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The ability to anticipate human actions is critical to many cyber-physical systems, such as robots and au-
tonomous vehicles. Computer vision and sensing algorithms to date have focused on extracting and predict-
ing visual features that are explicit in the scene, such as color, appearance, actions, positions, and velocities,
using video and physical measurements, such as object depth and motion. Human actions, however, are in-
trinsically influenced and motivated by many implicit factors such as context, human roles and interactions,
past experience, and inner goals or intentions. For example, in a sport team, the team strategy, player role, and
dynamic circumstances driven by the behavior of the opponents, all influence the actions of each player. This
article proposes a holistic framework for incorporating visual features, as well as hidden information, such as
social roles, and domain knowledge. The approach, relying on a novel dynamic Markov random field (DMRF)
model, infers the instantaneous team strategy and, subsequently, the players’ roles that are temporally evolv-
ing throughout the game. The results from the DMRF inference stage are then integrated with instantaneous
visual features, such as individual actions and position, in order to perform holistic action anticipation us-
ing a multi-layer perceptron (MLP). The approach is demonstrated on the team sport of volleyball, by first
training the DMRF and MLP offline with past videos, and, then, by applying them to new volleyball videos
online. These results show that the method is able to infer the players’ roles with an average accuracy of
86.99%, and anticipate future actions over a sequence of up to 46 frames with an average accuracy of 80.50%.
Additionally, the method predicts the onset and duration of each action achieving a mean relative error of
14.57% and 15.67%, respectively.
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1 INTRODUCTION

As pointed out in the seminal work on mental cognition by Kenneth Craik in 1943 [15], animals
utilize internal models of their external reality and of possible actions at their disposal in order
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to evaluate various alternatives and conclude which one to utilize to react to new situations. In
the context of teams and collaborative groups, individuals use their ability to anticipate human
actions in a broad range of contexts and situations in order to decide their own subsequent actions
and behaviors. Often, action anticipation is based on inferred cues, such as social roles, intentions,
and goals that are deduced from visual information interpreted in the context of domain knowl-
edge and past experiences. For example, people tend to choose their greetings, such as “shaking
hands” or “hugging”, based on their anticipation of the most likely response by the recipient [38].
Drivers routinely predict future actions of pedestrians, cyclists, and other drivers, based on their
appearance, trajectories, driving style, and inferred social role, in order to guarantee safe driving
[11, 12]. Similarly, athletes make split-second decisions based on the behavior of their teammates
and opponents, their knowledge of the game, as well as their anticipation of opponents’ actions
[64]. As such, the ability to anticipate human actions is essential for human social life and bears
great potential for future development of intelligent systems and machines. Team sports, in partic-
ular, provide an excellent benchmark problem for action anticipation because the rules and goals
of the game are well-defined, video data is broadly available from event broadcasting, and players’
decisions depend on many factors ranging from team strategy to individual roles, from knowledge
of the game to opponent behaviors [47, 48].

In contrast to action recognition, which generates a semantic label from the video of an observed
human behavior [18, 43, 54, 69], action anticipation aims at predicting one or more sequential
human behaviors, several seconds into the future. Unlike traditional prediction algorithms, the
approach presented in the article seeks to anticipate the semantic labels of a sequence of human
actions before their onset, including sudden and radical behavioral changes such as switching from
standing to hitting the ball. Existing methods for action anticipation can be categorized into feature-
level, single-agent, and dual-agent anticipation. Feature-level anticipation predicts a convolutional
feature representation of a future image for an ongoing action and, then, uses this representation
to predict the action label classification [23, 49, 52, 55, 61]. These methods assume that a few initial
frames of a human action is partially observed, based on which the remaining action sequences
can be predicted. Moreover, feature-level anticipation relies primarily on prior data training and,
therefore, fails in testing images that do not show globally similarity to the training data [62].

Single-agent anticipation predicts a semantic action label using appearance-based or motion-
based features extracted from a sequence of frames preceding the onset of an action [9, 22, 50].
The input features can be enriched by incorporating information of the surrounding visual con-
text, such as the presence of certain meaningful objects in the scene [39, 41]. A long short-term
memory (LSTM) network was trained in [22] to predict an individual’s cooking activity over the
horizon of 0.25-2 s based on an observation time window of 1.75-3.5 s. The action anticipation per-
formance of the cooking activity was quantitatively evaluated in [35] in terms of the observation
duration and prediction horizon, showing that an increase in prediction horizon is accompanied
by deterioration in anticipation accuracy even with long observations of up to 30 s.

Dual-agent action anticipation methods rely on extracting action-reaction patterns from videos
of two-person interactions such as “hugging” or “pushing”, in order to leverage the causal relation-
ship in social interactions [6, 30, 38, 39]. However, the resulting algorithms are limited in scope
in that the interaction is known a priori, and the anticipation is from the perspective of the re-
active agent by only anticipating the reactive actions based purely on visual cues. The approach
presented in this article is applicable to diverse forms of interactions among two or more persons,
including team strategies and individual roles that evolve over time, and is capable of predicting
action sequences and timing. Previous work has shown that the temporal localization of future
events can be performed by learning a probability distribution of the occurrence time conditioned
on a sequence of observed features [44]. In particular, the former method quantizes the prediction
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horizon into discrete time intervals, one of which is predicted to contain the occurrence of the fu-
ture event. One downside of such discrete-time model is the finite temporal resolution caused by
quantization. As an improvement, a regression neural network was learned from data in [41, 44] to
output a real positive value as a continuous approximate of the onset of the future action executed.
In this article, the regression neural network is extended to the problem of predicting both the
onset and duration of future actions in human teams.

Our holistic approach for interpreting and predicting team behaviors is demonstrated on a new
and challenging problem, namely anticipating fast actions executed by interacting members of a
sport team. In a team sport, such as volleyball, not only the team strategy and circumstances of
play are hidden and directly influence individual actions, but also are highly dynamic, in that they
change significantly and rapidly over time. Additionally, individual players assume different roles
during the game, contributing in different measure to game strategy and outcome, thus influencing
their teammates’ behaviors in contrasting ways. The team strategy and players’ roles are, almost
by definition, hidden or unobservable. In other words, they are not visually explicit in the scene,
but they can be inferred from a combination of visual cues and domain knowledge of the sport
and of the team itself, as will be demonstrated in this article.

Inferring team strategy bears similarities to the problem of group activity recognition, which
seeks to identify an activity label for a group of participants [31, 32, 56, 67]. However, these meth-
ods require the user to pre-select a time window that centers around a group activity by man-
ually clipping the video or choosing the initial and final image frame. As such, they can not be
easily extended to dynamic settings where the team strategies evolve over time, gradually or sud-
denly at unknown instants. In contrast, this article infers the team strategy label in each frame,
based on which the input video can be automatically partitioned into scene segments for action
anticipation.

On the other hand, role inference derives motivation from the “Role Theory” in sociology [40,
46, 58], which is a key concept for understanding the organization of social life and social activity.
Recently, [25] defined roles as “socially defined expectations that a person in a given status follows”,
showing that roles provide predictability of people’s behaviors. The importance of individual social
roles in human events, such as “listener”, “speaker”, “bride”, and “groom”, has also been recently
recognized in the computer vision literature [20, 46]. These methods, however, are not directly
applicable to team action anticipation because they do not consider the rapid change in roles. Also,
existing methods seek to label either the group activity or the individual role, whereas, in many
events, such as sports, the individual role changes over time as a function of an evolving group
activity/strategy. Furthermore, in many events, such as team sports, the interdependence between
team strategies and players’ roles cannot be necessarily categorized into a set of semantic classes
identifiable a priori.

