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Multiobjective Algebraic Synthesis of Neural Control
Systems by Implicit Model Following
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Abstract—The advantages brought about by using classical
linear control theory in conjunction with neural approximators
have long been recognized in the literature. In particular, using
linear controllers to obtain the starting neural control design
has been shown to be a key step for the successful development
and implementation of adaptive-critic neural controllers. Despite
their adaptive capabilities, neural controllers are often criticized
for not providing the same performance and stability guarantees
as classical linear designs. Therefore, this paper develops an
algebraic synthesis procedure for designing dynamic output-feed-
back neural controllers that are closed-loop stable and meet the
same performance objectives as any classical linear design. The
performance synthesis problem is addressed by deriving implicit
model-following algebraic relationships between model matrices,
obtained from the classical design, and the neural control pa-
rameters. Additional linear matrix inequalities (LMIs) conditions
for closed-loop exponential stability of the neural controller are
derived using existing integral quadratic constraints (IQCs) for
operators with repeated slope-restricted nonlinearities. The ap-
proach is demonstrated by designing a recurrent neural network
controller for a highly maneuverable tailfin-controlled missile
that meets multiple design objectives, including pole placement
for transient tuning, and � performance in the presence of
parameter uncertainty, and command-input tracking.

Index Terms—Closed-loop stability, dynamic control systems,
linear matrix inequalities, neural control, output-feedback con-
trol, recurrent neural networks.

I. INTRODUCTION

M ANY practical applications require control systems
that can meet multiple objectives including closed-loop

stability and robustness, for safe operation in the presence of
uncertainties, as well as performance requirements pertaining
to noise, disturbance rejection, and transient response. A very
useful result from linear control theory is that a multiobjective
synthesis problem that combines quadratic closed-loop stability
with other objectives, such as and performance and
pole placement, can be approached by means of linear matrix
inequalities (LMIs) [1]. In recent years, considerable theoretical
advancements have been made regarding the stability and per-
formance of feedback neural systems (e.g., [2]–[16]). But, there
is yet no simple way to extend the insights and applicability
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afforded by linear control methods, such as multiobjective
synthesis, to the specification and preliminary design of neural
controllers. The advantages brought about by using linear
controllers to design and train neural network controllers have
long been recognized in the literature [17]–[25]. In particular,
using linear controllers to obtain the starting neural control
design has been shown to be a key step in the development of
several highly effective adaptive neural controllers (e.g., see
[25]–[29] and references therein). One reason is that the starting
design provides adequate performance while the adaptation
compensates for nonlinearities and unmodeled dynamics.
Another reason is that many popular adaptation schemes,
such as adaptive critics, improve iteratively upon the existing
approximation of the control law. Therefore, the starting neural
control design provides a performance baseline for the adaptive
controller [25], [30].

Prior research [27] showed that, by adapting to online aircraft
dynamics through adaptive critics, a neural flight controller ini-
tialized with a classical gain-scheduled linear design [24] can
prevent stall and loss of control during unexpected control fail-
ures and maneuvers. Despite exhibiting excellent performance
in numerical tests, neural controllers that are either augmented
or initialized by a linear design, such as [20] and [23]–[26], typi-
cally are not accompanied by guarantees of closed-loop stability
or performance away from the operating set points that are used
for training. This limiting factor may prevent the replacement
of linear controllers by neural networks in applications, such as
flight and power systems control, where a high level of safety
and performance must be guaranteed everywhere in the oper-
ating envelope. Therefore, this paper addresses the specification
of the starting neural control law, and shows that given any dy-
namic linear controller, a recurrent neural control system that
meets the same performance objectives and is closed-loop stable
can be synthesized by means of algebraic equations and LMIs.

As reviewed in [31], earlier synthesis procedures applicable
to the design of a starting neural control system based on linear
control methods rely on optimization-based training algorithms
that offer performance guarantees only in the vicinity of sample
operating points. Also, due to the presence of repeated nonlin-
earities, the closed-loop stability and performance guarantees of
the linear methods often cannot be extended to the trained neural
controller. Synthesis procedures that offer closed-loop stability
guarantees, on the other hand, rely on the assumption of a small
reconstruction error. But this assumption is not easily met in
solving the performance synthesis problem, due to the lack of
training algorithms that can determine the appropriate neural
network size and parameters required to ensure good dynamic
approximation over the entire operating envelope [31], [32].
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Recently, an algebraic technique for training neural networks
without relying on optimization algorithms was presented in
[33]. By using basic linear algebra, this technique determines
the size of the network that is necessary to achieve exact
matching of a given training set and computes the neural
parameters by solving linear systems of equations. In this
paper, this algebraic training technique is combined with an
implicit model-following framework to solve the performance
synthesis problem (Section IV). In implicit model following
(IMF), the control system is synthesized by determining an
algebraic relationship between the controller’s parameters and
the known parameters of an ideal model that specifies the
desired closed-loop response [34], [35]. In this paper, IMF is
applied to the neural network controller to guarantee that the
origin of the reconstruction error dynamics (where the error is
zero) is met at any set point of the closed-loop system and any
deviations from it decay exponentially fast. Then, in Section V,
stability LMIs obtained from the integral quadratic constraints
(IQCs) developed in [36] are used to guarantee that the resulting
closed-loop system is exponentially stable. In Section VII, the
approach is illustrated for a tailfin-controlled missile that must
meet a set of specifications including exponential stability,
tracking of a reference signal with minimal overshoot, and
adequate transient behavior, rolloff, and performance for
normalized parameter uncertainties.

