed by target tracking algorithms
based on prior sensor measurements [39] or, in the absence of
prior information, are assumed uniform.

For an omnidirectional sensor, the probability of target
detection for a sensor at x can be described by the Boolean
detection model

Ps[x(t),xT (t)] =

{
1, ‖x(t)− xT (t)‖ ≤ r

0, ‖x(t)− xT (t)‖ > r,
(6)

where ‖·‖ denotes the Euclidean norm and a perfect detection
model is adopted [26], [31]. It means that the target can be
declared a successful detection once the target belongs to any
FOV of the N sensors.

The problem considered in this paper is to optimally control
the N omnidirectional sensors such that obstacle collisions are
avoided, the probability of track detection in A is maximized,
and the energy consumption is minimized subject to the
equation of motion (1). The next sections shows how this
problem can be formulated as a DOC problem and, then,
solved efficiently for up to hundreds of sensors using the
conservation law analysis and numerical method presented in
Sections V-VI.

III. PROBABILITY OF TARGET DETECTION

In this section, an objective function representing the
quality-of-service of the sensor network is obtained from the
probability of target track detection and the coverage cone in
the spatio-temporal space, Ω = A× (T0, Tf ], which was first
presented in [11]. Based on the Markov motion model, the
target track as it evolves from time tj to t, tj < t ≤ tj+1,
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can be represented by a vector mj(t) defined in Ω and with
origin at zj = [xT

Tj
, tj ]

T ∈ Ω, as shown in Fig. 1. From
(6), the ith sensor is able to detect a target if and only
if ‖xT (t) − xi(t)‖ ≤ r. Thus, as the sensor moves over
time along a trajectory xi(t), the set of all tracks detected is
contained by a time-varying three-dimensional coverage cone
K(t) in Ω defined according to the following remark, taken
from [11]:

Remark 3.1: The coverage cone defined as,

K(t) =

{
[x y z]T ∈ Ω ⊂ R3

∣∣ z > tj , t ∈ (tj , tj+1]∥∥∥∥[x y]T − (z − tj)

(t− tj)

[
xi(t)− xTj

]
− xTj

∥∥∥∥ ≤ (z − tj)

(t− tj)
r

}
(7)

contains the set of all target tracks that intersect the ith sensor’s
FOV, C(t), at any time t ∈ (tj , tj+1].

For more details and the proof of remark 3.1, the reader is
referred to [11].  
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Fig. 1. Example of 3-D spatio-temporal coverage cone, where the blue curve
is the trajectory of the target xT (t). The heading-cone (yellow), velocity-
cone (cyan), representation of coverage cone (magenta), and the corresponding
angles are all indicated.

An example of three-dimensional (3D) spatio-temporal cov-
erage cone, K(t), is shown in Fig. 1 as a magenta cone.
Because (7) is a circular cone that is possibly oblique, it is
difficult to define a Lebesgue measure of the tracks contained
by K(t) that can be computed analytically from the sensor
position and the Markov parameters. However, by extending
the approach in [11] to a moving sensor, K(t) can be rep-
resented by a pair of two-dimensional (2D) cones, referred
to as heading cone and velocity cone, for which a Lebesgue
measure of the tracks detected by a sensor at xi(t) can be
provided in terms of unit vectors.

Let the 2D heading cone Kθ be defined as the projection
of K(t) onto the plane,

Ψθ = {[x y z]T ∈ Ω | z = tj}. (8)

such that Kθ (shown in yellow in Fig. 1) contains all possible
headings of a target detected by the ith sensor at any time
t ∈ (tj , tj+1]. Since Kθ is a 2D cone, it can be expressed as
a linear combination of two unit vectors on the heading plane
with respect to a local coordinate frame, Fj , such that,

Kθ[xi(t), zj ] = {c1ĥ(j)
i (t) + c2l̂

(j)
i (t) | c1, c2 ≥ 0}, (9)

where,

ĥ
(j)
i (t) =

cosα(j)
i (t) − sinα

(j)
i (t)

sinα
(j)
i (t) cosα

(j)
i (t)

