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A Constrained Optimization Approach to Preserving
Prior Knowledge During Incremental Training
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Abstract—In this paper, a supervised neural network training
technique based on constrained optimization is developed for
preserving prior knowledge of an input–output mapping during
repeated incremental training sessions. The prior knowledge,
referred to as long-term memory (LTM), is expressed in the form
of equality constraints obtained by means of an algebraic training
technique. Incremental training, which may be used to learn
new short-term memories (STMs) online, is then formulated as
an error minimization problem subject to equality constraints.
The solution of this problem is simplified by implementing an
adjoined error gradient that circumvents direct substitution and
exploits classical backpropagation. A target application is neural
network function approximation in adaptive critic designs. For
illustrative purposes, constrained training is implemented to
update an adaptive critic flight controller, while preserving prior
knowledge of an established performance baseline that consists of
classical gain-scheduled controllers. It is shown both analytically
and numerically that the LTM is accurately preserved while the
controller is repeatedly trained over time to assimilate new STMs.

Index Terms—Adaptive critics, control, exploration, function
approximation, incremental training, interference, knowledge
acquisition and retention, memory, online learning, sigmoidal
neural networks.

I. INTRODUCTION

THE ability to preserve prior knowledge while processing
and learning new information is crucial for neural net-

work applications such as adaptive critics, control, and system
identification. We define as long-term memory (LTM) the prior
knowledge that must be preserved by an artificial neural network
at all times. New information that is not consolidated into LTM
is referred to as short-term memory (STM). It is well known
that when neural networks are trained incrementally with new
data, functional relationships acquired from previous training
sets deteriorate through a process known as interference. Var-
ious solutions have been proposed to address the problem. One
approach presents some of the LTM and STM data together to
suppress interference in supervised incremental training algo-
rithms [1]–[3]. While very effective for some applications, it is
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not suitable for those that require highly accurate preservation of
LTM, or that have stringent computational requirements due, for
example, to large input–output spaces, or to learning being per-
formed online. Another approach consists of using extra hidden
units to augment the approximation power of the neural net-
work, and of partitioning the weights into two subsets, referred
to as LTM and STM weights. The LTM weights are used to
preserve LTM by holding their values constant, while the STM
weights are updated with the new STM data [4], [5]. The latter
approach is more consistent with the memory-formation mech-
anisms observed in the nervous system [6]. However, due to
nonlinearity and global support properties, modifying the STM
weights in a sigmoidal neural network can unfortunately also
significantly change its input–output mapping everywhere in its
domain. Therefore, holding the LTM weights constant cannot
always guarantee accurate LTM preservation, and is particularly
ineffective when training sigmoidal neural networks.

Similarly to Mandziuk and Kotani [4], [5], the constrained
training approach presented in this paper also partitions the
weights into LTM and STM subsets. However, in our approach,
both subsets are updated: the first to meet the LTM equality
constraints, and the second to minimize the STM network error
through a constrained optimization technique. The keystones
of this novel approach are the formulation of the equality con-
straints by means of algebraic training, and the simplification
of the resulting constrained optimization problem by means of
the adjoined error gradient.

One target application for this constrained-training approach
is neural network function approximation in adaptive critic de-
signs [7]. Using prior knowledge of classical controllers to ob-
tain the starting design is a key step in the development of highly
effective adaptive neural controllers [8]–[17]. However, due to
interference, when such controllers undergo prolonged adapta-
tion, they may experience a significant loss in baseline perfor-
mance and possibly even catastrophic forgetting [18], as shown
in Section V-C. Consequently, these controllers may need to re-
learn how to control the plant online, even under conditions for
which the classical controllers are optimal and known a priori.
In this paper, constrained training is applied to an adaptive critic
flight controller presented in [17], in order to preserve LTM of
classical gain-scheduled controllers. These classical controllers
are locally optimal and provide a satisfactory baseline perfor-
mance when the aircraft operates in its steady-level flight en-
velope. When the aircraft operates outside this envelope, the
neural network controller adapts to compensate for nonlinear or
unmodeled dynamics. Through constrained training, the neural
network controller simultaneously retains accurate memory of
the classical gain-scheduled designs and, consequently, displays
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optimal performance as soon as the aircraft returns to its steady-
level flight envelope.

The constrained training approach is presented in Section III.
The derivation of the equality constraints and adjoined error
gradient are illustrated for a gradient-based LTM training set
in Section IV. Section V-D presents the simulation results for
the constrained adaptive critic flight controller, which imple-
ments the control design presented in [17] and reviewed in
Section V-A.

II. BACKGROUND ON SUPERVISED NEURAL

NETWORK TRAINING

Sigmoidal neural networks are used in a variety of applica-
tions because they are universal function approximators that can
learn unknown functional relationships by example, in batch
or in incremental mode. Supervised training involves the mini-
mization of the error between the available data, referred to as
training set, and the actual network performance with respect
to its adjustable parameters or weights. Consider a training set

of error-free input–output values of an
unknown function , where and .
In supervised batch training, the error function is defined with
respect to the entire training set . In incremental training, the
network error function to be minimized is defined with respect
to one training sample at a time

minimize

subject to (1)

where denotes the network output for the input , and the
adjustable weights are updated through training ses-

sions. During each training session, an unconstrained optimiza-
tion algorithm adjusts the weights iteratively based on the error
gradient

(2)

where is the epoch index, and is the learning rate. Leven-
berg–Marquardt and resilient backpropagation (RPROP) algo-
rithms typically exhibit the fastest convergence thanks to the
techniques by which they vary the learning rate [19], [20].