II. PROBLEM STATEMENT

The advantages brought about by embedding prior linear
control knowledge in the starting design of adaptive neural con-
trollers have been demonstrated by several authors [17]–[27].
For example, in [27], an adaptive flight controller initialized
with linear multivariable controllers was shown to adapt
rapidly to unexpected control failures and nonlinear regimes,
in some cases preventing stall and loss of control. However,
neural controllers that are either augmented or initialized by
a linear design, such as [20], [23], [26], and [27], typically
are not accompanied by guarantees of closed-loop stability or
performance away from the operating set points that are used
for training. This is a hindering limitation in the replacement
of linear controllers by neural controllers in applications such
as flight and power control systems, where safety is a key
concern and the system to be controlled is expected to operate
in the linear regime most of the time. Consequently, this paper
addresses the synthesis of an output-feedback dynamic neural
controller that meets the following objectives:

1) it meets multiple performance objectives synthesized by a
set of dynamic linear controllers;

2) it is closed-loop exponentially stable.
As a result, neural network controllers are proven capable of
providing the same performance and safety guarantees as any
classical linear designs. By this approach, a set of linear con-
trollers is replaced by one global nonlinear controller comprised
entirely by a sigmoidal neural network that interpolates auto-
matically over the entire operating envelope. Since the neural
network controller is adaptive, this synthesis approach can be
used to obtain the starting action-network design in adaptive-
critic architectures [25]–[27].

III. BACKGROUND

Consider the class of affine nonlinear parameter-varying sys-
tems

(1)

which can be used to model a variety of plants, including mis-
siles, airplanes, robots, and electrical circuits [37], where

is the state, is the control, and
is the output. represents a disturbance and,

in this paper, it is used to capture parameter uncertainty over
the state space , as in [1], [6], and [38]. The state–space ma-
trices are known affine functions of a time-varying scheduling
vector , which contains physical parameters and
state variables that significantly influence the system dynamics.
As shown in [39] and [40], given any convex decomposition

in a box of , with a set of vertices
, , and , the affine pa-

rameter-dependent system (1) ranges in a matrix polytope with
vertices specified by , , , , and ,

. Therefore, (1) can be represented by state–space
models

(2)

and if denotes the system matrix of (1), then
, where is the system matrix of in

(2), and the coefficients are given by the decomposition of
[39]–[41]. From hereon, the shorthand notation ,

, , , and
is adopted for brevity.

Several techniques including multivariable control [42],
linear fractional transformations [37], and [40], [43]
have been developed to design gain-scheduled linear dynamic
controllers for (1) in the form

(3)

In particular, a gain-scheduled controller that is closed-loop
stable and meets multiple design objectives, including
and performance, and pole placement, can be obtained by
solving a multiobjective synthesis problem that results in sets of
LMIs, as shown in [1] and [41]. In this classical approach, given
a convex decomposition of , the state–space matrices of the
parameter-dependent controller (3) at any measured value of

in are obtained by convex interpolation of a set of linear
time-invariant (LTI) vertex controllers
[37], [44], where

(4)

In this paper, it is assumed that a set that achieves the
aforementioned design objectives is given, or may be obtained
via convex optimization. Then, is used to synthesize a
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Fig. 1. Basic feedback interconnection for IQC analysis.

Fig. 2. Feedback configuration for stability analysis.

global neural network controller that provides satisfactory
performance in . The main advantages of the neural net-
work controller over a classical gain-scheduled design, such
as convex interpolation, are that a single controller performs
the interpolation automatically over , and that, thanks to its
adaptive capabilities, the neural network can be immediately
implemented as the starting action-network design in an adap-
tive-critic architecture [25]–[27].

A. Background on IQCs for Systems
With Repeated Nonlinearities

This section is a review of the IQCs obtained in [36], which
are used in this paper to guarantee the closed-loop stability of
the neural network control system. IQC methods can be used to
analyze the stability and robustness of a feedback interconnec-
tion (Fig. 1) between a linear operator and a bounded causal
operator that is, possibly, nonlinear

(5)

where and . denotes the linear space
of all functions , which are square integrable
on any finite interval, and the signals and represent the in-
terconnection noise.

For stability analysis, consider the configuration in Fig. 2,
where is the transfer function of a stable linear system with
state–space realization

(6)

and suppose can be described by the IQC inequality

(7)

where denotes the Fourier transform at frequency , de-
notes the adjoint of , and is a Hermitian matrix function.