0 0

 d(j)(t)∥∥d(j)(t)
∥∥

≡

cosλ(j)i (t)

sinλ
(j)
i (t)
0

 ,
l̂
(j)
i (t) =

 cosα
(j)
i (t) sinα

(j)
i (t)

− sinα
(j)
i (t) cosα

(j)
i (t)

0 0

 d
(j)
i (t)∥∥∥d(j)
i (t)

∥∥∥
≡

cos γ(j)i (t)

sin γ
(j)
i (t)
0



(10)

d
(j)
i (t) ≡ xi(t)− xTj

and α(j)
i (t) = sin−1(r/‖d(j)

i (t)‖).

Now, let the velocity cone Kv be defined as the intersection
of K with the velocity plane,

Ψv = {[x y z]T ∈ Ω | x sin θTj
− y cos θTj

= [sin θTj
cos θTj

] xTj
, z ≥ tj}.

such that Kv represents the speeds of all targets with heading
θTj (contained in Kθ) that are detected by the ith sensor at
t ∈ (tj , tj+1]. The velocity cone Kv can be represented by
two unit vectors defined with respect to Fj , such that,

Kv[xi(t), zj ] = {c1ξ̂(j)i (t) + c2ω̂
(j)
i (t) | c1, c2 ≥ 0}, (11)

where,

ξ̂
(j)
i (t)=

sin η
(j)
i (t) cos θTj

sin η
(j)
i (t) sin θTj

cos η
(j)
i (t)

 ,
ω̂

(j)
i (t)=

sinµ
(j)
i (t) cos θTj

sinµ
(j)
i (t) sin θTj

cosµ
(j)
i (t)

 ,
η
(j)
i (t)=tan−1

[ 1

t− tj

(
[cos θTj sin θTj ][xi(t)− xTj ]

−
√
r2 −

(
[sin θTj − cos θTj ][xi(t)− xTj ]

)2)]
,

µ
(j)
i (t)=tan−1

[ 1

t− tj

(
[cos θTj

sin θTj
][xi(t)− xTj

]

+

√
r2 −

(
[sin θTj

− cos θTj
][xi(t)− xTj

]
)2)]

.

(12)
An example of these coverage cone representations is illus-
trated in Fig. 1.

As proven in [11], the pair of 2D time-varying cones,
{Kθ,Kv}, can be used to represent all tracks contained by the
3D time-varying coverage cone K. It follows that the proba-
bility of a detection by the ith sensor at time t ∈ (tj , tj+1] is
the probability that the Markov parameters are contained by
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the heading and velocity cones, i.e.,

Pd(t) ≡P [mj(t) ∈ K(t)]

=

∫
A
fTj (x)

∫ λ
(j)
i (t)

γ
(j)
i (t)

fΘj (θ)

∫ tanµ
(j)
i (t)

tan η
(j)
i (t)

fVj (v)dvdθdx

(13)
where the Markov motion PDFs are known from the tracking
algorithms (Section II).

IV. DISTRIBUTED OPTIMAL CONTROL PROBLEM

The control of the N omnidirectional sensors is achieved by
maximizing the probability of target detection, minimizing the
energy consumption, and avoiding collisions with obstacles
in the ROI. The energy consumption can be modeled as
a quadratic function of the vehicle control vector u. By
introducing a repulsive potential function Urep generated from
the obstacle geometries [19], [40], the obstacle avoidance
objective can be expressed as the product of ℘ and Urep.
Then, the total sensor network performance can expressed as
the integral cost function,

J =

m∑
j=1

∫ tj+1

tj

∫
A
[wr℘(x, t)Urep − wd℘(x, t)Pd(t) (14)

+weu
TRu]dxdt ,

m∑
j=1

∫ tj+1

tj

∫
A
L {℘(x, t),u, t}dxdt

and must be minimized with respect to the network state, ℘,
and control law, u = c[℘(x, t)], subject to (1),(2)-(3). The
constant weights wd, wr, and we, are chosen by the user
based on the desired tradeoff between the sensing, obstacle-
avoidance, and energy objectives, and R is a diagonal positive-
definite matrix.