The convergence of the above incremental gradient algorithm
has been studied extensively in the literature [21], [22]. In fact,
incremental training is widely used in practice, either in lieu
of or in combination with batch training, because it can handle
large training sets that are otherwise prohibitive even for mod-
erate-size networks [23]–[27]. Moreover, incremental training
allows to train neural networks online, assimilating training
samples that only become available one at a time incrementally
over time. It is well known, however, that prior functional
knowledge tends to be destroyed by conventional incremental
training algorithms due to interference. The following section
introduces a constrained-optimization training technique that
allows to preserve prior functional knowledge while learning
from new data incrementally.

III. CONSTRAINED NEURAL NETWORK TRAINING

Neuroscientists have long speculated that, in biological or-
ganisms, learning alters connections between neurons, thereby
forming and maintaining new memories. Recent evidence sup-
ports the theory that STM formation is accompanied by the ac-
tivation of an existing set of potential synaptic connections that
are transformed into functional connections [6]. Using this as an
analogy, in constrained training, potential synaptic connections
are represented by STM weights that are initially set to zero, and
subsequently adjusted to learn new STM information. Because
sigmoidal neural networks are characterized by global support,
once the STM weights are updated, LTM functional knowledge
cannot be preserved simply by holding the LTM weights con-
stant. Therefore, LTM is preserved by formulating supervised
training as a constrained optimization problem. The theoret-
ical foundations of this constrained training approach are pre-
sented in Section III-A, and its implementation is discussed in
Section III-B.

A. Foundations of Constrained Training

Typically, supervised training is formulated as an uncon-
strained optimization problem involving a scalar error function
of many variables, consisting of the network weights
(Section II). Assume the LTM functional knowledge can be
embedded into a relationship describing the network weights
such as

(3)

where has been reorganized into a matrix of LTM weights
and a matrix of STM weights with

. If (3) satisfies the implicit function theorem
(Appendix I), then it uniquely implies the function

(4)

which can be used instead of (3) to simplify the training
problem. Training preserves the LTM expressed by (3) pro-
vided it is carried out according to the following constrained
optimization problem:

minimize

subject to

(5)

In the remainder of this paper, it is assumed that the STM is ac-
quired through incremental training. Therefore, the error func-
tion is abbreviated to , for simplicity. Then, the approach
described below can be applied to constrain a batch training al-
gorithm, simply by modifying the definition of the error func-
tion .

The solution of a constrained optimization problem can be
provided by the method of Lagrange multipliers or by direct
elimination [28], [29]. If the equality constraints can be written
explicitly (4), the method of direct elimination can be applied
by writing the error function as

(6)
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such that the value of can be determined independently of .
In this case, the solution of (5) is an extremum of (6) that obeys

(7)

Once the optimal value of is determined, the optimal value of
the weights can be obtained from using (4). If the equality
constraint cannot be written as (4), the method of Lagrange mul-
tipliers can be used to solve (5) [28], [29].

Hereon, it is assumed that the equality constraint can be
written in explicit form (4). Furthermore, because (4) can be
very involved, its substitution in the error function is circum-
vented by seeking the extremum defined by the adjoined error
gradient, obtained by the chain rule

(8)

In tensor notation, matrices are written in terms of their ele-
ments, such that and , and repetition of an
index within any term in an equation indicates summation over
that index. Tensor notation is employed in this paper for its com-
pactness. Also, the shorthand notation is used to denote the
gradient of a scalar function with respect to an matrix

, which is defined as the matrix of partial derivatives
.

Using the adjoined gradient, the effect of the LTM weights
on the constrained network error is accounted for, and

can be minimized solely with respect to . Using the properties
described in Appendix II, the adjoined error gradient can be
obtained in terms of the derivatives and , which are
easily computed by classical backpropagation.

B. Constrained Training Implementation

The constrained training approach is applicable to in-
cremental training of neural networks for smooth function
approximation under the following assumptions: 1) a priori
knowledge of the function is available locally in its domain
(e.g., in the form of a batch training set or a physical model); 2)
it can be expressed as an equality constraint on the neural net-
work weights; 3) it is desirable to preserve this prior knowledge
during future training sessions; 4) new functional information
must be assimilated incrementally through domain exploration;
and 5) the new information is consistent with the prior knowl-
edge (i.e., the function to be approximated is one-to-one and
the information is noise free). Then, the constrained training
implementation can be summarized by the following steps.

1) Determine the equality constraint equation (3) for the
chosen neural network architecture.

2) Determine the neural network size, and the LTM–STM
connections and .

3) Rewrite the equality constraints in explicit form (4).
4) Compute the adjoined error gradient (8) analytically, using

its properties (Appendix II).
5) Apply the constrained training algorithm (Algorithm 1).
The following algorithm trains a neural network incremen-

tally within a user-set tolerance . Simultaneously, it retains
the functional knowledge expressed by the equality constraint

(3). The update of the STM weights is conducted by a gra-
dient-based training algorithm (RPROP).