Then, under appropriate assumptions [45, Th. 1], the IQC sta-
bility theorem states that if there exists such that

(8)

the feedback interconnection of and is stable.
The class of all that define a valid IQC for a partic-

ular operator is convex and, in some cases, can be readily
found in the literature [45]. Following the approach proposed
in [46], the search for a suitable can be restricted to
a finite-dimensional subset and carried out by numerical opti-
mization. By applying the Kalman–Yakubovich–Popov lemma
[47], the inequality in (8) can be transformed into an LMI fea-
sibility problem. In the case of monotonic and slope-restricted
diagonal operators with repeated nonlinearities, this LMI feasi-
bility problem consists of showing that there exist constant ma-
trices and such that

(9)

where is the dimension of the state vector in (6), as proven
in [36]. In Section V, this result is used to guarantee the closed-
loop stability of the neural network controller by combining (9)
with the performance synthesis equations derived in the next
section.

IV. PERFORMANCE SYNTHESIS PROBLEM

The dynamic neural control law is formulated in terms of a
sector-bounded operator with repeated sigmoidal nonlineari-
ties

(10)

where , and the internal controller state
is a function of (as illustrated in Fig. 3). There-

fore, (10) is a recurrent neural network. The control is assumed
to be scalar without loss of generality. The adjustable param-
eters and , and the matrix functions

and that meet objectives 1) and 2)
in Section II are to be determined (Section VI). is a diagonal
operator with repeated sigmoidal functions

(11)

where denotes the th component of a signal . The
sigmoidal function is a bounded measurable func-
tion on , for which as , and as

, and, in this paper, it takes the form

(12)
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Fig. 3. State-feedback dynamic neural network controller.

It can be easily shown that (12) is monotonically nondecreasing
and slope restricted, and that it belongs to the sector , with

and . Therefore, the stability of a feedback inter-
connection between a linear operator and the sigmoidal operator

can be approached using the IQCs reviewed in Section III-A.
The performance synthesis problem is formulated using IMF.

Based on the problem statement in Section II, given the plant
(1) and the set (4), the objective is to design a controller with
repeated sigmoidal nonlinearities (10), such that the resulting
closed-loop dynamics given by

(13)

follow the model obtained from (1) and (3)

(14)

as closely as possible, and are exponentially stable, where
can be assumed to be invertible, and the time ar-

gument is omitted for simplicity. The model (14) is known and
specifies the desired closed-loop response with respect to mul-
tiple performance objectives (Section III).

Similarly to classical IMF techniques [34], [35], the model
(14) is used to find a suitable relationship between the neural
control parameters and and the known model matrices in
(14) (Section III). As in [34] and [35], let the generalized error
be defined as

(15)

where , , is the state of
the dynamic neural network controller (10), and is the state
of the dynamic linear controller (3). The error can also be
viewed as a reconstruction error in the training of the neural con-
trol system (10). A well-known result from multivariable control
theory is that linear model-following control systems can be de-
signed by requiring to go to zero as , as in [48] and
[49], or by minimizing its norm [42, pp. 520–524]. In this
paper, the generalized error dynamics and the algebraic training
approach presented in [33] are used to guarantee that the non-
linear closed-loop system (13) follows the performance speci-
fied by the model (14), and any deviations from the model decay

exponentially fast. Modifying the definition in [3], we say that
two systems are input–output and gradient equivalent, if they
are characterized by the same output and state derivatives when

. Then, the following theorem can be used to specify the
performance of a dynamic neural network controller.

Theorem 1: Given a set of LTI controllers , there exists
a controller (10) with sigmoidal nonlinearities that is
input–output equivalent to (3) for all , i.e., satisfies the
closed-loop requirements

(16)

if there exist a matrix and a vector
that satisfy the linear systems

(17)

and provided the matrices are invertible, where

(18)

(19)

(20)

(21)

(22)

(23)

(24)

, , where , is a known con-
stant, and the diagonal operator is defined in terms of the
sigmoid derivative

(25)

A proof is provided in Appendix I.
The linear systems in (17) have unknowns , , , and

. Therefore, if they are approached in the order provided,
they may be solved by linear algebra techniques. Theorem 1
specifies the number of sigmoidal nonlinearities and matrices

and . Also, (17) specifies satisfactory parameter
values for any matrix (provided and are invertible). As
shown in [33], generating a matrix such that and in (23)
and (24) are invertible is straightforward and effective in training
neural networks to approximate smooth nonlinear functions. In
this case, given a matrix of scheduling vectors, two matrices

and can always be found such that the first system in
(17) is satisfied, subsequently specifying both and . Then,
the second system in (17) is linear and square and can be used to
compute and . After both and are determined, the third
and last system in (17) is linear and square and can be used to
compute . An important consequence of Theorem 1 is that a
set of linear relationships between the neural control parameters
and the known vertices of (14) are established. Based on these
relationships, it can be easily shown that for all the
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feedback interconnection of the plant (1) and the neural network
controller (10), given by

(26)

where

and

(27)

is in the same form as the IQC feedback interconnection
(Fig. 2). It follows that the IQCs reviewed in Section III-A can
be used to derive closed-loop stability conditions (as shown
in Section V). Additionally, model-following performance
guarantees away from the vertices in (the training set points)
are given by the following result.