Because the dynamic constraints (1) are a function of the
sensor (microscopic) state and control, x and u, the next step
is to determine the macroscopic evolution equation for ℘ from
(1). It was shown in [19], [21] that if agents are never created
nor destroyed and are advected by a known velocity field (1),
then the evolution of the PDF ℘ can be described by the
advection equation. The advection equation is a hyperbolic
partial differential equation (PDE) that governs the motion of
a conserved, scalar quantity, such as a PDF, through a known
velocity field [41]. In the DOC problem considered in this
paper, the PDF ℘ is advected by the velocity field v = ẋ ∈ Rn

obtained from (1), resulting in the macroscopic dynamics,

∂℘

∂t
= −∇ · {℘(x, t)v} = −∇ · {℘(x, t)f [x,u, t]} (15)

The gradient, ∇, represents a row vector of partial derivatives
with respect to x, and ∇ ·F denotes the dot product between
∇ and a vector field F, or the divergence of F.

Because the initial agent distribution is usually given, based
on the initial positions of the sensors in the ROI, the PDE (15)
is subject to the initial condition

℘[x, T0] = ℘0(x) (16)

Also, in order to guarantee that agents are neither created
nor destroyed in A, the PDE (15) is subject to the boundary

condition,

℘[x ∈ ∂A, t] = 0, ∀t ∈ (T0, Tf ] (17)

the state constraints,

℘[x 6∈ A, t] = 0, ∀t ∈ (T0, Tf ], (18)

and the normalization condition (2).
Furthermore, consider a square area A′ ⊂ A with side

length ∆x. With the assumption of no overlap between FOVs,
the density of the sensors in the area A′ satisfy the following
inequality,

(∆x)2

πr2
≥ N(∆x)2℘(x′), x′ ∈ A′ (19)

where ℘(x′) is assumed constant for a small ∆x. The right
hand side (RHS) in (19) is the number of the sensors in the
area A, and the left hand side (LHS) in (19) is a upper bound.
Therefore, the following constraint is obtained,

℘(x, t) ≤ 1

Nπr2
. (20)

The analysis presented in the next section shows that the
closed-loop DOC problem is a Hamiltonian system and, thus,
the agent PDF ℘ is conserved over time. As a result, numerical
solutions of the DOC problem can be obtained using conserva-
tive numerical algorithms, such as finite volume (FV), that are
known to be computationally efficient and allow for coarse-
grain discretizations without dissipation errors [42].

V. CONSERVATION LAW ANALYSIS

Hamiltonian systems are characterized by a constant of
motion, or Hamiltonian function, by which optimal trajectories
can be shown to have vanishing variations along this constant
of motion, according to Pontryagin’s minimum principle [43],
[44]. Because in the DOC problem the coarse dynamics are
described by the advection equation (15), the open-loop system
is inherently conservative [45]. The goal of this section is to
show that the controlled dynamics (or closed-loop system)
is also conservative, by proving that it satisfies Hamilton
equations,

∂ψ

∂q
= −dp

dt
,
∂ψ

∂p
=
dq

dt
(21)

where ψ = ψ(p,q, t) is the Hamiltonian function, q = q(t) ∈
Rn are the generalized coordinates, and p = p(t) ∈ Rn are
the generalized momenta.