This article presents a novel dynamic Markov random field (DMRF) model that captures
players’ interrelationships using a dynamic graph structure, and learns individual player charac-
teristics in the form of a feature vector based on a wealth of prior information, including domain
knowledge, such as court dimensions and sport rules, and visual cues, such as homography trans-
formations, and players’ actions and jerseys. The DMRF unary and pairwise potentials can then be
learned from data to represent the probability of individual feature realizations and the strengths
of the corresponding players’ interrelationships, respectively. Each new video frame is associated
with a global hidden variable that describes the team strategy, within which each player is as-
signed a local hidden variable representing her/his role on the team. Then, given video frames of
an ongoing game, the DMRF can be used to infer the players’ roles using a Markov chain Monte
Carlo (MCMC) sampling method, and to provide inputs to an multi-layer perceptron (MLP)
that anticipates the players’ future actions.
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The notion of key player is introduced to distinguish a small set of players who will perform
dominant actions that directly influence the game progress. In the anticipation stage, an MLP is
trained to predict future actions of key players based on visual features as well as the inference
results. Action anticipation is performed in each frame such that the anticipated results can be up-
dated in a timely manner as the future unfolds. Inspired by recent work on predicting the temporal
occurrence of future actions [41], the anticipation MLP is configured to simultaneously output the
semantic label, onset and duration of the key players’ future actions. In comparison to the existing
research on single-agent and dual-agent action anticipation, this article raises a distinctively new
variant of visual forecasting problem that anticipates future action in human teams. By proposing
a new problem formulation and solution for team action anticipation, the holistic approach pre-
sented in this article allows to account for the implicit context, perceived through several inferred
hidden variables, as well as for hybrid inputs comprised spatio-temporal relationships, continuous
variables, and categorical features that together describe the team players and their interactions.
The results obtained on testing database constructed from broadcasting videos of volleyball games
demonstrate that this approach predicts the future actions of key players up to 46 frames into the
future, with an accuracy of 80.50%. In addition, the approach achieves an average accuracy of
84.43% and 86.99% for inferring the team strategy and players’ roles, respectively.

2 BACKGROUND AND PRELIMINARIES

The role inference and action anticipation approach presented in this article is demonstrated on
the team sport of volleyball, described here briefly for completeness. However, the approach can
be similarly applied to other team sports and activities, as will also be shown in future work. A
volleyball match consists of five sets that are further broken into points. Each point starts with a
player serving the ball to the opposite side. Each team must not let the ball be grounded within
their own court by hitting the ball to the opponent after no more than three consecutive touches of
the ball by three different players. The game continues until the ball is grounded, with the players
moving around their own side of the court and assuming different roles over time, such as blocker,
defense-libero, left-hitter, and so on (Figure 1). This alternating pattern can be reflected by the
transition of a finite class of team strategy labels (Figure 1(a)), whose semantic meaning describes
the technical activity of the two teams. For instance, the team strategy label in Figure 1(b) indicates
that the right team is setting the ball for the next-step attack and the left team is on defense,
whereas Figure 1(b) shows that the the right is attacking and the left is blocking.

The two teams are divided by a net in the middle of the court, which simplifies the action antic-
ipation problem compared to other team sports, such as football or hockey, which will be studied
in future work. Like other sports, each team is represented by a jersey color. But, in volleyball,
some players within a team also wear a different jersey to indicate their “libero position” on the
team. For effective coordination, players assume different roles in accordance to their expected
duty in the team. Consequently, each player can be assigned a semantic role label that serves as an
abstract representation of the player’s intentions and possible actions. A complete description of
the players’ nine possible roles is shown in Figure 2. An important complexity is that the players
roles change rapidly and unexpectedly over time, and some of the players can assume the same
role at the same time.

Also volleyball actions can be categorized into nine well-defined classes: spiking, blocking, set-
ting, running, digging, standing, falling, waiting, and jumping, extracted using computer vision
algorithms [3, 4, 31, 32, 53]. However, actions are not unique to players’ roles, nor there is any pre-
cise correspondence (e.g., one-to-one) between roles and actions. In this article, the action label
waiting is replaced with squatting for a closer clarification on this defensive action that happens
before a player digs the ball, as shown in Figure 3.
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Start of a point: Team strategy label: | Right-team strategy
(left-team serving)

success
Right-team on offense: | \Passl—bl \Sell—'l \Attack}Tbl End |

Left-team on offense: | |Defense|—h| | Defense |—>| | Block

time
>

(a)

Team strategy: | Attack

Team strategy: | Set

Fig. 1. Example of temporal evolution of team strategies in a volleyball match (a) and corresponding visual
scenes (b—c).

| BL: blocker E
i DL: defense-libero i
i DP: defense-passer |
! MH: middle-hitter i
i LH: left-hitter !
! OP: offense-passer i
i OL: offense-libero !
! RH: right-hitter i
| ST: setter !

spiking setting blocking digging running squatting falling standing | jumping

Fig. 3. Examples of nine volleyball players’ actions.

During the volleyball match, players do not contribute equally. Rather, only a subset of players
referred to as key players are actively engaged while the others are waiting for their turns to enter
into action. For instance, player 7 in Figure 2 is a key player because her future action of setting
will dominate the game.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 95. Publication date: September 2022.



95:6 J. Dong et al.

Online video frame Recognition and Estimation Inference Anticipation

{ - Player 2D position Team strategy inference |

| . Key-player identification
i - Player action l
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: Action anticipation ‘

>

Fig. 4. A holistic framework for action anticipation in team sports.

3 PROBLEM FORMULATION AND ASSUMPTIONS

The problem addressed in this article consists of anticipating future actions by multiple key
players in the team sport of volleyball based on hidden information, such as players’ roles
and team strategy, domain knowledge, and visual features extracted from video using existing
computer vision algorithms [29, 31, 32, 36, 67, 68]. The goal is to develop a general and systematic
approach for interpreting visual scenes of human group activities with complex goals, dynamic
behaviors, and variegated interactions. Although this article mainly considers video data, the
proposed framework can be readily applied to data obtained from other sensing modalities, such
as range finders, inertial navigation units, and wearable sensors [28]. The approach is holistic
in that it integrates image recognition, namely the classification of visually explicit information,
state estimation, inference of hidden variables, and anticipation of future actions and events. As
schematized in Figure 4, the approach consists of using the information extracted from domain
knowledge (including prior videos) and streaming videos, using available image recognition
and state estimation algorithms, to solve the problems of team/player inference and action
anticipation problem formulated in Sections 3.1 and 3.2, respectively.

3.1 Inference Problem Formulation

Consider a video V comprised K € N* consecutive frames obtained at discrete moments with a
constant sampling interval At. Each frame I(k) € RP" k = 1,...,K, corresponds to an image
matrix of h X w pixel intensities, where h, w € N* are the frame size. Let N = {1,...,N}, N € N*,
denote the index set of players extracted from I(k) using computer vision [29, 32]. The frame index
is omitted for NV since the number of players is fixed in a volleyball video.

Each player in frame I(k) can be associated with an index i € N and a feature descriptor that
contains a 2D position vector, an action label, and an appearance feature describing the player’s
jersey color. Other characteristics and state variables can be similarly included, depending on the
application of interest. Let p; (k) = [x;(k) ylf(k)]T € R?¥! denote the 2D position of the ith player
with respect to the image frame, which can be approximated by the image coordinate at the bottom
middle point of the player’s bounding box. In order to gain immediate insight into players’ spatial
relationship, the position vector p;(k) is resolved into the inertial coordinate denoted by p;(k) =
[xi(k) yi(k)]T € R¥! Because the volleyball court is planar, the image and inertial coordinate
can be related via homograph transformation H, as shown in Figure 5,

x;j (k) Hyy Hyp Hisl [xi(k)
AMyi(k)| = |Hat Ha Has| |yi(k)|, (1)
1 Hsyi Hs; Hsf| 1
where A # 0 is a scaling factor, and the homography matrix H can be estimated using domain

knowledge of court dimensions and the geometry of the lines drawn on the volleyball court [19,
27,59, 60].
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attack;line  net

Y | (b)

Fig. 5. Projection between the inertial reference frame (a) and image reference frame (b).