Algorithm 1: Constrained Neural Network Training {

given , , and

compute by unconstrained training, such that ,
and

for ,

while ,

update the STM weights:

update the LTM weights:

end

, and

end

}

The equality constraint (3) for a generic LTM training set
can be determined through the algebraic training technique pre-
sented in [30]. In other applications, (3) may be determined
from application-specific knowledge of the function to be ap-
proximated or its properties. For example, control law properties
such as stability can be formulated through linear matrix equal-
ities and inequalities on the neural weights [31], [32]. Also, in
system identification by gray-box models, the constraint (3) can
be determined from well-known physical models with limited
domain applicability [33], [34].

One approach for selecting LTM and STM connections is to
size the network through a trial-and-error procedure. A common
practice is to enhance the neural network approximation abili-
ties by adding nodes to its hidden layer. Thus, after having de-
termined the number of nodes required to properly approximate
the LTM, the user can introduce additional nodes and denote the
corresponding connections by . Another approach is to employ
algebraic training [30] to determine both the number of nodes
and the LTM-STM connections, as illustrated in the following
section.

IV. CONSTRAINED TRAINING EQUATIONS FOR

GRADIENT-BASED LTM

The main difference between the implementation of con-
strained training versus classical backpropagation is the com-
putation of the error gradient. In this section, the constraints (3)
and the corresponding adjoined gradient are obtained for the
gradient-based LTM training set presented in [30]. As shown in
[30], this gradient-based training set affords excellent general-
ization properties and may be used to represent gain-scheduled
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controllers or system models at multiple equilibria [16], as
shown by the example provided in Section V-A.

Consider the class of one-layer, -node sigmoidal neural net-
works

(9)

where , , is the output bias, and is an
operator with repeated sigmoidal nonlinearities

(the input bias is set equal to zero for simplicity).
Let the input be partitioned into a regular input vector ,
for which derivative information may be available, and an aux-
iliary input vector , for which function derivatives are
unknown, i.e., . Depending on the application,
the Jacobian

(10)

may be known for selected outputs and regular inputs indexed
by and , respectively. Then, as shown in [30], a set

, with , can be used
to approximate a nonlinear function by a sigmoidal neural net-
work based primarily on derivative information. In this example,

is known for and , where

and

(11)

The equality constraints are then obtained using alge-
braic training [30] and the positional notation described in
Appendix III, as shown by the following result.

Theorem 1 (Equality Constraints): A gradient-based
training set , with

, can be embedded in a neural net-
work (9) satisfying the equality constraints

(12)

in the implicit form (3), where

(13)

(14)

(15)

(16)

is an matrix with columns all equal to , and
.

Fig. 1. Neural network architecture with LTM and STM connections repre-
sented by thick and thin lines, respectively.

The proof is provided in Appendix IV. Typically, the size of
the network and the LTM–STM connections can be designed by
inspection of the equality constraints. In this case, let ,
and partition the hidden nodes into two -node sets, with out-
puts and . Choose the LTM–STM connections as
illustrated in Fig. 1. Then, as shown by the following proposi-
tion, the constraints (12) can be written in the explicit form (4).

Proposition 1 (Explicit Constraints): The constraint equation
(12) implies the function shown in (17) at the bottom of the page,
where

...
... and

(18)

The proof is provided in Appendix V. As in (4), the con-
straints (17) provide an explicit relationship between the LTM
weights and the STM weights ,
where , for . The di-
rect substitution of (17) into the network error function (6) is
circumvented by means of the adjoined error gradient. The ad-
joined error gradient, defined in (8), is derived in terms of the
error gradients and , which are easily obtained through
classical backpropagation, as shown by the following result.

Theorem 2 (Adjoined Gradient): Let (5) define the error func-
tion for the network (9), subject to the constraint equation (17)
on the network weights. Then, the adjoined gradient is given by

(19)

(17)
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where

, and the function is defined as in (60).
The proof is provided in Appendix VI. The remaining

sections describe an important application of the constrained
training approach, namely, neural network function approx-
imation in adaptive critic designs. The theoretical results
derived above are validated numerically in Section V-D. In
these simulations, the adjoined gradient presented in Theorem
2 is implemented, and the results show that is preserved
accurately during every incremental training session.

V. APPLICATION: CONSTRAINED-TRAINING OF AN ADAPTIVE

CRITIC FLIGHT CONTROLLER

A target application of the constrained-training approach de-
veloped in this paper is neural network function approximation
in adaptive critic designs. Adaptive critics approximate solu-
tions to complex optimal control problems by optimizing neural
approximations of the control law and value function iteratively
over time [7]. Lendaris and Neidhoefer write that “if a priori
knowledge is available about the problem domain that may be
translated into a starting design of the controller and/or the critic,
then it behooves us to use this knowledge as a starting point for
the ADP procedures” [12]. One reason is that the design may
exploit prior knowledge to perform adequately while the ADP
system is learning online. Another reason is that if the starting
design is close to the optimal solution, then the ADP system
works on refining the existing design instead of learning from
scratch. Even when prior knowledge is successfully embedded
in the starting adaptive critic controller, it may be deteriorated
or completely forgotten after frequent parameter updates in the
exploration phase.