For simplicity, the proof is presented for n = 2, where
x = [x y]T denotes the position of the ith agent in R2.
Then, the Hamiltonian function is determined by recasting the
detailed equation (1) into a three-dimensional time-invariant
ODE. Letting x̂ = [x y t]T and û(x̂) = u(t), (1) can be
written as, [

ẋ(x̂, û) ẏ(x̂, û) ṫ
]T

= f̂(x̂, û) (22)

where, X is transformed into the time-space domain X̂ =
X × (T0, Tf ]. It also follows that the macroscopic evolution
equation (15) can be rewritten as,

∂℘(x̂)

∂t
+
∂[℘(x̂)ẋ(x̂, û)]

∂x
+
∂[℘(x̂)ẏ(x̂, û)]

∂y
= 0 (23)
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where, now ℘ is only a function of x̂.
Now, let A ≡ [Ax Ay At] = A(x) denote the vector

potential of the product (℘û), i.e.:

℘(x̂)û(x̂) = ∇×A(x) (24)

By performing a coordinate transformation to a canonical
reference frame defined such that Ay = 0, A can be used to
relate the two-dimensional time-varying system to the three-
dimensional time-invariant form, such that the Hamiltonian
functions for the two forms are equivalent [45], [46]. The
coordinate transformation is then given by F : x̂ → x̃, where
x̃ = [x p t]T , and,

p = −Ax[x, y(x, p, t), t] (25)

The resulting vector potential is A = [Ax(x, y(x, p, t), t) 0
At(x, y(x, p, t), t)], which is governed by

℘ ẋ =
∂At

∂y
, ℘ ẏ =

∂Ax

∂t
− ∂At

∂x
, ℘ = −∂Ax

∂y
(26)

where, the function y(x, p, t) is implicitly defined in (25).
Then, the equivalent system is,

dx̃

dt
= f̃(x̃) =

[
∂At

∂p
− ∂At

∂x
1

]T
(27)

and the time scales in the physical and canonical forms are
also equivalent.

Finally, choose the Hamiltonian function,

ψ(x, p, t) = At[x, y(x, p, t), t]. (28)

By substituting (28) into (27), Hamilton equations in (21) are
satisfied as follows,

∂ψ

∂x
= −dp

dt
,

∂ψ

∂p
=
dx

dt
(29)

and are equivalent to a two-dimensional time-varying system
in canonical space X̃ = F(X̂ ), with Hamiltonian function ψ.
Furthermore, this Hamiltonian formulation is unconditionally
valid for any system governed by (1) and (15), and is mathe-
matically equivalent to Lagrangian fluid transport for unsteady
flow in two dimensions, proving the conservative property of
(15) [45].

VI. NUMERICAL SOLUTION OF DOC PROBLEM

The necessary conditions for optimality conditions for DOC
problems in the form of (14)-(18) were recently derived in
[19]. These optimality conditions amount to a set of parabolic
PDEs without a known analytical solution. This paper presents
a direct DOC solution method that parameterizes the agent
PDF by a finite Gaussian mixture model, and discretizes the
continuous DOC problem about a finite set of collocation
points to obtain a nonlinear program (NLP) that is solved
numerically using sequential quadratic programming (SQP).
Based on the conservation analysis results in Section V, the
discretized DOC problem can be obtained using an efficient
FV discretization scheme that has a computational complexity
far reduced compared to classical optimal control.

It is assumed that the optimal sensor PDF can be ap-
proximated by a finite Gaussian mixture model (GMM) [47]

obtained from the linear superposition of L time-varying
components with density,

fj(x, t) =
1

(2π)n/2|Σj |1/2
e[−(1/2)(x−µj)

TΣ�1
j (x−µj)] (30)

where j = 1, . . . , L, | · | denotes the matrix determinant, (·)−1

denotes the matrix inverse, µj ∈ Rn is a time-varying mean
vector, Σj ∈ Rn×n is a time-varying covariance matrix, and L
is an integer chosen by the user. Thus, at any time t ∈ (T0, Tf ]
the optimal agent distribution can be represented as,

℘(x, t) =
L∑

j=1

wj(t)fj(x, t) (31)

where the mixing proportions or weights, w1, ..., wL, obey 0 ≤
wj ≤ 1 ∀j and

∑L
j=1 wj = 1 at all times [34].