Theorem 2 (Model Following): Let denote the general-
ized error (15) between the closed-loop dynamics (13) and the
model (14). Assume the following.

i) The model is designed such that the matrices

(28)

with defined in (56), are Hurwitz.
ii) The controller parameters and satisfy the conditions

in Theorem 1.
iii) The disturbances rate of change is negligibly small.
Then, the error state equation can be written as the sum of a

linear nominal system and a nonlinear time-varying perturbation

(29)

and has an equilibrium point at the origin . For any set
point or nonzero equilibrium, one of the systems in (29) is at
its zero-equilibrium point , leading to perfect model fol-
lowing. Let be a positive–definite symmetric matrix that sat-
isfies the Lyapunov equation

(30)

where , , and
, such that is a Lyapunov function for the nom-

inal system . If the nonlinear control parameters
and satisfy the bounds

(31)
or the bounds

(32)

where

and (33)

are known matrices, then, the origin of the error (29) is an ex-
ponentially stable equilibrium.

A proof is provided in Appendix II.

Based on the results in this section, the performance of the dy-
namic neural control system can be specified through the linear
systems in (17) relating the model matrices to the neural param-
eters. Thus, perfect model following is guaranteed at any set
point of the closed-loop system and, if the controller parame-
ters also satisfy (31) or (32), any response deviations from the
models will decay exponentially fast. Also, using (17) and the
IQCs reviewed in Section III-A, the closed-loop stability of the
resulting neural network control system can be guaranteed as
shown in the next section.

V. CLOSED-LOOP STABILITY OF NEURAL

CONTROLLER VIA IQCS

By the synthesis problem formulation in Section IV, the
neural-network-controlled system (26) has the same form
as the IQC feedback interconnection (5). For the purpose of
stability analysis, the feedback configuration in Fig. 2, with
no interconnection noise, is considered. Since is a diagonal
operator with repeated sigmoidal nonlinearities that are mono-
tonically nondecreasing, slope restricted, and sector bounded
(Section IV), (9) can be used to analyze the closed-loop stability
of (26). However, when used for neural network synthesis, (9),
which is rewritten as (80), becomes a nonconvex problem due
to the presence of the products between the LMI variables
and the neural parameters (similarly to the problem in [6]).
Therefore, in the following proposition, a new stability LMI is
obtained that is less conservative than (9), and can be combined
with (17) to obtain new stability conditions that are linear with
respect to a matrix function of the neural parameters.

Proposition 1: Assume that for all ,
is asymptotically stable, and is the positive–defi-
nite solution of , with posi-
tive–definite , and . Then, the feedback in-
terconnection in (26) is exponentially stable if and only if there
exist diagonally dominant constant matrices , such
that

(34)

with . Then

(35)

A proof is provided in Appendix IV.
The LMI (34) presents several advantages with respect to the

original LMI (80), obtained from (9) in Appendix IV. Since (34)
is required to be negative semidefinite instead of negative def-
inite, it is sufficient to seek a feasible solution, which typically
is easier than to seek a strictly feasible one [41]. Also, as shown
by the inequalities in (35) and the proof in Appendix IV, the
second bound in (35), which is obtained from the LMI in (34),
is less conservative than the first bound, which is obtained from
the original LMI in (80). Since for all there always
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exists a solution , then and can be
chosen a priori for all , reducing the LMI variables to . Al-
though usually it is not desirable to eliminate LMI variables, in
this case, this result is useful because it allows to separate the
neural controller parameters and from the LMI variables.
As a result, in (34), and appear in different partitions of

. Consequently, (34) can be used to derive an LMI that is
linear with respect to a matrix function of and , as shown
by the following result.

Proposition 2: Assume that is asymptot-
ically stable for all , and satisfy the conditions
in Theorem 1, and is known from the posi-
tive–definite solutions of (81), such that
also is known and constant for . Then, if there exist

symmetric matrices that each allow a factorization
, with diagonally dominant, and such that

(36)

where is a negative–semidefinite matrix function of and
, given by (93), the feedback interconnection (26) is expo-

nentially stable.
A proof is provided in Appendix V.
It can be seen that (36) is linear with respect to the variables
and , because the neural parameters and are now con-

fined to . Since (36) is equivalent to (34), it also provides a less
conservative bound than (80). Therefore, the above proposition
provides new stability conditions that can be used to synthesize
a neural controller that is guaranteed a priori to be closed-loop
stable, as explained in the next section.