Next, let A;(k) € A represent the action label of player i € N in an observed frame I(k), where
A is the discrete and finite range of the action classes shown in Figure 3. A player’s jersey color is
denoted by a discrete variable C;(k) € C, which can be obtained using a color detector [13, 33, 57]
or as prior knowledge. Together, the aforementioned features can be organized as a player feature
vector Fi(k) = [pi(k)T  Ai(k) Ci(k)]".

Then, each frame I(k) € V in a volleyball video can be assigned a semantic label describing
the technical strategy of two teams, as illustrated in Figure 1(b—c). Inference of the team strategy
requires the aggregation of features across players, which amounts to the concatenation of player
feature vectors into a frame-wise team descriptor. In order to preserve the spatial relationship in
a team, feature vectors of players on each side are sorted by the player’s distance to the net. Then,
the aggregated team feature descriptor can be constructed as

F(k) £ [Fl (k) ... FITM (k) Fl(k) ... F,T¥ (1" (2)

with the range denoted by ¥ and the indices of elements defined by the sorted index set
N =il .ly, mser ), (3)
where {[;, ..., l%} cN represent the sorted indices of players on the left team and {ry, . . ., r¥} -

N is the counterpart for the right team.

Let S(k) € S be a global hidden variable representing the team strategy label in frame I(k),
where S is the finite range of the team strategy classes, as illustrated in Figure 1. In addition,
let X;(k) € R,i € N, be a local hidden variable representing the role of player i. X;(k) takes a
realization from a set of role labels R, which are illustrated in Figure 2. The labels of all players’
roles can be denoted by a random vector X (k) £ [X;(k) ... Xx(k)]7 that has range X = RV.
Then, the inference problem can be formulated as follows:

PROBLEM 1. Given the extracted features, F(k), learn a multi-class classifier, fs : F — S,
that maps F(k) € F to a team strategy label S(k) € S. Subsequently, learn an inference model,
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Table 1. Notation of Frame Variables and Segment Variables

Frame variable Description Segment variable Description
S(k) Team strategy in frame I(k) S =1{S(k) | k € T;} Team strategy in segment V;
A;(k) Action of player i in frame I(k) A =1{Ai(k) | ke Ty} Action of player i in segment V;
X (k) Role of player i in frame I(k) Xi1={Xi(k) | k e Ty} Role of player i in segment V;
pi(k) 2D location of player i in frame I(k) P;; = {pi(k) | k € T;} 2D location of player i in segment V;

fx: F X8 — X, that maps the feature vector F(k) and the inferred team strategy label S(k) to the
vector X (k), representing role labels of all players.

3.2 Anticipation Problem Formulation

The goal of the action anticipation problem is to leverage the confluence of information including
inferred team strategies, inferred players’ roles and features, as well as domain knowledge, in order
to predict which are the key players and what are their respective future action sequences. Given
the inferred team strategy up to the current frame, x, (obtained from problem 1), a scene change
point is defined as a frame index 7 such that

S(r) #S(r+1), 7=1,...,xk—-1 (4)

and is typically unknown a priori. Let T = [7;...75,]T represent the scene change points up to
the current time k, where 7; = 1 and 7, < . Video frames between every two consecutive
scene change points have the same inferred team strategy and, therefore, can be automatically
grouped as a scene segment, which eliminates the algorithm’s dependence on pre-trimmed videos.

Let V;,1 = 1,...,m denote the Ith scene segment with the frame-index set T; defined as
AT - 1 I=1,....m—-1
Tl‘{{n,...,x} I=m )

Consequently, V; can be represented as
Vi={I(k)|keT}, I=1,...,m. (6)

The duration of V;, denoted by d;, equals the number of frames in T; multiplied by the discrete-
time sampling interval At

™)

d = (1131 — 77) At I=1,....m—-1
Y k=m+1DAt I=m )

After defining the scene segments, variables that are defined in each frame I(k) can be upgraded
to represent the whole segment, as shown in Table 1, where the argument in “()” represents the
frame index, the subscript “i” represents the player index, and the subscript “I” represents the
segment index.

In order to distinguish a small set of players who will perform dominant actions that influence
the game progress, a binary indicator variable y;(x) € {0, 1} is introduced for a player i such that its
value equals one if the corresponding player will become a key player, and equals zero otherwise.
pi(x) can be obtained by constructing a mapping, f, : S x R — {0,1}, that takes as input the
inferred team strategy label S(k) and role label X;(k) and outputs the binary indicator value

pi(i) = fu(S(k), Xi(k)) ®)

fu(+) can be learned as a binary classifier based on a small amount of annotated data, or it can
be derived using domain knowledge about the likelihood of a player being the key player given
the corresponding role and team strategy. The complete set of predicted key players is

K= (i | piloe) = 1, i € N). ©)
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Action anticipation of a key player considers four types of information collected in the cur-
rent scene segment V,,, i.e., the inferred team strategy S,,, the inferred role X; ,,, the ongoing
action A; ,, and the player’s 2D spatial location P; . Furthermore, the Markov assumption is
adopted such that future action A; 41, is independent from the past action A; ,—; with given
{Ai,m, Pi.m>Xi.m>Sm}, i € K. The Markov assumption is justifiable because the hybrid inputs en-
code information from multiple sources, hence enriching the model and reducing the dependence
of future action on historical data. By virtue of such assumption, action anticipation only requires
a short-term input with arbitrary starting scenes. Finally, the action anticipation problem can be
summarized as follows:

PROBLEM 2. Given the inferred team strategy label S(x) and role label X (k) of the current frame
I(k) € Vi, predict the set of key players, K € N, using (8-9). Then, for each key playeri € K,
predict the semantic label, onset and duration of their future actions A; ;41 using aggregated input
sequences {A; m, Pi.m, Xi,m>Sm}-

4 INFERENCE MODEL

Inferring team strategy requires a multi-class classifier to map the feature vector F(k) to a label
S(k) that represents the technical team activity in each frame. This article uses an MLP to perform
the task while other classifiers such as random forests [63] are also applicable. The inferred team
strategy label, S(k), is appended to the feature vector of the ith player to form an augmented feature
vector, ie., Z;j(k) = [Fi(k)T S(k)]",i € N, which can then be organized into an augmented
feature matrix for all players

Z(k) = [Zi(k) ... 2Zn(K)]. (10)

This section develops a novel DMRF model with dynamical graph structures for inferring the
joint probability of players’ roles X (k) from the augmented feature matrix Z(k).

4.1 Dynamic Markov Random Field (DMRF) Model of Team Player Roles and
Interactions

Classic MRFs are probabilistic models comprised an undirected graph with a set of nodes that
each represent correlated random variables, and a set of undirected arcs (i.e., graph structure) that
represent a factorization of the joint MRF probability learned from data [21]. The advantages of
MREFs over other probabilistic models are that they can model processes with both hidden and
observable variables, as well as include both categorical and continuous variables by describing
different types of relationships using unary and pairwise potentials. MRF was introduced into
the image processing field in the 1980s [24] and was henceforth widely used in computer vision
problems such as image segmentation [26, 45], image denoising [8], and image reconstruction
[10, 42]. While in classic MRFs, the graph structure is fixed and decided a priori, this article presents
an approach for constructing dynamic MRFs (or DMRFs) representations of the visual scene. The
goal is to learn a temporally evolving graph structure from each frame for the inference of hidden
role variables, where only the set of nodes remains unchanged, and the arcs appear or disappear
from frame to frame based on the events in the scene.