An approximately optimal agent distribution ℘∗ can be
obtained by determining the optimal trajectories of the mixture
model parameters wj , µj , and Σj , for j = 1, . . . , L. Let ∆t
denote a constant discretization time interval, and k denote a
discrete time index, such that ∆t = (Tf − T0)/K, and thus
tk = k∆t, for k = 0, . . . ,K . Assume that the microscopic
control inputs u are piecewise-constant during every time
interval ∆t, and that,

℘k , ℘(x, tk) ≈
L∑

j=1

wj(tk)fj(x, tk) (32)

≡
L∑

j=1

wjk
1

(2π)n/2|Σjk|1/2
e[−(1/2)(x−µjk)

TΣ�1
jk (x−µjk)]

represents the agent distribution at tk. Then, the weights wjk

and the elements of µjk and Σjk, for all j and k, are organized
into a vector ζ of parameters to be determined such that the
DOC cost function (14) is minimized, the DOC constraints
(15)-(18) are satisfied, and such that the component densities,
f1, . . ., fL, are nonnegative and obey the normalization
condition for all k.

Since ℘ is a conserved quantity of a Hamiltonian system
(Section V), the evolution equation (15) can be discretized
using a conservative FV discretization algorithm that does
not suffer from dissipative error when using a coarse-grained
state discretization [42]. The FV algorithm adopted in this
paper partitions the state space X into finite volumes defined
by a constant discretization interval ∆x ∈ Rn that are each
centered about a collocation point xl ∈ X ⊂ Rn, l = 1, ..., X .

Now, let ℘l,k and ul,k denote FV approximations of
℘(xl, tk) and c[℘(xl, tk)], respectively. Then, the FV approx-
imation of the evolution equation (15) is obtained by applying
the divergence theorem to (15) in every finite volume, such
that ℘k+1 = ℘k +∆tρk, where,

ρk , −
∫
S

[℘k f(℘l,k,ul,k, tk)] · n̂ dS (33)

and S and n̂ denote the finite volume boundary and unit
normal, respectively. To ensure numerical stability, the dis-
cretization intervals ∆t and ∆x are chosen to satisfy the
Courant-Friedrichs-Lewy condition [42].

Then, letting ∆x(j) denote the jth element of ∆x, the dis-
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cretized DOC problem can be written as the finite-dimensional
NLP,

min JD =
n∑

j=1

∆x(j)

X∑
l=1

[
φl,K +∆t

K∑
k=1

L (℘l,k,ul,k, tk)
]

sbj to ℘k+1 − ℘k −∆tρk = 0, k = 1, . . . ,K
n∑

j=1

∆x(j)

X∑
l=1

℘l,k − 1 = 0, k = 1, . . . ,K (34)

℘l,0 = g0(xl), ∀xl ∈ X
℘l,k = 0, ∀xl ∈ ∂X , k = 1, . . . ,K

℘k ≤
∆x(j)

Nπr2
k = 1, . . . ,K

where ℘l,0 is the initial distribution at xl, φl,K , φ(℘l,K) is
the terminal constraint. In addition, the inequality results from
the geometric constraint in (20).

From (32) it can be seen that ℘l,k and ul,k are functions
solely of the mixture model parameters ζ, and thus the
elements of ζ constitute the NLP variables. Also, since ℘
is modeled by a Gaussian mixture, the state constraint (18)
is always satisfied and needs not be included in the NLP.
The solution ζ∗ of the NLP in (34) is obtained using an
SQP algorithm that solves the Karush-Kuhn-Tucker (KKT)
optimality conditions by representing (34) as a sequence of
unconstrained quadratic programming (QP) subproblems with
objective function JS(ζ) = JD(ζ) +

∑
 λξ(ζ), where ξ

denotes the th constraint in (34), and λ denotes a vector of
multipliers of proper dimensions.