In this section, the constrained-training approach is im-
plemented to preserve an adaptive critic flight controller’s
knowledge of a set of classical gain-scheduled designs.
The simulated controller, taken from [17], is reviewed in
Sections V-A and V-B. In Section V-C, it is shown that, after
exploring regimes that are significantly nonlinear, memory of
the gain-scheduled designs is considerably degraded due to
interference. Finally, in Section V-D, the constrained training
approach is implemented, thereby suppressing interference and
preserving accurate memory of these designs at all times.

A. Review of Adaptive Critic Flight Control Design

It is assumed that the aircraft dynamics can be captured by a
nonlinear differential equation

(20)

where is the state, is the control,
is given, and is the full operating envelope of the aircraft.
The ideal closed-loop response of a piloted aircraft is specified
by well-known flying qualities criteria that reflect the pilot’s
impression of the aircraft [35]. These criteria can be used to
formulate the control performance objectives as a cost function
of the type

(21)

with weighting matrices , , and designed using implicit
model following (IMF) [28]. State and control deviations from
the set point, denoted by , are used for command input or
trajectory tracking. The objective is to determine a state-feed-
back neural network controller in the form (9) that optimizes
(21) subject to the nonlinear dynamic equation (20) over .

1) Classical Gain-Scheduled Flight Controllers (or LTM):
The classical gain-scheduled flight controllers reviewed in this
section constitute the LTM to be preserved at all times by the
neural network controller. These gain-scheduled controllers
have been shown to be very effective for controlling aircraft
dynamics over the steady-level flight envelope [35], [36]. Near
steady-level flight conditions, the aircraft dynamics can be
closely approximated by a class of affine systems

(22)

that evolve on a subset of the state–space , re-
ferred to as the linear parameter varying (LPV) regime. de-
notes perturbations from the equilibrium. The functions and

can be approximated by two sets of matrices
and for equilibria or scheduling vectors

. Also, for small perturbations, the
aircraft dynamics can be decoupled into longitudinal and
lateral–directional modes of motion [35].

A well-known result in control theory states that when the
cost function is quadratic and the dynamic equation is linear,
the optimal control law takes the form

(23)

where the system matrix , the weighting matrices and ,
and the Riccati matrix , defined according to [28], are all
known. Using (23), it is possible to obtain a set of longitudinal
and lateral control gains that are locally optimal in and
are scheduled by , i.e., [16]. This set is
used to form the LTM training set in Section V-D.

2) Online Learning and Short-Term Control Knowledge:
Adaptive critics aim at overcoming the well-known curse of
dimensionality [38] by embedding the optimization of the cost
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Fig. 2. Block diagram of DHP adaptive critic architecture implemented at
time t .

function (21) into the optimization of a value function , and
by discretizing the time interval such that

(24)

Howard [39] showed that if the control law and value function
approximations are updated incrementally over time by a
policy-improvement routine and a value-determination oper-
ation, they eventually converge to their optimal counterparts

and , respectively. Furthermore, at
each iteration , these two approximations are improved and
are closer to optimal than their predecessors.

In dual heuristic programming (DHP), the critic approximates
the controller performance sensitivity to the state ,
in place of , to accelerate convergence. The ideal control per-
formance over is stated through the optimality condition pre-
sented in [40]

(25)

where is the discretized form of (20). This equation consti-
tutes a local condition for optimality that must be satisfied along
the system trajectory. A recurrence relation for the critic is ob-
tained by differentiating (24) with respect to the state, as shown
in [15]. The DHP architecture is illustrated in Fig. 2. The critic
neural network computes , required by (25), based on
the predicted value of the state obtained from (20). Ad-
ditional design and implementation details are presented in [17].
Because DHP produces sequences of functions that are progres-
sively closer to optimal, the adaptation improves the local con-
trol performance with respect to the starting design, provided
here by the gain-scheduled controllers reviewed in Section IV.

B. Simulated Aircraft Dynamics

The adaptive critic controller is implemented on a nonlinear
six degrees-of-freedom (6-DOF) simulation of a business jet
aircraft called FLIGHT [35]. The simulated equations of mo-
tion (20) are based on mathematical models, full-scale wind
tunnel data, and characteristics of an early twin-jet configu-
ration. Spherical–trigonometric relationships [41] are used to
compute the set point values of the roll angle and angle of attack
for the large-angle maneuvers simulated in this paper.

The longitudinal state vector includes the velocity , the path
angle , the pitch rate , and the pitch angle , i.e.,

Fig. 3. Aircraft steady-level flight envelope (or LPV regime) is plotted together
with the set of 14 equilibria P , used to derive the classical control gains that
comprise the LTM of the neural network controller.