In this approach, every hidden node, denoted by X;(k) (i € N), represents the hidden role of
player i, and every observable node, denoted by Z;(k) (i € N), represents the feature vector of
player i. The temporally evolving arc set, &(k), is then learned from the players’ relative distance
by minimizing an energy function such that the minimum value corresponds to the optimal arc
configuration. In order to infer the players’ roles from all available information, each node X; (k)
is connected to the corresponding feature vector Z;(k). X;(k) is associated with a unary poten-
tial ¢(X;(k), Z;(k)) that captures how probable feature Z; (k) is for different realizations of X; (k).
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Fig. 6. DMRF model for player role inference, where the time argument k is omitted for brevity.

Every arc is associated with a pairwise potential ¢ (X; (k), X;(k)) that represents the strength of cor-
relations between the two random variables X; (k) and X; (k) in a spatial neighborhood. Then, the
joint probability distribution of the random variables can be factorized as the product of potential
functions over the graph structure [37, 66]

PXI)IZ0. 80 = = [ | 060 Z:k) [] 90600, 50, (11)

ieN i,je&E(k)

where C is the partition function that guarantees P(X (k)|Z(k)) is a valid distribution and the scope
of pairwise potentials is determined by the estimated graph structure &(k). An example of DMRF
graph representation is illustrated in Figure 6 and the potential functions are learned as explained
in the following subsections.

4.1.1  DMRF Potential Functions. The unary potential ¢(X;(k), Z;(k)) expresses how probable
the feature vector Z; (k) is for different realization of the role label X;(k), and can be modeled as a
likelihood function [5, 37, 51],

$i(Xi(k), Zi(k)) = P(Zi(k)|Xi(k)). (12)

Let R = {1,2,..., R} denote the set of role labels such that X;(k) = n (n € R) if player i assumes
the nth semantic role label. Let 1,, € {0, 1}¥ be a R-dimensional one-hot vector where the nth entry
equals one and the rest entries equal zero. The likelihood function can be defined as

T
PZAR) X (k) = n) = — o2 n - [We oW ZHDD (13)
Zm:l exp{lm . [WuZ . O'(Wul . Zl(k))]}
where o(-) is the sigmoid function, W,,; and W,,; are weights that will be learned from data and
their dimensions are hyper-parameters selected to agree with the dot product.

Pairwise potential concerns the interrelationship between two node variables taking particular
roles, with greater value indicating higher probability for the corresponding players to interact in
a team. For instance, the pair “setter - hitter” has a higher chance to interact in a close proximity
than “setter - blocker” pair since the latter only appears in two opposing teams. Let W}, € RF*R
denote the weight matrix that represents the correlation between a pair of roles. Then, the pairwise
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Fig. 7. A graphical model of six nodes with an empty arc set (a), a sparse arc set (b), and a dense FC arc
set (c).

potential is defined as
Y(Xi(k) = n,X;(k) =m) 21} - W, - 1,,. (14)

4.1.2  DMRF Graph Structure. The graph structure, E(k), determines the scope of pairwise po-
tentials. Traditionally, the MRF graph structure is established a priori and remains fixed (e.g.,
[65, 66]). In order to use MRF models for dynamic role inference, a new approach is developed
here to learn and adapt the structure online based on streaming video frames. In this approach,
the structure can vary from an empty arc set to a fully connected (FC) configuration, as shown
in Figure 7. An empty arc set (Figure 7(a)) indicates that all nodes (e.g., players’ roles) are inde-
pendent and there are no interactions between them. Conversely, a densely connected configura-
tion (such as that in Figure 7(c)) captures many interrelationships, including redundant ones and,
thus, may incur unnecessary computational burden. The approach developed in this article pro-
duces an efficient structure estimation algorithm (16—-20) to dynamically estimate a sparse structure
(Figure 7(b)) that captures only the most significant interactions in each video frame.

Let Y; j(k) denote a binary variable such that its value y; j(k) equals one when an interaction
arc exists between players labeled by i and j, and equals zero otherwise. Then the arc set can
be denoted as E(k) = {(i,/)ly; (k) = 1,i,j € N}, and the structure estimation problem can
be cast as a constrained optimization problem over the arc variables Y; j(k). In many human
team activities, such as sports, proximity is an indication of potential interactions and, there-
fore, in this article the DMRF graph structure is indicative of interrelationships between spatial
neighbors. Other representations are also possible, depending on the application, and may be
adopted in the proposed approach with small modifications. Then, the Euclidean distance d; (k) =
llpi (k) —p;(k)|l between every pair of players is used to construct an energy function that is linear
in the realizations of the arc variables Y; ;(k),

E(Z(k),&(k)) = Z di,j (k) yi,; (k) (15)

(i,/)e&(k)

such that the optimal arc configuration corresponds to the minimum of the energy function. Subse-
quently, minimizing the energy function can be approached by solving an Integer Linear Program

min >, di Ky (k) (16)
(i) B (k)
yi,j(k) = y;,i(k), V(i j) € E(k) (17)
sbito >y =1, VjeN (18)
ieN
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Z yijk) <2, VieN (19)
ieN
y;,j(k) € {0,1}, Y(i,j) € &(k). (20)

The constraint in (17) guarantees that interactions are symmetric, and (18)—(19) specify that a node
has a minimum of one and maximum of two arcs connecting to its spatial neighbours, resulting
in a sparse structure. Although only the proximity feature is considered, the proposed method is
a generic algorithm that can incorporate other features to estimate social interactions. Details are
referred to the previous work [17]. After &(k) is estimated, the joint probability distribution of the
role variables in (11) is factorized as the product of potential functions over &(k).

4.2 Spatio-temporal MRF Model

In this subsection, an approach is presented for reconstructing the temporal evolution of random
variables X (k) across frames to recursively estimate the joint role labeling using a sequence of
feature vectors and the DMRF model of a single frame derived in (11). Let y(X;(k — 1), X;(k))
denote the temporal potential function that measures the compatibility of temporal transitions
between X;(k — 1) and X;(k). The temporal potential function can be modeled by a transition
matrix W, € R®*R such that

y(Xi(k =1) = n,Xi(k) =m) £ 1, - W; - 1. (21)

The temporal potential function can be integrated with the pairwise potential function to con-
struct a joint state transition function

POXR)IX(k = 1) e [ [y Otk = 10.00) [ vk, X, (k). (22)

ieN i,je&(k)

On the other hand, the product of unary potentials can be treated as the joint likelihood function,
assuming that individual features are conditionally independent given the realization of random
variables

PZBIXH) = [ [ PE0Xi®) = [ ] 605H). Zi(k)). (23)
ieN ieN

Let Z(1,k) = {Z(I)]1 < I < k} denote a sequence of extracted feature vectors obtained from
an initial frame (I = 1) up to the kth frame. Then, the joint probability of X (k) can be recursively
estimated from Z(1, k) in a fashion similar to Bayesian filtering [16]

P(X(k)IZ(Lk))=%P(Z(k)IX(k)) Z PX(K)IX(k = 1))P(X(k-1)I1Z(1,k-1)), (24)
X (k-1)

where C is the partition function that guarantees P(X(k)|Z(1,k)) is a valid distribution. The
proposed spatio-temporal MRF model is illustrated in Figure 8. The challenge arises because
P(X(k)|Z(1,k)) is a multi-dimensional joint distribution that has significant computational ramifi-
cations. In order to keep the computation tractable, the joint distribution is achieved via the MCMC
sampling method [1, 7, 14] by constructing a set of random samples that constitute a Markov chain
whose stationary distribution converges to the desired distribution.

4.3 Learning of Potential Functions

The MRF model is trained in an incremental manner [2] in which the parameters of unary po-
tentials are first trained and then fixed to learn the pairwise potentials. This incremental training
allows the pairwise potentials to be built upon strong unary potentials, which makes the training
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Fig. 8. Spatio-temporal MRF model for modeling players’ roles.

more efficient because otherwise the pairwise potentials may not be able to capture the signifi-
cant interactions from misleading unary potentials. In particular, the unary potential is trained by
minimizing the cross entropy loss function, whereas the pairwise potential can be learned using
the structural support vector machine framework [17, 34] or using domain knowledge about the
relationship between different roles. This two-stage learning is performed in a frame-wise manner
by leaving out the temporal transition matrix, which is fine-tuned at last on the training database.
This incremental training allows the model to learn specific information presented in each poten-
tial function [2] and reduces the computational burden that would otherwise be incurred if all
potential functions are learned together.