At every major iteration ` of the SQP algorithm, the Hessian
matrix H = ∂JS/∂ζ is approximated using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) rule,

H`+1 = H` +
q`q

T
`

qT
` ∆ζ`

− HT
` ∆ζT

` ∆ζ`H`

∆ζT
` H`∆ζ`

(35)

where ∆ζ` = ζ` − ζ`−1, and q` is the change in the
gradient ∇JS = ∂JS/∂ζ at the `th iteration [48]. The Hessian
approximation (35) is then used to generate a QP subproblem,

min h(d`) = (1/2) dT
` H`d` +∇JT

S d`

sbj to ∇ξT d` + ξ = 0, ∀
(36)

in the search direction d`. The optimal search direction d∗
` is

computed from the above QP using an off-the-shelf QP solver
[49], such that ζ`+1 = ζ` + α`d

∗
` .

The step-length α` is determined by an approximate line
search in the direction d∗

` , aimed at producing a sufficient
decrease in the merit function,

Ψ(ζ`) = J(ζ`) +
∑


rT`, ξ(ζ`) (37)

based on the Armijo condition, and a penalty parameter r`,
defined in [48]. The algorithm terminates when the KKT
conditions are satisfied within a desired tolerance.

The NLP solution ζ∗ provides the optimal agent PDF ℘∗

according to (32), and ℘∗ can be used to obtain a microscopic
control law u∗(tk) = c[℘∗(x, tk)] for each sensor using the
potential field approach presented in [19]. Other PDF-based

control approaches, such as Voronoi diagrams [27], [28], or
virtual boundary methods [29] can potentially also be used
since the optimal and reachable PDF is now known from ℘∗.

VII. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the direct DOC method
presented in the previous section is compared to that of a direct
method for classical optimal control (OC) taken from [50]. The
direct method in [50] obtains an NLP representation of the
classical optimal control problem by discretizing N -coupled
ODEs in the form (1) and the corresponding integral cost
function about a finite set of collocation points. Subsequently,
the NLP solution can be obtained using an SQP algorithm with
the computational complexity shown in Table I (Classical OC).
This classical direct method was also used in [17] to optimize
the track coverage of a mobile sensor network for N < 100.

Similarly to classical OC, the computational complexity
of the SQP algorithm for DOC, described in Section VI,
can be analyzed by determining the computation required
by three most expensive steps, namely, the Hessian update
(35), the solution of the QP subproblem (36), and the line-
search minimization of the merit function (37). As shown
in Table I, the solution of the QP subproblem, which is
carried out by a QR decomposition of the active constraints
using Householder Triangularization [48], is the dominant
computation in determining ℘∗.

It can be easily shown (Section VIII) that the computation
required to obtain the microscopic control law from ℘∗ grows
linearly with N . Thus, the computation required by the DOC
direct method exhibits cubic growth only with respect to K,
and quadratic growth with respect to z. On the other hand,
the computation required by the classical OC direct method
exhibits cubic growth with respect to K and N , and becomes
prohibitive for N >> 1. Thus, for sensor networks with
X << nN and z << mN , the DOC approach can bring
about considerable computational savings.

TABLE I
COMPUTATIONAL COMPLEXITY OF SQP SOLUTION

DOC Classical OC
Hessian update O(zXK2) O(nmN2K2)
QP subproblem O(z2XK3) O(nm2N3K3)

Line search O(XK) O(nNK)

VIII. SIMULATION RESULTS

The effectiveness of the DOC approach presented in the
previous sections is demonstrated on a network of N = 250
omnidirectional sensors that are each installed on a vehicle
with nonlinear unicycle kinematics,