VI. SYNTHESIS PROCEDURE

Theorem 1 provides a criterion for choosing the number of
sigmoidal nonlinearities, and for computing the neural control
parameters and , such that the neural controller is guaran-
teed to meet the desired performance objectives for all
for any suitable choice of the design matrix . The values of

and can be computed from three linear systems of equa-
tions, obtained from (17), by the following procedure. Given a
right-invertible matrix formed from the scheduling vectors
in , design a matrix such that the first system in (17) is con-
sistent, then

(37)

Once has been designed, the matrices and are computed
from (23) and (24), respectively. Then, given any choice of a
small scalar (or output bias), it follows from the second system
in (17) that

(38)

Letting , the last system in (17) also is linear, and
can be inverted to compute the remaining parameters

(39)

such that . Therefore, one approach to designing
the nonlinear controller (10) is to choose a matrix according
to the guidelines provided above and in [33]. Subsequently,

compute and using (37)–(39), and verify that these param-
eters satisfy one of the model-following bounds (31) or (32),
and produce a feasible LMI problem (34). If the conditions are
not all met, the procedure is repeated for a different choice of
design matrices. Since all of the steps in this design process
consist of solving linear systems of equations, or LMIs, they
can be performed very efficiently and are easily repeated.

Another approach consists of designing such that the
model-following bounds and the stability conditions in Propo-
sition 2 are simultaneously satisfied. In this case, the matrix
is still designed such that the first system in (17) is consistent,
and such that and are nonsingular. But, additionally, must
satisfy the bound (32), which can be written more conveniently as

for (40)

where denotes the th element of the vector in parenthesis,
and all other terms are known and constant. Finally, must be
designed such that is negative semidefinite and the LMIs (36)
are feasible under the conditions stated in Proposition 2. Since
the relationship between and is nonlinear, as shown by
(93), this approach requires solving a set of nonlinear equations
numerically for the elements of . This synthesis procedure
guarantees a priori that both of the design objectives 1) and 2)
in Section II are satisfied by the neural network controller.

VII. TAILFIN-CONTROLLED MISSILE PROBLEM

The results obtained in the previous sections are used to syn-
thesize a dynamic neural network controller for a highly ma-
neuverable tailfin-controlled missile model, taken from [38], for
which several linear control designs have been proposed in the
literature [1], [38], [50], [51]. The objective is to demonstrate
that a dynamic neural network controller (10) synthesized ac-
cording to Section VI can meet the same multiple performance
objectives and stability guarantees as the best available classical
design [1]. The missile model

(41)

falls into the class (1), where , , , and are
nonlinear functions of the angle of attack that are continuous
and bounded over their domain . Together
with the other model parameters, these functions are defined
in Appendix VI. The plant state consists of the
angle of attack and pitch rate . The measurable output is

, where is the vertical acceleration, and the control
is the tailfin deflection . is used to capture variations in the
missile aerodynamic coefficients by introducing the following
auxiliary signals:

where is a normalized parameter uncertainty [38].

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on February 26, 2009 at 15:14 from IEEE Xplore.  Restrictions apply.



412 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 3, MARCH 2009

TABLE I
POLES AND PERFORMANCE OF THE LINEAR CONTROLLER

� ��� WITH � � �

In addition to being closed-loop stable in order to stabilize the
airframe rotational motion, the neural network controller must
meet the following specifications, borrowed from [1], [38]:

I) track the step command in vertical acceleration with
zero steady-state error;

II) track with minimal overshoot and a time constant of
0.2 s;

III) enforce adequate high-frequency rolloff, stability, and
performance for all uncertainties ;

IV) achieve differential damping at low and high frequencies
to improve transient behavior.

The following performance objectives, taken from [1], are used
to meet the above specifications:

i) introduce an integrator with state ;
ii) use the following shaping filters for signals and :

iii) minimize the gain of the mapping from the inputs
to the outputs ;

iv) place the closed-loop poles within an LMI region that is
the intersection of and

, where

As shown in [1], the multiple objectives listed above can be met
by a linear dynamic controller obtained by solving a set of LMIs.
In this paper, the approach in [1] and the LMI software in [41]
are used to obtain the LTI controllers for
the set chosen for the given angle-of-
attack range. As shown in Table I, the properties of are
equivalent to those achieved in [1]. Similar properties are also
obtained for the other controllers in , which are used for neural
network control synthesis, as explained below.

The synthesis procedure presented in Section VI is applied to
design a neural network controller for (41) that meets multiple
performance objectives i)–iv) above and is closed-loop stable.
In the classical LMI design [1], a linear dynamic controller in
the form (3) maps the tracking error signal to the control to
meet the zero-error tracking objective I). As shown in [24] and
[52] and reviewed in [42, p. 522], a common and effective ap-
proach for including the integrator described in i) is to augment

Fig. 4. Sigmoidal neural control structure for missile dynamics with parameter
uncertainty �.

Fig. 5. Neural network controlled system identically overlaps that of the ideal
model, achieving perfect model following and zero tracking error.

the plant state equation by the integral-state variable . Thus,
the neural network input is . Let the transfer
function map the input sig-
nals to the outputs , where matrices , , and
are defined in Appendix VII. Then, the missile neural network
controller, schematized in Fig. 4, takes the form in (10), with

, and . Finally, the neural control parame-
ters and are computed such that the matrix equalities (17),
the inequality (32), and the LMI (34) are all satisfied.