. The lateral–directional state vector includes the yaw
rate , the sideslip angle , the roll rate , and the bank angle

, i.e., and . The scheduling
vector contains dynamically significant variables that are the
auxiliary inputs of the neural network . The longitu-
dinal control vector consists of the throttle and stabilator ,
or . The lateral–directional control vector con-
sists of the aileron , and the rudder , or
and . The actual values of and are
observed from the simulated aircraft every 0.1 s. The
neural network controller is then updated at every time step
using the corresponding output sample , computed by the
adaptive critic architecture. A set of steady-level flight
conditions or design points, illustrated in Fig. 3, is chosen to de-
sign the set of classical control gains.

C. Motivation for Constrained Training in Adaptive Critic
Flight Control

The neural network flight controller reviewed in Section V-A
was shown to adapt online to a variety of maneuvers and con-
ditions, such as nonlinear maneuvers, parameter variations, and
multiple control failures, without any prior knowledge of the
upcoming conditions [17]. The adaptation was so effective as to
prevent loss of control, as illustrated by the maneuver in Fig. 4,
taken from [17]. In this figure, a 70 turn is commanded at
an airspeed of 160 m/s and altitude of 7000 m. At this angle,
the aircraft cannot generate sufficient lift to maintain altitude,
and the coupled dynamics become so significant that they com-
promise the classical gain-scheduled controller’s performance,
leading to loss of aircraft control. Although not typical, these
conditions could result from an emergency situation and require
the pilot to take control of the aircraft, because with such a
large bank angle it is difficult to coordinate the turn [35], [41].
Also, a fixed-parameter control system tends to require unrea-
sonable throttle usage. Instead, the adaptive neural controller
learns from the nonlinear aircraft dynamics as well as from the
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Fig. 4. Comparison between adaptive critic neural controller (solid line) and
fixed-parameter gain-scheduled controller (dashed line) subject to a �70 roll
angle step command at (V ;H ) = (160 m/s, 7 km), taken from [17].

Fig. 5. Loss of LTM is illustrated by comparing the performance of the neural
controller (dashed line) with parameters updated during the �70 turn (Fig. 7)
and held fixed, to the known optimal response (solid line) for a small-angle
maneuver with � = 2 and �V = 5 m/s, at the design point (V ;H ) =
(100 m/s, 5000 m).

control bounds [17], finally preventing loss of stability and co-
ordinating the turn.

The adaptive neural network controller was found to pre-
serve some memory of its performance baseline (or )
during most of the individual maneuvers described in [17].
However, further research showed that this memory can be
compromised when several nonlinear maneuvers are presented
before returning to the steady-level flight envelope. Also, the
LTM can deteriorate during difficult maneuvers, such as the
one illustrated in Fig. 4, which requires the adaptive controller
to learn from dynamics that are significantly nonlinear. To
illustrate this point, in Fig. 5, the neural network controller
implementing the parameters learned during the 70 turn
(and held fixed) is used to control a small-angle maneuver at
one of the design points. Under these conditions, the classical
controller (23) is known to perform optimally and its response

Fig. 6. Value of the newly acquired STM is illustrated by the improved per-
formance of the neural controller with the new parameters (updated during the
�70 turn in Fig. 4 and held fixed), shown in a dashed line, compared to when
this maneuver was experienced for the first time (solid line), at (V ;H ) = (160
m/s, 7000 m).

is plotted for comparison (solid line). Prior to adaptation, the
neural network controller would have performed optimally as
well. However, its new performance (dashed line in Fig. 5) is
considerably degraded with respect to the optimal baseline.
This result is representative of other simulations performed
throughout , and illustrates that memory of the classical
gain-scheduled design (or ) has been degraded due to
interference. As a consequence, the neural controller would
need to relearn how to control the aircraft everywhere in
through the DHP architecture, even though the gain-scheduled
designs are known a priori and have been embedded in the
neural controller offline.

On the other hand, the newly acquired control knowledge (or
) is effectively utilized by the neural controller in the short

term. Suppose the same neural controller (with parameters up-
dated during the 70 turn in Fig. 4, and held fixed) is used
to control another 70 turn, as shown in Fig. 6. Even without
undergoing additional adaptation, the controller’s performance
is much improved with respect to the first time this maneuver
was performed (solid line). This can be seen by the reduced os-
cillations and settling time of the response plotted as a dashed
line in Fig. 6. If the adaptation is allowed to continue, the neural
controller continues to optimize its performance until the opti-
mality condition is satisfied within a desired tolerance. These
results, together with [17], confirm that the control knowledge
acquired online through DHP is useful when new dynamics are
experienced for the first time, or in the short term. However,
repeated incremental training sessions can potentially alter the
controller’s performance in .

D. Constrained Training Implementation and Results

In this section, we demonstrate that, by implementing the
constrained training approach, the LTM of the gain-scheduled
controllers can be retained at all times during the adaptation
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TABLE I
COMPARISON OF THE MSE OVER THE LTM TRAINING SET

Fig. 7. Three constrained training sessions are illustrated during which the STM error e is minimized, and the LTM constraints are satisfied within very small
MSEs denoted by " and " .

while new STMs are formed. LTM preservation is verified
by comparing the mean squared error (MSE) of the neural
network controller over before and after the adaptation.
Numerical results show that this error remains close to zero at
all times. Also, LTM effectiveness is illustrated by testing the
performance of the neural network controller throughout the
steady-level flight envelope (Fig. 3) after the adaptation has
taken place.