4.4 MCMC Inference

Inferring a role labeling X (k) from the joint distribution P(X (k)| Z(1, k)) suffers from an enormous
combinatorial complexity. Naively searching through the set of all possible labeling is intractable
because the set has a cardinality that is exponential in the number of states. This article adopts
the MCMC method [1, 14] to address the computational ramifications, which generates a Markov
chain over the space of the joint configuration X (k), such that the chain has a stationary distribu-
tion converging to P(X(k)|Z(1,k)). Assume the posterior P(X(k — 1)|Z(1,k — 1)) at time k — 1 is
represented by a set of Ny € R* samples {X (k — 1)(©) };isl, and each sample corresponds to a joint
role labeling of all players, i.e., X (k— 1)) = [X;(k—1)(© ... Xn(k—1)©]T. Then, the Monte
Carlo approximation to the posterior distribution in (24) at time k is

Ns
POCIZ(1.) = ZPERIXE) Y PRIk = 1)) (25)
=1
Substitute (22-23) into (25), which gives
N
POCRIZO.R) ~ = [ 6000 Zak) [T poat.x560) Y [ Ttk - 0. xi00)
ieN i,je&E(k) [

(26)
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resulting in a sample-based representation for the distribution P(X (k)| Z(1,k)) ~ {X(k)© }gisl. The
Metropolis-Hastings (MH) algorithm with the symmetric random walk proposal distribution
[1, 14] is implemented for simulating the Markov chain.

5 ANTICIPATION MODEL

The goal of action anticipation is to predict a set of key players and their future actions as
time evolves. Existing methods can not be easily adapted to the action anticipation problem
(problem 2) because they do not take into account the time varying team strategy and players’
roles, which are core to team actions. The anticipation model presented in this article differs from
the existing methods by the input information exploited, which aggregates inferred hidden vari-
ables (inferred team strategy and players’ roles) with explicit visual features, forming a rich input
representation. The prediction of key players, K C N, is first achieved via (8-9). Subsequently,
for each predicted key player, i € K, the action anticipation model merges four types of infor-
mation corresponding to the current scene segment, i.e., {Sp, Xi m>Ai.m> Pi.m}, to anticipate the
future action A; ,+1. The representation of input segments directly affects the learning efficiency
and computational cost of the model. Thus, it is worth exploring a compact representation of
{Sm,Xi.m»>Ai.m, Pi.m}. Based on the definition of the scene change point and scene segment in
(4-6), the segment variable of team strategy, S,, (Table 1), takes a constant value within the scene
segment V,,. Hence, S,, can be fully defined by its value at the current time, x, and the duration
of V,, up to k, that is, S,;, = (S(k), dp). Although values of X; ,, A; m, and P; ,, can vary within a
scene segment, it is observed that future actions are most closely related to their respective values
at the current time x. Furthermore, this article seeks a frame-wise representation of the anticipa-
tion input and output, such that they can be updated instantaneously as time unfolds. As a result,
only A;(k), Xj(k), and p;(kx) are preserved as inputs, as shown in Figure 9, which, together with
(S(x), dy,), constitute an input vector

u;(k) = [S(k) Xi(k) Ai(x) pit)T  dn]?, (27)

where the time-varying characteristic of d,, represents the variable duration of the team strategy
S(x). Likewise, the anticipation output, A; ,+1, is designed to have an instantaneous representation
of the future actions. Let t; denote the time to onset, that is, the amount of time until the onset of
Aj m+1, and let dy,41 denote the duration of A; p+1. Then, A; p,41 canbe defined as A; 41 = (Ai(k+
ts), dm+1), as shown in Figure 9(b). Equivalently, A; ,+1 can be specified by a vector representation
comprising three unknown variables

Vi(k) = [Ai(k + 1)t dmar]” (28)

It follows from (27-28) that the goal of the action anticipation task is to predict y;(x) based on
u; (k) as time evolves.

An MLP is designed to perform the anticipation task based on the proposed input-output rep-
resentation in (27-28). Categorical variables in u;(x) are converted to binary representations via
one-hot encoding. The encoded u;(x) is passed through two branches, as shown in Figure 10,
where the top branch is configured to output a probabilitys distribution for the discrete variable
A;j(k +t5) and the bottom branch generates two positive scalar values for the continuous variables,
ts and d,,41, respectively. In particular, the top branch first maps the input vector to a latent vector,
h,, using a FC layer followed by the relu-activation function

h; = relu(Wyu;(x)), (29)
where Wy is the weight matrix. Subsequently, h; is fed to the output layer, composed of a FC

layer and the softmax activation function, to generate the conditional probability distribution of
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Fig. 9. Input and output segment for action anticipation of the ith key player (a) and the simplified instan-
taneous representation (b).

P(A;(k+ts)|u;(k)). Let A = {1, 2,...,A} denote the range of the action classes, where each integer,
a € A, represents a semantic action label, and W,; = [w; ... wa]? denote the weight matrix
of the output FC layer. Then, P(A;(x + t5) = alu;(k)) is computed as

exp (wghi)
Sl exp (Wi hi)

and the action class with the highest probability is chosen as the anticipated action. Although
the bottom branch adopts the same structure as the top branch, the FC-layers can have different
dimensions and the output activation function is designed to be a relu-activation function for
guaranteeing real positive values of t; and d,,,+1. Let Wy, denote the weights of the hidden FC layer
in the bottom branch, and W, = [w, w¢]” denote the weights of the corresponding output FC
layer. Then, t; and d,,;; are obtained as follows:

P(Ai(k + t5) = alu;(k)) =

aeA (30)

h, = relu (Wpau;(x)). (31)
ty = relu (wlhy)
dms1 = relu (wghz)

The complete set of the MLP parameters, ® 4 = {Wp1, Wya, Wy1, Wy2}, is trained by minimizing an
anticipation loss that is a function of the ground truth and the actual predicted output. In particular,
the loss function is formulated as the summation of the cross-entropy loss of the discrete action
variable, A;(k + t;), and the mean squared loss of the two timing variables, t; and d;;+1.

In summary, the input-output representation in (27-28) allows the input to be updated in
each frame and the anticipation output to progressively change as more observations stream in.
Furthermore, the trained model is shared across all players, and, therefore, anticipation for multiple
players can be performed simultaneously by constructing an input vector for each of them.

6 EXPERIMENTS

In this section, experiments are conducted in order to validate the accuracy of the proposed meth-
ods. Using the Volleyball Activity Dataset [32], a supervised training database for the proposed
inference and anticipation algorithms was obtained by annotating team strategies, player’s roles,
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Fig. 10. MLP for action anticipation.

player’s actions, and other necessary visual and positional information. Despite additional super-
vision required for learning the intermediate hidden variables, the overall labeling effort is less
than that required by deep neural network models for action anticipation trained solely on im-
ages. The reason is that the proposed approach exploits the problem structure and incorporates
domain knowledge before training the DMRF and MLP models. The inference and anticipation
results are analyzed qualitatively and quantitatively on the testing data. Comparison with existing
work on action anticipation was unfortunately not possible because existing algorithms are only
applicable to single-agent or dual-agent activities [9, 22, 41, 50]. Therefore, the experiments in
this article focused on evaluating the overall performance of the inference and anticipation model.
Moreover, comparative studies (Section 6.2) that involve three types of experiments are carried
out to determine the anticipation performance variability as a function of the hidden variables
and corresponding inference accuracy.