The ability of the neural network control system to track a step
command with zero error, minimal overshoot, and a time con-
stant of 0.2 s is illustrated in Fig. 5. Here, an increase in vertical
acceleration of 0.25 lb/slugs is commanded under zero param-
eter uncertainty, and is perfectly tracked after approximately
0.25 s, which is appropriate for a highly maneuverable missile (as
shown in [1], [38], [50], and [51]). The time history of the neural
network output and internal state rate for this maneuver
are plotted in Fig. 6. The dynamic neural network controller also
achieves zero tracking error in the presence of parameter uncer-
tainty, as demonstrated in Fig. 7, where a decrease in vertical
acceleration of 0.3 lb/slugs is commanded in the presence of a
constant parameter uncertainty 0.15 rad [normalized as
shown in (42)]. Even in this case, is perfectly tracked with min-
imal overshoot after approximately 0.25 s by the neural network
controller with time evolutions plotted in Fig. 8. The time histo-
ries of the angle of attack, plotted in Figs. 5–7 (where )
also show that in both cases the neural network controller exhibits

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on February 26, 2009 at 15:14 from IEEE Xplore.  Restrictions apply.



FERRARI: MULTIBJECTIVE ALGEBRAIC SYNTHESIS OF NEURAL CONTROL SYSTEMS BY IMF 413

Fig. 6. Time history of the neural network controller’s state derivative �� and
output �, for the maneuver illustrated in Fig. 5.

Fig. 7. Neural network controlled system achieves perfect model following and
zero tracking error in the presence of parametric uncertainty.

Fig. 8. Time history of the neural network controller’s state derivative �� and
output �, for the maneuver illustrated in Fig. 7.

perfect model following at all times, even when the missile op-
erates away from the set points in .

Fig. 9. Response of the neural-network-controlled system is overlapped by that
of the ideal model, revealing perfect model following, for a time-varying com-
mand input �� � and no uncertainty �� � ��.

Fig. 10. Time history of the neural network controller’s state derivative ��
and output �, for the maneuver illustrated in Fig. 9.

The time-varying command input considered in Fig. 9 pur-
posely prevents the missile from reaching a steady state. This
type of command may come about during a task that involves
tracking a nonlinear trajectory produced by an outer-loop guid-
ance system. The response of the neural network controlled
system with is plotted in Fig. 9 and compared to that
obtained from the ideal model (dashed–dotted line). The time
histories of the corresponding neural control output and in-
ternal state rate are plotted in Fig. 10. It can be observed
that, even when the controller’s state rates are not zero (Fig. 10)
and the plant is operating away from any set point, the nonlinear
controller achieves perfect model following, and its closed-loop
state and output response identically overlaps that of the model
at all times (Fig. 9). Similar results are obtained in the pres-
ence of a time-varying parametric uncertainty plotted by a
dashed line in Fig. 11. The closed-loop response comparison
is plotted in Fig. 11, and the neural controller evolutions are
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Fig. 11. Response of the neural-network-controlled system is overlapped by
that of the ideal model, revealing perfect model following for time-varying com-
mand input �� � and uncertainty ���.

Fig. 12. Time history of the neural network controller’s state derivative ��
and output �, for the maneuver illustrated in Fig. 11.

plotted in Fig. 12. It can be observed that closed-loop stability
and perfect model following are achieved both in the presence
of time-varying uncertainties and command inputs that vary on
a time scale, which is smaller than the missile’s settling time.

VIII. CONCLUSION

The advantages brought about by using linear controllers in
conjunction with neural approximators have long been recog-
nized in the literature. In particular, using linear controllers to
obtain the starting neural control design has been shown to be
a key step in the development of very effective adaptive neural
controllers. On the other hand, neural controllers are often criti-
cized for not providing the same guarantees of closed-loop sta-
bility, performance, and robustness as classical linear designs
even when the system is operating in a linear regime. This is a
key-limiting factor to the replacement of linear controllers by
neural controllers in applications such as the control of flight or
power systems, where safety is a key concern and the system to

be controlled often operates in a linear regime. Consequently,
this paper addresses the specification and design of an output-
feedback dynamic neural controller that meets multiple design
objectives, including mixed performance objectives
and closed-loop exponential stability. Using algebraic training
and nonlinear IMF, conditions are given for the origin of the gen-
eralized error dynamics to be exponentially stable. Closed-loop
stability of the neural network control system is guaranteed by
means of LMIs derived from existing IQCs for diagonal oper-
ators with repeated monotonic and slope-restricted nonlineari-
ties. As demonstrated by a missile control problem, these theo-
retical results can be used to synthesize neural network control
systems that have the same performance and stability guaran-
tees as classical linear designs.

APPENDIX I
PROOF OF THEOREM 1

Proof: The closed-loop dynamics of the linearly controlled
system for all are obtained from (1) and (3)

(42)
The above closed-loop dynamic equation must be considered in
computing the right-hand side of requirement (16). From (14),
the closed-loop output can be expressed as

(43)

where , provided is invertible
for all . Thus, can be eliminated from the state and control
equations, such that

(44)

and

(45)

From (44) and (45), when , the derivative of the linear
control law (3) with respect to the state rate is

(46)
assuming is invertible for all .