Classical gain-scheduled controllers (Section V-A1)
are used to form a gradient-based LTM training set

. Using the
results in Section IV, this set can be embedded in the equality
constraints

(26)

for which all variables are defined in Section IV and the ad-
joined gradient is provided in Theorem 2. The neural network
controller (9) has nodes, and is trained with
prior to online implementation. If its performance becomes sub-
optimal, the optimality condition (25) produces a target at
every time step , which is immediately used by Algorithm 1
to update the weights of (9).

To initiate the DHP adaptation, the aircraft is directed to
execute a large-angle turn with 60 at
(145 m/s, 6000 m). As was the case in the example provided in
Fig. 4, this maneuver also violates both assumptions of small
deviations and decoupled dynamics. Consequently, a classical
controller (23) designed specifically for such flight conditions

is suboptimal, as can be verified by evaluating the optimality
condition (25). For comparison, the neural network controller
is updated both with an unconstrained RPROP algorithm [17]
and with a constrained RPROP algorithm implementing the
adjoined gradient. The constrained adaptive neural network
controller is found to outperform both the linear design and
the unconstrained adaptive controller, leading to an overall
reduction in total cost of up to 62.5% by the final time
10 s (compared to the other controllers). Also, by the end
of the maneuver, the constrained-adaptive neural network’s
performance is found to be nearly optimal, as shown by the
incremental cost .

At the same time, by implementing the adjoined gradient, the
constrained neural network controller retains accurate memory
of the LTM training set , as shown in Table I, which
summarizes the MSE over tested at sample time steps
during the adaptation. It can be seen that throughout the adapta-
tion the neural network controller trained with the constrained
optimization algorithm maintains an MSE of for the
output data, and an MSE lower than for the gradient
data. The same DHP controller trained with an unconstrained
RPROP algorithm considerably worsens the performance over
the LTM training set, increasing the MSE by up to 24 orders
of magnitude shortly after the adaptation begins. The training
blues obtained from sample training sessions conducted with
constrained and unconstrained RPROP algorithms are shown in
Figs. 7 and 8, respectively. Each sample training session occurs
at the time instant indicated on the plot. In these training
blues, the STM error , defined in (5), is plotted with respect to
the epochs used for its minimization. The LTM MSEs for the
output and gradient data, denoted by and , respectively,
are computed at the end of each training session using the
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Fig. 8. Three unconstrained training sessions are illustrated during which the STM error e is minimized, but the LTM constraints are not satisfied, as shown by
the large MSEs " and " .

TABLE II
PERCENT CHANGE IN ACTION NETWORK WEIGHTS UPDATED BY DHP ROUTINE

updated parameters, and shown in Figs. 7 and 8. Similar LTM
MSE values are obtained at intermediate epochs, and in all
other training sessions.

A previous approach to suppressing interference without rep-
resenting the LTM data proposed to hold the LTM weights con-
stant in an attempt to preserve the corresponding memories [4],
[5]. However, due to the nonlinear nature of neural networks,
when the STM weights are modified, the old values of the LTM
weights may no longer match the LTM data, or the constraints
(3). From (4), it is clear that the values of that satisfy (3)
depend on the values of . Our simulations confirm that, by
holding the LTM weights of the neural network controller con-
stant during the adaptation, its performance over the steady-
level envelope deteriorates with rapid increase of the LTM MSE
as the STM weights are updated to minimize .

In our constrained optimization approach, all weights are
allowed to change during incremental training, but the LTM
weights change to preserve the memory, while the
STM weights change to acquire new memories from .
Table II shows that the mean, minimum, and maximum percent
changes in the weights’ magnitudes produced by the con-
strained RPROP algorithm are comparable to those produced
by the unconstrained RPROP algorithm, which updates all of
the neural network weights, without distinction, for the only
purpose of minimizing over . In some instances, the per-
cent changes are larger for the constrained RPROP algorithm,
because it must also satisfy the LTM constraints.

Finally, the effectiveness of the LTM is demonstrated by
testing the updated neural network controller in the steady-level
envelope. After the adaptation has taken place, the neural
network controller is purposely applied to a small-angle ma-
neuver for which the optimal solution is known from classical

control (Section V-A1) and is plotted in Figs. 9 and 10 in a
solid line for comparison. As shown in Section V-C (Fig. 5),
even if knowledge of the classical gain-scheduled controllers
is initially embedded in the neural network controller, over
time it can be deteriorated by the adaptation due to interfer-
ence. Instead, when the adaptation is conducted by means of
a constrained RPROP algorithm, the steady-level response of
the updated neural network controller (dotted line) exactly
overlaps that of the optimal control law (solid line), as shown
in Fig. 9, and so does its cost (Fig. 10). Also for comparison,
an otherwise identical adaptive critic controller is updated
using an unconstrained RPROP training algorithm during the
same large-angle maneuver. Although both controllers were
trained offline with the same gain-scheduled controllers, the
unconstrained neural network performance in the steady-level
regime is now suboptimal, as can be seen from the response
to a small-angle maneuver and the cost plotted in Figs. 9 and
10 (dashed line). By preserving all of its LTM virtually intact
(Table I), the constrained adaptive neural network controller
maintains the desired baseline performance, and is capable
of assimilating new memories through the same well-known
adaptive critic architecture.