6.1 Inference and Action Anticipation Results

The DMRF inference results are shown in Figure 11 for a sample sequence of frames extracted from
a testing video clip, where the inferred team strategies and players’ roles evolve over time. Notice
that a team strategy spans over several consecutive frames, during which the action and spatial
layout of players may be shifted, but not qualified to be inferred as a different category. The DMRF
model presented in Section 4 correctly infers that the team strategy changes from “attack | block”
(Figure 11(a)) to “defense | pass” (Figure 11(b—c)) to “defense | set” (Figure 11(d)), exemplifying the
algorithm’s robustness to the dynamically evolving scenes. Similarly, the players’ roles change as
the game unfolds. For example, the role of player 3 alters from “right-hitter” to “blocker”, whereas
player 7, originally a “blocker”, becomes a “left-hitter”. For comparison purposes, ground truth
labels of the false inference results are shown in yellow above the (white) inferred roles in Figure 11.
It is seen that inference failures are likely to happen when players are shifting to new locations.
For instance, the algorithm mistakenly infers the roles of player 9 and 10 in Figure 11(b). However,
as more observations are received, the updated inference results would be self-corrected and thus
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BL: blocker, DP: defense-passer, DL: defense-libero, MH: middle-hitter, LH: left-hitter, OP: offense-passer,
OL: offense-libero, RH: right-hitter, ST: setter

Fig. 11. Evolution of the inferred team strategy from “attack | block” (a) to “defense | pass” (b—c) to “defense
| set” (d) and the inferred players’ roles in each frame.

match the ground truth (Figure 11(c-d)). It is notable that such kind of error is inevitable, even for
human experts who identify players’ roles in a transitioning process without further information
such as a player’s name or jersey number, which is out of the scope of this article.

Action anticipation is performed using inferred team strategy and players roles, which is in ac-
cordance with Experiment 3 in Section 6.2. Anticipation results are shown in Figure 12-14 for two
testing video clips with a framerate of 25 fps. Figure 12(a) shows that the setter, marked by the black
bounding box, is predicted as the key player who will dominate the game based on the inferred
role and team strategy. The observed action, the ground truth future action, and the anticipated
action are visualized in the bar chart of Figure 12(b), and the red vertical line indicates where the
current frame is temporally located in the testing sequence. More specifically, the first segment of
the middle and bottom bar is of the same color as the top bar, representing that the current action
would keep until the onset of the future action with a different color. The anticipation MLP gives
the credible prediction of the key player who will be setting the ball, in spite of the discrepancy
of 7 frames (0.28s) between the predicted timing and ground truth, as shown in the length of the
middle and bottom bars (Figure 12(b)). Moreover, as time evolves from Figure 12(b) to 12(d), the
difference in timing gradually reduces, indicating the update of anticipation result as the future
unfolds.

On the other hand, more than one individuals can be predicted as key players, as shown in
Figure 13, where the three key players are marked by the black bounding boxes. Based on a short
observation sequence of 7 frames (0.28 s), the anticipation MLP predicts that both middle-hitter
(player 8) and left-hitter (player 10) will launch a spiking, although the ground truth shows only
the left-hitter eventually spikes the ball. Such mistake or conservatism is inevitable because it is yet
uncertain in this moment who would launch the final attack as they both have great opportunity.
This is also a general tactic when one of the hitters potentially makes a feint in order to distract
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Fig. 12. The anticipated key player and action in the 8t frame (a-b) and the 28" frame (c-d) in a testing

video clip.
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Fig. 13. Three key players (a) and the anticipated actions (b-d) in the 7:% frame of a testing video.

blockers of the opposing team. As the game proceeds, the anticipated action of the middle-hitter
evolves, finally reaching to the ground truth, as illustrated in Figure 14(c). In addition, the onset
and duration of the anticipated actions are indicated by the change of color and the length of the
bars, respectively.
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Fig. 14. Three key players (a) and the anticipated actions (b-d) in the 18" frame of a testing video.

6.2 Performance Analysis and Results

The effectiveness of the inference and action anticipation algorithms presented in the previous
sections is demonstrated using the metrics known as multi-class average precision (APr), multi-
class average recall (ARc), and multi-class average accuracy (Ac). The APr score concerns the
proportion of inferred values, consisting of both true positive (TP) and false positive (FP), that
is actually true (i.e., APr = TP/(TP + FP)). In contrast, the ARc score is the proportion of ground
truth labels, including both TP and false negative (FN), that is correctly inferred (i.e., ARc =
TP/(TP + FN)). For both metrics, higher values correspond to better performance. Finally, Ac is
defined as the harmonic mean of APr and ARc, which is also known as the F1-score

APr x ARc
Ac=2—""—, (32)
APr + ARc
Two hidden variables, the team strategy (S(x)) and the players’ roles (X (k)), are inferred in each
frame with the overall results presented in Table 2. A comparative study is performed to assess
the performance of the anticipation model as well as the robustness of the holistic framework, i.e.,
the dependence of the anticipating ability on the inferred hidden variables.
The comparative study involves three types of experiments aimed at determining the perfor-
mance variability as a function of the hidden variables and corresponding inference accuracy:

— Experiment 1: perfect knowledge of team strategy (S(x)) and player roles (X(k));
— Experiment 2: inferred team strategy (S(x)) and perfect knowledge of player roles (X (x));
— Experiment 3: inferred team strategy (S(x)) and player roles (X (x)).

The purpose of the first experiment is to determine the performance of the action anticipation
independently of the inference algorithm. The results in Table 2 show the important influence
that the player role and team strategy have on the solution of the action anticipation problem
(problem 2). As a result, the action anticipation performance degrades as errors are introduced
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Table 2. Inference and Action Anticipation Performance

Experiment Average Precision Average Recall Average Accuracy
Team strategy inference 0.87 0.82 84.43%

Role inference 0.88 0.86 86.99%

Experiment 1 0.92 0.89 90.47%

Experiment 2 0.88 0.86 86.99%

Experiment 3 0.81 0.80 80.50%

Table 3. Ablation Study Regarding the Hidden Role Variables

Model Average Precision Average Recall Average Accuracy
Experiment 3 0.81 0.80 80.50%
Experiment 4 0.71 0.69 69.99%

in the inference stage, through Experiments 2 and 3. This is because, despite the excellent per-
formance of the DMRF algorithm (Table 2), inferring the hidden variables from video introduces
some errors (compared to perfect knowledge) that are, then, propagated to the action anticipation
algorithm.

The advantage of this holistic approach is that action anticipation draws from the aggregation
of both implicit hidden variables and explicit visual features. Therefore, errors from one source of
information are potentially compensated by information obtained from other features. The per-
formance results could be further improved by leveraging other variables and sensor modalities,
which are easily incorporated in the proposed approach by augmenting the feature vectors. In
addition, an ablation study is performed with a variant of the proposed model that excludes the
inferred players’ roles from the proposed holistic framework shown in Figure 4:

— Experiment 4: action anticipation without player roles (X (x)) in the model input.

Results of Experiment 4 are compared against results of the holistic approach (Experiment 3) in
Table 3. Without the knowledge of players’ roles, Experiment 4 sees a significant drop in the action
anticipation accuracy, which, by contrast, shows the improvement brought by the inference of
hidden role variables to the solution of the action anticipation problem (problem 2).