From (10), the derivative of the neural network control law
with respect to is given by

(47)
where , and are parameters to be determined.
Now, assume that the scheduling vector can be obtained from
the augmented state through a known linear transformation

, which can always be accomplished by properly defining .
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Then, in Fig. 3 can be assimilated into by postmultiplying
by . At every one of the set points, where ,

the state rate and the control vanish, i.e., and
for all . Therefore, the derivative in (47) can be

simplified to

(48)
The neural network control law (10) satisfies the requirements
(16) when and are obtained from convex inter-
polation of the LTI control matrices (4), as in (3), and the ad-
justable parameters and satisfy the sets of equations

(49)
Through simple manipulations, the above equations can be
written in a matrix form

...
... (50)

and

... (51)

where is defined in (24), finally obtaining the linear systems
in (17). Since , these systems have as many unknowns as
there are equations and, when approached in the order provided,
they also are linear.

APPENDIX II
PROOF OF THEOREM 2

Proof: The error state equation is obtained by subtracting
(14) from (13), according to the error definition (15), so that
the generalized error simplifies to (52) shown at the bottom of
the page, since , and can be written in
terms of using (44). Throughout this proof, the argument
is omitted from the state–space matrices for brevity. Differen-
tiating both sides with respect to time the resulting differential
equation is

(53)
where

and (54)

and [53]. Since from (15) , the above
differential equation can be written solely with respect to the

model state, with the exception of the argument of the diagonal
operator , i.e.,

(55)

Assuming that is negligibly small, the model can be differen-
tiated with respect to time, obtaining , where

(56)

with vertices given by (45). Therefore, (55) can be written as the
sum of a nominal linear system and a nonlinear perturbation that
are both formulated with respect to the augmented error variable
, as shown in (29), whereas is confined to the argument of

the diagonal operator derivative in (29).
We are now ready to show that any set point of the closed-loop

system is a zero-equilibrium of the error (29). Given a desired
set point (defined in [42, p. 508]), the corresponding equilibrium
values of the plant state and control may be nonzero, and depend
on the coefficient of the plant dynamics (2), as well as on the
definition of the command or reference vector. Since the error
state equation can be written as the perturbed system (29), it can
be seen that when . However, we also want to show
that for any set point the nonlinear term

(57)

is a vanishing perturbation, i.e., for all . Assume
that the controller parameters satisfy the systems in (17). By
design, at any set point scheduled by , .
Thus, from Theorem 1 and (57), the nonlinear perturbation at
the set point can be simplified to

(58)

(59)

Therefore, the set-point perturbation is said to be a vanishing
perturbation because it equals zero at the zero equilibrium or
origin , where , which corresponds to perfect model
following and zero error rate.

It can be assumed that is Hurwitz for all
, since from Section III , and

in (28) is Hurwitz by design for all . Then, is an
exponentially stable equilibrium point of the nominal system

, and from [54, Th. 4.6], the Lyapunov equation

(60)

with , and , has a unique solution
. Additionally, it can be shown that the quadratic

(52)
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Lyapunov function satisfies the inequalities in
the converse Lyapunov theorem [54, Th. 4.14], i.e.,

(61)

(62)

(63)

by choosing the following four positive constants:
, , , and ,

where denotes the right-hand side of the nonlinear state
(29), thus . In this paper, we choose , since
it can be shown that this choice always maximizes the ratio

(e.g., see [54, p. 372]) that is used in the
upper bound below.

The bounds for exponential stability of the origin of the error
state (29) are derived using [54, Corollary 9.1] on vanishing
perturbations. It has been shown above that the nominal system
has an exponentially stable equilibrium at origin , and
a Lyapunov function that satisfies the inequalities in (61).
Then, if the vanishing perturbation satisfies the inequality

(64)

where is a constant that satisfies the bound ,
the origin is an exponentially stable equilibrium of the nonlinear
system (29), by virtue of the comparison method [54]. In the re-
mainder of the proof, denotes the norm. Having reduced
the error state equation to (29), the norm of the nonlinear per-
turbation can be written as

(65)

From the property of the Hölder norms [55, Corollary 9.3.4],
and using , the following inequalities are ob-
tained:

(66)

Since the norm of a matrix equals the norm of its transpose, it
follows that:

(67)

By definition, the diagonal operator contains repeated slope-
restricted nonlinearities, such that for all

, with in this case (Section IV). Thus, it can be
easily shown that , where is the number of
nonlinearities. Then, it follows that:

(68)

and

(69)

where is a constant. Thus, the origin of the error state
(29) is exponentially bounded provided

(70)

since the bound can be simplified by noting
.