VI. CONCLUSION

A novel approach has been developed for training neural
networks with global support by means of a constrained opti-
mization framework that encodes LTM in the form of equality
constraints. The solution of the resulting constrained-optimiza-
tion problem is simplified by introducing an adjoined error
gradient that eliminates the need for direct substitution of the
constraint equation in the network error function, and exploits
the error derivatives computed by classical backpropagation.



FERRARI AND JENSENIUS: A CONSTRAINED OPTIMIZATION APPROACH TO PRESERVING PRIOR KNOWLEDGE 1005

Fig. 9. Small-angle command is imparted (�V = 3 m/s, � = �2 , and
�� = 5 ), at (V ;H ) = (90 m/s, 3000 m), in order to illustrate that even after
adaptation the constrained adaptive neural network controller (dotted line) per-
forms identically to the optimal PI controller (solid line) designed specifically
for these conditions, while the adaptive neural network controller updated with
an unconstrained RPROP (dashed line) is now suboptimal due to interference.

Fig. 10. Incremental and cumulative costs for the maneuver in Fig. 9 con-
firm that while the constrained adaptive controller’s performance is optimal (the
dotted and solid lines overlap in these graphs), the controller updated by the un-
constrained RPROP algorithm performs suboptimally after the adaptation, and
thus its memory of the optimal PI controller has been deteriorated.

The approach is applied to a well-known adaptive critic flight
controller that is trained incrementally to adapt to new flight
regimes online. Meanwhile, it must also maintain well-estab-
lished control knowledge (or LTM) over the steady-level flight
envelope, where the aircraft operates most of the time. Prior
research has shown that a traditional, unconstrained training
algorithm (such as RPROP) can deteriorate prior control
knowledge shortly after the onset of the adaptation, due to
interference. By implementing a constrained-training RPROP
algorithm, the LTM is preserved with very high accuracy at
all times, while still allowing the STM network error to be
minimized, as required by the DHP architecture.

APPENDIX I
IMPLICIT FUNCTION THEOREM

A. Theorem 3 (Implicit Function)

Consider a system of equations in variables

(27)

where , , and . Let be an
open subset of , and be a function such that
for some , over , and assume that
exists and is continuous in . Let be a vector such
that and the matrix is nonsingular.
Then, (27) uniquely specifies a function over a neigh-
borhood of such that , and for all

in .
This implicit function theorem [29, pp. 11–12] can be applied

to the matrix equality constraint (3) using standard methods for
matrix functions and derivatives [42, pp. 408–411]. Let

and , where the operator obtains an
vector by stacking the columns of an matrix

[42]. Then, (3) can be written as the system in (27), where
and represent the number of LTM and STM weights, respec-
tively. Now, let the matrix function . Because

, then if (27) uniquely specifies the function
with the aforementioned properties, it also follows that

, with for all in .

APPENDIX II
PROPERTIES OF THE ADJOINED ERROR GRADIENT

Training a neural network by a constrained-optimization ap-
proach requires computing the adjoined error gradient with re-
spect to the weights at every epoch. In this section, we present
a set of properties to simplify the analytical calculation of this
gradient, and to formulate it in terms of derivatives that are
computed by classical backpropagation. Additional properties
of derivatives and chain rule for matrix functions can be found
in [43] and [44]. Tensor notation is used for simplicity.

A. Adjoined Gradient Property 1 (Recursion)

The adjoined gradient can be applied recursively to subse-
quent equality constraints on the neural network weights. Sup-
pose that

subject to (28)

and (29)

where and denote two sets of algebraic equations, and
denotes any subsets of LTM weights. Then

(30)

(31)

where, in this case, is not an argument of . Thus, .

B. Adjoined Gradient Property 2 (Linear Transformation)

Let be given by the following matrix multiplication:

(32)
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Because , the chain rule (8) yields
. Therefore, the adjoined gradient with respect to

the new matrices is given by

(33)

and

(34)

This property can be easily extended to repeated matrix multi-
plications. For example, if

(35)

then the gradient with respect to the matrix is given by

(36)

C. Adjoined Gradient Property 3 (Inverse of a Matrix)

Let the matrix be defined in terms of an invertible matrix

(37)

and assume the adjoined gradient is known with respect to . We
seek to compute the adjoined gradient in terms of .
The inverse of a matrix can be computed from its adjoint and
determinant

(38)

or

(39)

where is the cofactor of the element in . The cofactor
of a matrix element is obtained from its corresponding minor,
using the following relationship:

(40)

where the minor of the cofactor is the determinant of a ma-
trix , obtained by removing the row and column containing
the element of , from . The adjoined gradient with re-
spect to the new variable is obtained from the chain rule

(41)

where

(42)

In order to determine the partial derivatives of the previous ex-
pression, consider the cofactor expansion of the determinant
of a matrix in tensor notation, i.e.,

, where is the Kronecker delta function. Together
with (40), this expansion can be used to obtain the following
simplifying relationships, namely:

(43)

(44)

with

if
if

and
if
if

(45)
and where is the cofactor of . Equations (44) and (45)
can be written in a more compact notation by introducing a
matrix that is obtained from by substituting the row
and column containing the element of the matrix
with a row and column of zero elements. Then, (42) can be ex-
pressed as

(46)

Provided that is invertible, one can also define a matrix
that is obtained from by substituting its th row and th
column with zero elements. Then, the adjoined gradient of the
inverse matrix , in terms of , can be further simplified
to

(47)

by summing over both and according to tensor rules. If
is not invertible, the use of (46) is required. It can be seen from
the previous equations that even the most efficient computation
of the adjoined gradient with respect to an inverse matrix
is expensive, as it requires inversions of an
matrix, .