The ability to predict the onset and duration of a future action is also critical, as well as coupled
with the problem of anticipating the action type, since many algorithms assume the starting time
is known or even observed. Team sports offer an excellent benchmark problem, because players
constantly adjust the timing and duration of their actions, speeding up or slowing down actions
and behaviors for strategic purposes. These difficulties are exacerbated by varying contexts, for
example, because the trajectory of the ball and the skills of the opponents differ greatly from one
team to another, yielding different samples in the training and testing datasets. The performance of
action timing prediction is evaluated by the time-relative error, which is defined as the ratio of the
absolute prediction error to the corresponding prediction horizon. Then, the mean of the time-
relative error (MTRE) of each testing instance is used as the metric to assess the performance on
the test database. The proposed model achieves an MTRE of 14.57% and 15.67% for the prediction
of the action onset and duration, respectively. When compared to the LSTM solution proposed
in [22] for anticipating an individual’s cooking activity, the DMRF-MLP approach presented in
this article achieves a comparable prediction horizon (0.48-1.84 s, versus 0.25-2 s) using a smaller
observation time window (0.12-1.80 s, versus 1.75-3.50 s) and, thus, is applicable to fast actions
and highly dynamic activities, such as sports.
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7 CONCLUSION

This article presents a holistic approach that integrates image recognition, state estimation, and
inference of hidden variables for the challenging problem of action anticipation in human teams.
The approach is demonstrated on the team sport of volleyball, in which the team strategy and play-
ers’ roles are unobservable and change significantly over time. The team strategy is first inferred
by constructing a team feature descriptor that aggregates domain knowledge of volleyball games
and features of individual players. Sequentially, the players’ roles, modeled probabilistically as the
DMREF graph, can be inferred using a MCMC sampling method. The dynamic graph structure that
captures player interrelationships can be estimated by solving an integer linear program in each
frame. By leveraging holistic information about the scene, including inferred team strategy, play-
ers’ roles, as well as domain knowledge and instantaneous visual features, the action anticipation
MLP is able to predict the semantic label and timing of the future actions by multiple interacting
key players on the team. The numerical experiments show that this novel approach achieves an
average accuracy of 84.43% for team strategy inference, 86.99% for role inference, and 80.50% for
action anticipation. Additionally, the action onset and duration are predicted with a mean time-
relative error of 14.57% and 15.67%, respectively.

REFERENCES

[1] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I. Jordan. 2003. An introduction to MCMC for
machine learning. Machine Learning 50, 1 (2003), 5-43.

[2] Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Mans Larsson, Alexander Kirillov,

Bogdan Savchynskyy, Carsten Rother, Fredrik Kahl, and Philip H. S. Torr. 2018. Conditional random fields meet deep

neural networks for semantic segmentation: Combining probabilistic graphical models with deep learning for struc-

tured prediction. IEEE Signal Processing Magazine 35, 1 (2018), 37-52.

Sina Mokhtarzadeh Azar, Mina Ghadimi Atigh, Ahmad Nickabadi, and Alexandre Alahi. 2019. Convolutional rela-

tional machine for group activity recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. Long Beach, 7892-7901.

[4] Timur Bagautdinov, Alexandre Alahi, Frangois Fleuret, Pascal Fua, and Silvio Savarese. 2017. Social scene under-
standing: End-to-end multi-person action localization and collective activity recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Honolulu, 4315-4324.

[5] Linchao Bao, Baoyuan Wu, and Wei Liu. 2018. CNN in MRF: Video object segmentation via inference in a CNN-based
higher-order spatio-temporal MRF. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
5977-5986.

[6] Murchana Baruah and Bonny Banerjee. 2020. A multimodal predictive agent model for human interaction generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 1022-1023.

[7] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. springer.

[8] Yang Cao, Yupin Luo, and Shiyuan Yang. 2011. Image denoising based on hierarchical Markov random field. Pattern
Recognition Letters 32, 2 (2011), 368-374.

[9] Anirban Chakraborty and Amit K. Roy-Chowdhury. 2014. Context-aware activity forecasting. In Proceedings of the
Asian Conference on Computer Vision. Springer, Singapore, 21-36.

[3

—_

[10] Michael Chan, Gabor T. Herman, and Emanuel Levitan. 1995. Bayesian image reconstruction using a high-order inter-
acting MRF model. In Proceedings of the International Conference on Image Analysis and Processing. Springer, 608—614.

[11] Chao Chen, Shuhai Jiao, Shu Zhang, Weichen Liu, Liang Feng, and Yasha Wang. 2018. TripImputor: Real-time imputing
taxi trip purpose leveraging multi-sourced urban data. IEEE Transactions on Intelligent Transportation Systems 19, 10
(2018), 3292-3304.

[12] Chao Chen, Qiang Liu, Xingchen Wang, Chengwu Liao, and Daqing Zhang. 2021. semi-Traj2Graph: Identifying fine-
grained driving style with GPS trajectory data via multi-task learning. IEEE Transactions on Big Data (2021).

[13] Evan Cheshire, Cibele Halasz, and Jose Krause Perin. 2013. Player tracking and analysis of basketball plays. In Pro-

ceedings of the European Conference of Computer Vision.

Siddhartha Chib and Srikanth Ramamurthy. 2010. Tailored randomized block MCMC methods with application to

DSGE models. Journal of Econometrics 155, 1 (2010), 19-38.

[15] Kenneth James Williams Craik. 1952. The Nature of Explanation. Vol. 445. CUP Archive.

(14

flan

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 95. Publication date: September 2022.



95:22 J. Dong et al.

[16] Petar M. Djuric, Jayesh H. Kotecha, Jianqui Zhang, Yufei Huang, Tadesse Ghirmai, Ménica F. Bugallo, and Joaquin
Miguez. 2003. Particle filtering. IEEE Signal Processing Magazine 20, 5 (2003), 19-38.

[17] Junyi Dong, Pingping Zhu, and Silvia Ferrari. 2020. Oriented pedestrian social interaction modeling and inference. In
Proceedings of the 2020 American Control Conference. IEEE, Virtual, 1373-1370.

[18] Nour Eldin Elmadany, Yifeng He, and Ling Guan. 2021. Improving action recognition via temporal and complementary
learning. ACM Transactions on Intelligent Systems and Technology 12, 3 (2021), 1-24.

[19] Dirk Farin, Susanne Krabbe, Wolfgang Effelsberg, et al. 2003. Robust camera calibration for sport videos using court
models. In Proceedings of the Storage and Retrieval Methods and Applications for Multimedia 2004, Vol. 5307. Interna-
tional Society for Optics and Photonics, 80-91.

[20] Alircza Fathi, Jessica K. Hodgins, and James M. Rehg. 2012. Social interactions: A first-person perspective. In Proceed-
ings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Providence, 1226-1233.

[21] Silvia Ferrari and Thomas A. Wettergren. 2021. Information-Driven Planning and Control. MIT Press.

[22] Antonino Furnari and Giovanni Maria Farinella. 2019. What would you expect? Anticipating egocentric actions with
rolling-unrolling Istms and modality attention. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. Long Beach, 6252-6261.

[23] Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes. 2019. Predicting the future: A jointly
learnt model for action anticipation. In Proceedings of the IEEE International Conference on Computer Vision. Long
Beach, 5562-5571.

[24] Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 6 (1984), 721-741.

[25] Anthony Giddens and Philip W. Sutton. 2021. Essential Concepts in Sociology. John Wiley & Sons.

[26] Josep M. Gonfaus, Xavier Boix, Joost Van de Weijer, Andrew D. Bagdanov, Joan Serrat, and Jordi Gonzalez. 2010. Har-
mony potentials for joint classification and segmentation. In Proceedings of the 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE, San Francisco, 3280-3287.

[27] Ankur Gupta, James J. Little, and Robert J. Woodham. 2011. Using line and ellipse features for rectification of broad-
cast hockey video. In Proceedings of the 2011 Canadian Conference on Computer and Robot Vision. IEEE, St Johns,
32-39.

[28] Fasih Haider, Fahim A. Salim, Dees B. W. Postma, Robby Van Delden, Dennis Reidsma, Bert-Jan van Beijnum, and
Saturnino Luz. 2020. A super-bagging method for volleyball action recognition using wearable sensors. Multimodal
Technologies and Interaction 4, 2 (2020), 33.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask r-cnn. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision. Venice, 2961-2969.

[30] De-AnHuang and Kris M. Kitani. 2014. Action-reaction: Forecasting the dynamics of human interaction. In Proceedings
of the European Conference on Computer Vision. Springer, Zurich, 489-504.