Although this first inequality is educational, it tends to be
conservative and may be difficult to satisfy in practice. Another
bound is obtained by calculating the derivative of the quadratic
Lyapunov function along the trajectories of the nonlinear
system (29)

(71)

thus exploiting the structure of the perturbation instead
of the bound . The bound is derived by requiring

to be negative definite. Then, from the theorem on the Lya-
punov stability of nonautonomous systems (see [54, Th. 4.10])
and substituting (57) in (71), such that

(72)

it follows that the origin is exponentially stable. If
for all and , then , where

(73)

(74)

is an outer product matrix. Using Corollary 1 in Appendix III
and its proof, if the following inequality holds:

(75)

then for all and . The left-hand side of the above
inequality is the inner product of a vector , whose
elements are always nonnegative, with a vector that is constant
with respect to time. Thus, the above inner product is always
negative provided all elements of the constant vector

are negative, i.e.,

for (76)

where and all are known from
(54), which concludes the proof.

APPENDIX III

Corollary 1: Let be an outer product matrix, such that
, and . Then, if and only if

, and if and only if .
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Proof: Using [55, Fact 2.11.11], the equality

(77)

holds for any two vectors . Letting

(78)

It can be easily shown that [56, p. 258], therefore, by
definition, for all . Using (78) and noting
that the inner product is a scalar, it follows that:

for
(79)

Then, , or for all , if and only if
. Conversely, , or for all , if

and only if
APPENDIX IV

PROOF OF PROPOSITION 1

Proof: For the neural-network-controlled-system (26), the
stability inequality (9) gives

(80)

where and are LMI variables that need
not be positive definite. If the network parameters and are
known, the above inequality is linear with respect to and

. However, it is nonlinear if and are unknown as, for
example, during the control synthesis and adaptation processes.

Using (17), a new and less conservative inequality is obtained
from (80). If is asymptotically stable, then for
any positive–definite matrix , the Lyapunov equation

(81)

has a positive–definite solution , and if
is symmetric, then is symmetric [55, Sec. 11.8]. Let

, where are solutions of (81) corresponding
to symmetric and positive–definite matrices . Then, it can
be easily shown that also is a symmetric positive–definite
matrix that satisfies (81) when the right-hand side is equal to

. It follows that (80) can be written as the sum
of two matrices, shown in the first equation at the bottom of the
page. is in a special form that is always negative definite
provided (see [55, Fact 8.9.9]). Since by

definition, for any value of , , and . Thus,
(80) can be replaced by a less conservative inequality ,
leading to (34).

Next, since , it also follows that is equiv-
alent to the statement

(82)

from a well-known result on positive–semidefinite matrices [55,
Prop. 8.2.3]. And, similarly, since , the statement

in the original stability LMI (80) is equivalent to the statement

(83)

Now, suppose the equality holds in the new bound (82), then
(84) shown at the bottom of the page holds, and it can be shown
that if and , then (see [55, Prop.
8.9.13], and references therein). Furthermore

(85)

Since the left-hand side of the above inequality is equal to the
right-hand side of the inequality (83), which is obtained from the
original LMI problem (80), it follows that the new inequality
(82) is less conservative than the former, and the statement in
(35) holds when .

APPENDIX V
PROOF OF PROPOSITION 2

Proof: It can be shown that for any two symmetric matrices
, if and , then

[55, p. 264]. It follows that if the inequality

(86)

holds for the nonsingular matrix defined in (23), then
is satisfied because . Using (17), the term

can be replaced by the known vector . From Theorem 1

(87)

(84)

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on February 26, 2009 at 15:14 from IEEE Xplore.  Restrictions apply.



418 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 3, MARCH 2009

where defined in (21) is a known matrix that is right-invertible
by design, and denotes its generalized inverse. For conve-
nience, define the matrix

(88)

(89)

where and denote the Kronecker and Schur products, re-
spectively, is a identity matrix, and . Then,

, and using the change of variables ,
the inequality (86) can be simplified to

(90)

thereby confining the neural controller parameters to . Let
denote in short a known and constant ma-

trix that is independent of and . Then, (90) is equivalent to

(91)

provided the matrix

(92)

is always negative semidefinite, which can be accomplished, for
example, by letting . A few matrix manipulations yield

(93)

where

(94)

(95)

The matrices and
exist and are known by design. Finally, since

, if there also exists a diagonally dominant matrix
such that , then by definition of diagonally

dominant matrix, it follows that:

(96)

where denotes the element in the th-row and th-column
of , and denotes the absolute value. Thus, all of the condi-
tions in (34) are satisfied, and the feedback interconnection (26)
is exponentially stable.

APPENDIX VI
MISSILE MODEL FUNCTIONS AND PARAMETERS

The nonlinear functions in the missile model (41) are defined
as [50]

(97)

where is the dynamic pressure, is the reference area,
is the missile mass, is the pitch moment of inertia, is a
constant velocity component along the missile centerline, and
is the airframe diameter. The coefficients ,

, , , ,
, , and are obtained from the

polynomial approximation of the missile aerodynamic normal-
force and pitching-moment coefficients.

APPENDIX VII

where , , , , and are known from
the plant state (1), and and are known from

in (3).
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