ẋ = v cos θ ẏ = v sin θ θ̇ = ω (38)

and deployed in an obstacle-populated workspace A =
[0, L] × [0, L] shown in Fig. 2(b), with L = 16 km, over
a time interval (T0, Tf ], with T0 = 0 and Tf = 15 hr.
The sensor configuration, q = [x y θ]T , consists of the x, y-
coordinates, and heading angle θ. The sensor control vector is
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u = [v ω]T , where v is the linear velocity, and ω is the angular
velocity. The sensors are assumed to have constant linear
velocities of v = 0.5 km/hr, and maximum angular velocities
of ωmax = 0.52 rad/s, such that ω ∈ [−ωmax, + ωmax]. It
is assumed that the sensors are deployed in A with an initial
distribution ℘0 (Fig. 2(a)) and, thus, at t = T0 they are located
at a set of initial positions sampled from ℘0. The number of
independent elementary detections required to declare a target
track detection is chosen to be k = 3, and the sensor effective
range is r = 0.2 km.

The PDF of the initial target position (j = 0) is plotted in
Fig. 2(b), and is modeled by the Gaussian mixture,

f(xT0
)=

3∑
`=1

w`

(2π)n/2 det(Σ`)1/2
e[−(1/2)(xT0

−µ`)
TΣ�1

` (xT0
−µ`)]

(39)
where µ1 = [0.5 7.5]T km, µ2 = [0.75 7]T km, and µ3 =
[1.5 8]T km, and Σ1 = 0.1 I2, Σ2 = 0.1 I2, and Σ3 =
.3 I2. The mixing proportions are w1 = 0.2, w2 = 0.2, and
w3 = 0.6. The Markov model PDFs are shown in Table II,
and the evolution of the target PDF over time obtained by
numerical integration is plotted in Fig. 3. The cost function
weights are chosen to be ws = 1, wr = 0.02, and we =
0.1, based the relative importance of the sensing, obstacle-
avoidance, and energy objectives, respectively.

(a)

(b)

Fig. 2. Initial sensor distribution in (a) and PDF of initial target distribution
in (b) in an ROI with three obstacles.

(a)

(b)

(c)

Fig. 3. Evolution of target PDF at three instants in time.

The optimal time-varying PDF ℘∗ is obtained using the
direct DOC method presented in Section VI, where the chosen
number of mixture components is z = 9, the state space is
discretized into X = 900 collocation points, for ∆t = 1 hr,
and K = 15. Given ℘∗ and the estimated sensor PDF ℘̂, an
attractive potential,

U(x, tk) ,
1

2
[℘̂(x, tk + δt)− ℘∗(x, tk + δt)]2 (40)

can be used to generate virtual forces that pull the sensors
toward ℘∗, for a small time increment δt [19]. At any time
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TABLE II
MARKOV MOTION MODEL PROBABILITY DENSITY FUNCTIONS (PDFS)

Sub-interval, (tj , tj+1] (hr) Heading PDF, fΘj
(θ) Velocity PDF, fVj

(v)

j = 1 : (0, 5] (hr) N (µ, σ), µ = 2π/9 , σ = π/24 U(V), V = [.9, .925]

j = 2 : (5, 10] (hr) N (µ, σ), µ = −π/6 , σ = π/24 N (µ, σ), µ = .8 , σ = 0.025

j = 3 : (10, 15] (hr) Mult2(wi;µi, σi), w1 = 0.5 , µ1 = −π/3 , U(V), V = [1.2, 1.25]

σ1 = π/32, w2 = 0.5, µ2 = π/3 , σ2 = π/32

tk, the sensor PDF can be estimated efficiently from measure-
ments of the microscopic sensor state using Kernel density
estimation [20]. Then, the microscopic feedback control law,

u∗(tk) = [v Q(θ, φ)]T (41)

can be shown to minimize (40) and provide closed-loop
stability, provided φ = −∇U(x, tk), and,

Q(·) , {a(θ)− a[Θ(φ)]}sgn{a[Θ(φ)]− a(θ)}

represents the minimum differential between the actual head-
ing angle and the desired heading angle, where sgn(·) is the
sign function, and a(·) is an angle wrapping function [40].