[31] Mostafa S. Ibrahim and Greg Mori. 2018. Hierarchical relational networks for group activity recognition and retrieval.
In Proceedings of the European Conference on Computer Vision. Munich, 721-736.

[32] Mostafa S. Ibrahim, Srikanth Muralidharan, Zhiwei Deng, Arash Vahdat, and Greg Mori. 2016. A hierarchical deep
temporal model for group activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Las Vegas, 1971-1980.

[33] Luca Iocchi. 2006. Robust color segmentation through adaptive color distribution transformation. In Proceedings of
the Robot Soccer World Cup. Springer, 287-295.

[34] Thorsten Joachims. 2006. Structured output prediction with support vector machines. In Proceedings of the Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition.
Springer, Hong Kong, 1-7.

[35] Qiuhong Ke, Mario Fritz, and Bernt Schiele. 2019. Time-conditioned action anticipation in one shot. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 9925-9934.

[36] Davis E. King. 2009. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research 10, 7 (2009),
1755-1758.

[37] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT press.

[38] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. 2014. A hierarchical representation for future action prediction. In
Proceedings of the European Conference on Computer Vision. Springer, Zurich, 689-704.

[39] Kang Li and Yun Fu. 2014. Prediction of human activity by discovering temporal sequence patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence 36, 8 (2014), 1644-1657.

[40] Ralph Linton. 1936. The study of man: An introduction. D. Appleton-Century company, incorporated.

[41] Tahmida Mahmud, Mahmudul Hasan, and Amit K. Roy-Chowdhury. 2017. Joint prediction of activity labels and
starting times in untrimmed videos. In Proceedings of the IEEE International Conference on Computer Vision. Venice,
5773-5782.

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 95. Publication date: September 2022.



A Holistic Approach for Role Inference and Action Anticipation in Human Teams 95:23

[42
[43
[44
[45
[46
[47

(48

[49

(50

(51

[52

(53

[54
[55

(56

[60
[61

(62

(63
(64
(65

(66

] Partha Pratim Mondal, Giuseppe Vicidomini, and Alberto Diaspro. 2007. Markov random field aided Bayesian ap-
proach for image reconstruction in confocal microscopy. Journal of Applied Physics 102, 4 (2007), 044701.

] M. Naveenkumar and S. Domnic. 2020. Deep ensemble network using distance maps and body part features for skele-
ton based action recognition. Pattern Recognition 100 (2020), 107125.

] Lukas Neumann, Andrew Zisserman, and Andrea Vedaldi. 2019. Future event prediction: If and when. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, 0-0.

] Sebastian Nowozin, Christoph H. Lampert 2011. Structured learning and prediction in computer vision. Foundations
and Trends® in Computer Graphics and Vision 6, 3—4 (2011), 185-365.

] Vignesh Ramanathan, Bangpeng Yao, and Li Fei-Fei. 2013. Social role discovery in human events. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Portland, 2475-2482.

] Joao Ramos, Rui J. Lopes, and Duarte Araujo. 2018. What’s next in complex networks? Capturing the concept of
attacking play in invasive team sports. Sports Medicine 48, 1 (2018), 17-28.

] Jodo Ribeiro, Keith Davids, Duarte Araujo, Pedro Silva, Jodo Ramos, Rui Lopes, and Julio Garganta. 2019. The role of
hypernetworks as a multilevel methodology for modelling and understanding dynamics of team sports performance.
Sports Medicine 49, 9 (2019), 1337-1344.

] Cristian Rodriguez, Basura Fernando, and Hongdong Li. 2018. Action anticipation by predicting future dynamic im-
ages. In Proceedings of the European Conference on Computer Vision. Munich, 1-10.

] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Basura Fernando, Lars Petersson, and Lars
Andersson. 2017. Encouraging Istms to anticipate actions very early. In Proceedings of the IEEE International Conference
on Computer Vision. Venice, 280-289.

] Paul Schnitzspan, Mario Fritz, Stefan Roth, and Bernt Schiele. 2009. Discriminative structure learning of hierarchi-
cal representations for object detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, Miami, 2238-2245.

] Yuge Shi, Basura Fernando, and Richard Hartley. 2018. Action anticipation with rbf kernelized feature mapping rnn.
In Proceedings of the European Conference on Computer Vision. Munich, 301-317.

] Tianmin Shu, Sinisa Todorovic, and Song-Chun Zhu. 2017. Cern: Confidence-energy recurrent network for group
activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,
5523-5531.

] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. 2020. Skeleton-based action recognition with hierar-
chical spatial reasoning and temporal stack learning network. Pattern Recognition 107 (2020), 107511.

] Khurram Soomro, Haroon Idrees, and Mubarak Shah. 2018. Online localization and prediction of actions and interac-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 2 (2018), 459-472.

] Yansong Tang, Jiwen Lu, Zian Wang, Ming Yang, and Jie Zhou. 2019. Learning semantics-preserving attention
and contextual interaction for group activity recognition. IEEE Transactions on Image Processing 28, 10 (2019),
4997-5012.

] Rajkumar Theagarajan, Federico Pala, Xiu Zhang, and Bir Bhanu. 2018. Soccer: Who has the ball? Generating vi-
sual analytics and player statistics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. Salt Lake City, 1749-1757.

] Henry L. Tischler. 2013. Cengage Advantage Books: Introduction to Sociology. Cengage Learning.

] Xiaofeng Tong, Jia Liu, Tao Wang, and Yimin Zhang. 2011. Automatic player labeling, tracking and field registration

and trajectory mapping in broadcast soccer video. ACM Transactions on Intelligent Systems and Technology 2, 2 (2011),

1-32.

A. Vedaldi and B. Fulkerson. 2008. VLFeat: An open and portable library of computer vision algorithms. Retrieved

from http://www.vlfeat.org/.

] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. 2016. Anticipating visual representations from unlabeled
video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 98-106.

] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. 2016. An uncertain future: Forecasting from static
images using variational autoencoders. In Proceedings of the European Conference on Computer Vision. Springer,
835-851.

] Suhang Wang, Charu Aggarwal, and Huan Liu. 2018. Random-forest-inspired neural networks. ACM Transactions on
Intelligent Systems and Technology 9, 6 (2018), 1-25.

] Yingying Wang, Qingchun Ji, and Chenglin Zhou. 2019. Effect of prior cues on action anticipation in soccer goalkeep-
ers. Psychology of Sport and Exercise 43 (2019), 137-143.

] Qiong Wu and Pierre Boulanger. 2016. Enhanced reweighted MRFs for efficient fashion image parsing. ACM Transac-
tions on Multimedia Computing, Communications, and Applications 12, 3 (2016), 1-16.

] Zhirong Wu, Dahua Lin, and Xiaoou Tang. 2016. Deep markov random field for image modeling. In Proceedings of the
European Conference on Computer Vision. Springer, Amsterdam, 295-312.

=

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 95. Publication date: September 2022.


http://www.vlfeat.org/

95:24 J. Dong et al.

[67] Rui Yan, Jinhui Tang, Xiangbo Shu, Zechao Li, and Qi Tian. 2018. Participation-contributed temporal dynamic
model for group activity recognition. In Proceedings of the 26th ACM International Conference on Multimedia. Seoul,
1292-1300.

[68] Shengping Zhang, Hongxun Yao, Xin Sun, and Shaohui Liu. 2012. Robust visual tracking using an effective appearance
model based on sparse coding. ACM Transactions on Intelligent Systems and Technology 3, 3 (2012), 1-18.

[69] Yu Zhu, Wenbin Chen, and Guodong Guo. 2015. Fusing multiple features for depth-based action recognition. ACM
Transactions on Intelligent Systems and Technology 6, 2 (2015), 1-20.

Received December 2021; revised March 2022; accepted April 2022

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 6, Article 95. Publication date: September 2022.