D. Adjoined Gradient Property 4 (Kronecker Product)

Suppose that is obtained from the Kronecker product
of two matrices

(48)

and that is given. Then, the adjoined gradient with respect
to can be computed as

(49)
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Finally, for any smooth and differentiable nonlinear function
, if the adjoined gradient is known with respect to

the matrix

(50)

then the adjoined gradient with respect to is given
by

(51)

APPENDIX III
POSITIONAL NOTATION

Positional notation is used to represent neural network
weights based on the inputs, hidden nodes, and outputs they
connect. Any vector can be viewed as an ordered set of ele-
ments. Let denote the index set of the neural input vector

, the index set of the output vector , and the index set
of the hidden nodes , and of the input-to-node vector .
Suppose the input vector is partitioned into two or more vectors

, then each vector partition is a subset
of , with an index set denoted by . Similarly, the subscript
of the hidden-node and output index sets denote the corre-
sponding vector partitions. Therefore, the third-order tensor

contains the neural network weights associated
with the hidden nodes, inputs, and outputs with index sets ,

, and , respectively. The same notation is used for weight
matrices (or second-order tensors), using two arguments instead
of three. For example, consider the neural network described in
Fig. 1, with input weights . The matrix denotes
the input weights that connect the inputs in to the hidden
nodes . Consequently, the matrix is easily
obtained by removing the rows and columns in with index
sets and [where denotes the complement set].

APPENDIX IV
PROOF OF THEOREM 1 (EQUALITY CONSTRAINTS)

The equality constraints (12) are derived by considering the
neural network equation (9) and its derivatives

(52)

The neural network hidden nodes are partitioned as follows:

(53)

Similarly, the neural network output can be partitioned into
the subvectors , such that and have the same
index set. Let , , , and be defined as in Theorem
1, and let . Then, adopting the notation in
Appendix III, the neural network (9) and its derivatives (52)
match the training set when the weights satisfy the
following algebraic equations:

(54)

It can be seen from (54) that if and is known,
both systems are linear and square, and yield an exact solution
provided they are full rank (as in [30]).

Now, we can partition into two matrices ,
such that . The matrix is obtained from
operating on the LTM training set inputs, for which for

, thus . The positional notation can be used
to refer to the submatrices and

. Hence, (54) can be written as (12),
emphasizing the input, hidden-node, and output partitions.

APPENDIX V
PROOF OF PROPOSITION 1 (EXPLICIT CONSTRAINTS)

Let and be defined as in (18). The positional
notation can be used to refer to the submatrix

. Then, through simple matrix
manipulations, the second constraint in (12), consisting of
systems of equations, can be rewritten as

(55)

where denotes a block-diag-
onal matrix obtained by placing identical matrices
on the diagonal of a zero matrix of appropriate dimensions.
Then, (12) can be written as

(56)

with . Because , it follows that
and . Finally, substituting with ,
and using the definitions in Proposition 1, (56) can be written
as (17).

APPENDIX VI
PROOF OF THEOREM 2 (ADJOINED GRADIENT)

Using the recursion and the linear transformation properties
(Appendix II), the adjoined gradient with respect to the STM
input weights is computed by differentiating the corresponding
constraint in (17)

(57)

and can be simplified to the final form in Theorem 2 using
simple matrix manipulations.
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(60)

The computation of the adjoined error gradient with
respect to the STM output weights is more involved be-
cause these weights appear in both systems in (17). Let

, such that the input-weight
constraint can be written as

(58)

Then, because is a constant matrix, can be used to refer
to the influence of selected output weights on the above con-
straint. By applying the chain rule (8), the adjoined gradient can
be computed with respect to the STM output weights as

(59)

While the first two terms are already written in terms of ,
the third term must be expanded using the recursion property in
order to express it with respect to . For simplicity, this ex-
pansion is written with respect to the operator as shown in (60)
at the top of the page, which represents an intermediate differ-
entiation step arising from applying the chain rule recursively
to multiple constraints. With this notation, the term in the sum-
mation in (59) can be expanded as

(61)

and the adjoined error gradient can be written as

(62)

The adjoined error gradient for the auxiliary weights and the
output bias can be computed using the same approach, as shown
in [45]. Because the matrix in (17) is the product of
a diagonal and a block-diagonal matrix, it is invertible provided
that the diagonal elements are nonzero. Because the diagonal
elements consist of nonzero output weights and of sigmoidal
derivatives that are always greater than zero, then this matrix is
always invertible.
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