The optimal sensor PDF and microscopic sensor state and
FOVs obtained by DOC are plotted in Fig. 4, at three sample
moments in time. The probabilities of detection of these four
methods are presented in Fig. 9. From these simulations it
can be seen that the sensors are maximizing the probability
of detection by anticipating the target motion forecast, while
also avoiding obstacles and minimizing energy consumption.
As shown in Fig. 5, ℘∗ can be used to generate control laws
with a cost linear in the number of sensors, N .

The performance of the DOC method is compared to
four existing sensor network deployment strategies known
as stochastic gradient, uniform, grid, and random strategies.
Uniform, grid, and random strategies are static deployments
in which N sensor positions are obtained using finite-mixture
sampling [34]. The uniform deployment is obtained by sam-
pling a uniform distribution over the obstacle-free space in
A. The grid deployment is obtained by sampling a Gaussian
mixture with z = 11 components centered on a grid, and
the random deployment samples a Gaussian mixture with
z = 15 components randomly centered in A. In these static
deployment strategies, collisions can be avoided by removing
components that overlap obstacles, and by requiring sampled
positions to be at a desired minimum distance from the nearest
obstacle, as shown by the deployment examples in Fig. 6.

The stochastic gradient method presented in [35] is also
simulated here for comparison. This method obtains the con-
trol law for each sensor from the gradient of a function of the
sensor initial and goal state in A. Uncertainties in the state
measurements or environmental dynamics result in the control
law that is obtained from the stochastic gradient descent of an
appropriately chosen function. For the example in Figs. 2(b),
the initial sensor states are sampled from ℘0, and the goal
states are sampled from a time-invariant goal sensor PDF that

minimizes the cost function (14) at Tf , and is plotted in Fig.
7. By this approach, each sensor seeks to move toward the
closest goal state not occupied by another sensor, and avoids
obstacles by means of a repulsive potential term, denoted
by Urep. Then, a feedback control law for sensors with the
unicycle kinematics in (38) can be obtained in the form (41),
letting U = wa‖x∗ − x0‖ + wbUrep, where x∗ is the goal
state, x0 is the initial state, and wa = 1 and wb = 2.5 are
weighting constants. The results obtained by the stochastic
gradient method are plotted in Fig. 8 at three sample moments
in time.

For each deployment strategy, the sensor performance is
assessed by evaluating and averaging the actual number of
target track detections obtained by twenty simulated sensor
networks. The cost function (14) is also evaluated by estimat-
ing the sensor PDF from the microscopic sensor states using
kernel density estimation with a standard Gaussian kernel at
every time step in (T0, Tf ]. The performance comparison
results, summarized in Fig. 5, show that the DOC method
significantly outperforms all other strategies by providing a
probability of detection that is up to three times as large as
the peak performance by other methods. These results are
representative of a number of simulations involving different
sensor initial conditions and different target PDFs.

IX. CONCLUSION

This paper presents a DOC approach for controlling a
network of mobile omnidirectional sensors deployed to co-
operatively track and detect moving targets in a region of
interest. Several authors have shown that the performance of
cooperative multiagent networks, such as a sensor networks,
can in many cases be represented as a function of the agent
PDF. Existing approaches, however, assume that the optimal
or goal PDF is known a priori. This paper shows that the
DOC approach can be used to optimize a time-varying agent
PDF subject to the agent dynamic or kinematic equations. The
paper also shows that since the closed-loop DOC problem has
a Hamiltonian structure, an efficient direct method of solution
can be obtained using a finite volume discretization scheme
that has a computational complexity far reduced compared
to that of classical OC. The numerical simulation results
show that the direct DOC method presented in this paper is
applicable to networks with hundreds of sensors, and, as a
result, the network performance can be significantly increased
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(a)

(b)

(c)

Fig. 4. Evolution of optimal sensor PDF, ℘∗, microscopic state (red dots),
and FOVs (red circles) at three instants in time

compared to existing stochastic gradient, uniform, grid, and
random deployment strategies.
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