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Abstract—Traditional cameras field of view (FOV) and resolution predetermine computer vision algorithm performance. These trade-

offs decide the range and performance in computer vision algorithms. We present a novel foveating camera whose viewpoint is

dynamically modulated by a programmable micro-electromechanical (MEMS) mirror, resulting in a natively high-angular resolution

wide-FOV camera capable of densely and simultaneously imaging multiple regions of interest in a scene. We present calibrations, novel

MEMS control algorithms, a real-time prototype, and comparisons in remote eye-tracking performance against a traditional

smartphone, where high-angular resolution and wide-FOV are necessary, but traditionally unavailable.

Index Terms—Computational photography, computer vision

Ç

1 INTRODUCTION

CONTEMPORARY cameras indiscriminately sample their
environment. Human eyes, however, adaptively dis-

tribute resolution to their direct line-of-sight at the fovea,
which contains the highest visual acuity. Resolution adap-
tivity allows for efficiently expending resources only where
necessary: our direct line-of-sight. In this paper, we bring
resolution adaptivity to cameras by way of a foveating cam-
era, capable of quickly, densely and simultaneously imag-
ing multiple regions of interest in a scene.

Our foveating camera adaptively distributes resolution by
viewing reflections off a programmablemicro-electromechan-
ical system (MEMS)mirror capable of fast 2Dmodulation, see
Fig. 1. Recent advances in MEMS and galvonometer mirror
sensors have enabled significant progress in fast, scene-aware,
adaptive depth sensing [1], [2], [3], [4] and illumination [5], [6],
[7]. Insertingmirrors into sensors optical path extends the sen-
sors FOV to desired directions and densities that are usually
only attainable through physically moving the sensor itself.
This paper extends our work from [8] by describing a real-
time prototype capable of two object tracking in Section 3,
along with extensive simulations showing the benefit of
foveating cameras at low resolutions for remote eye-tracking
over awide-FOV smartphone in Section 4.

Contemporary sensors focus on maximizing FOV at the
expense of resolution to globally sample. This is at odds

with computer vision algorithms which depend on rich
visual data to accurately infer and reconstruct sparsely sam-
pled image data. We propose using foveating cameras to
quickly distribute a resolution-rich, low-FOV over a wide-
FOV at prohibitive distances normally unobtainable with-
out using large sensors or super-resolution algorithms that
may not suffice for constrained robotic platforms. To enable
accurate and simultaneous resolution distribution on tar-
gets, we adapt an efficient robot planning algorithm for
MEMS mirror control that can optionally be integrated with
a target tracker. Our new control algorithms enable quick,
computationally light-weight updates of the MEMS mirror
to simultaneously change the camera viewpoint between
regions of interest.

We show the benefit of quickly modulating a high-reso-
lution low FOV over a wide FOV with a MEMS mirror
through remote eye-tracking, where both high resolution on
facial features and wide FOV are preferrable but not possi-
ble with traditional cameras. We implement a recent convo-
lutional neural network for eye-tracking and, through
extensive simulations between our foveating camera and
wide FOV smartphone using data collected in our lab, show
the benefit of foveating cameras for resolution-FOV sensi-
tive domains, such as remote eye-tracking. In summary, our
contributions are:

(1) A novel sensor capable of simultaneously imaging
several regions of interest in a scene by distributing
its angular resolution with a fast MEMS mirror. We
discuss optical and electronic calibrations along with
a real-time prototype.

(2) An extension to the unicycle model for robot control
to change the MEMS mirror path for pairs of targets.
Our control algorithm is based on new closed form
solutions for differential updates of the camera state.

(3) Demonstrating the benefit of adaptive resolution
through increased remote eye-tracking performance
compared to a conventional wide FOV smartphone
with equivalent angular resolution.
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1.1 Related Work

Active vision and adaptive sampling. Ideas from visual atten-
tion [9], [10], have influenced robotics and vision, and infor-
mation theoretic approaches are used to model adaptive 3D
sensing for SLAM and other applications [11], [12]. Efficient
estimation algorithms have been shown for adaptive visual
and non-visual sensing on robots and point-zoom-tilt (PZT)
cameras [13], [14]. We propose to use active vision to drive
the MEMS mirror directly in the camera, allowing for
foveating over regions of interest.

MEMS/Galvo mirrors for vision and graphics. MEMS mir-
ror modulation has been used for structured light [7], dis-
plays [15] and sensing [16]. We use MEMS mirrors to
modulate viewing direction. MEMS mirrors used in
LIDARs, such as from NASA and ARL [17], [18], [19], are
run at resonance, while we control the MEMS scan pat-
tern for novel imaging strategies, similar to [2]. Such
MEMS uses have been shown [20] for highly reflective
fiducials in both fast 3D tracking and VR applications
[21], [22]. We do not use special reflective fiducials and
utilize active vision algorithms for MEMS mirror control.
[23] shows a MEMS mirror-modulated 3D sensor with the
potential for foveation, but without the adaptive algo-
rithms that we discuss. In contrast, the foveating camera
presented here passively uses mirrors to image regions of
interest in real-world scenes, compared to calibration-tar-
get oriented work [24], [25].

Selective Imaging and Adaptive Optics. Our approach is
similar in spirit to optical selective imaging with liquid crys-
tal displays (LCDs) [26] and digital micro-mirror devices
(DMDs) [16]. Because we use 2D scanning MEMS mirrors,
we are able to allow the angular selectivity of [26] with the
MEMS-enabled speed of [16]. Our design is the first to use a
MEMS mirror to image dynamic scenes, although foveated
designs have been proposed for static scenes, such as [27],
[28], [29]. Further, while we use a small MEMS mirror with
many advantages of high-speed and low wear-and-tear,
similar approaches have been tried with motor-driven
mirrors [30].

Compressed Sensing. Our approach of selectively imaging
what is related to optically filtering light-fields for imaging
tasks [31], [32] and compressive sensing [33]. While there
exist CS techniques for creating foveated imagery [28], [34],
achieved sometimes during image capture, our goal is to
distill visual information inside the camera, with MEMS
mirror control, without requiring computationally intensive
post-capture processing such as L1 optimization. Finally
our approach involves fast modulation of the viewpoint,
whereas fast temporal illumination modeling has enabled

light-transport imaging [3], [35], [36], [37] and transient
imaging [38].

Remote gaze tracking. Previous efforts have built eye-
trackers for use at either close distances or remotely using
pan-zoom-tilt (PZT) cameras for applications such as
home entertainment [39], [40], outdoor advertising [41]
and driver monitoring [42]. Depth and pose from stereo
pairs has enabled gaze tracking from longer distances
[43], [44]. We are the first to use a MEMS-mirror based
foveating camera design for remote eye tracking. In our
experiments, we track gaze from two people at 3m dis-
tance, separated by about a meter, which is currently not
possible with any other technique. Further, our technique
can easily accommodate multiple people with a single
camera of high enough frame rate, since the MEMS mir-
ror can move at KHz rates. In contrast, for methods that
rely on PZT for dynamic scenes, frames are lost by the
motorized sensors, unless each target is allocated a dedi-
cated camera.

Equiangular Cameras. A natural argument against
foveated imaging is to use a large field of view equiangular
sensor to image at the same high angular resolution as our
foveating camera. We note that the current high cost of cam-
era sensor fabrication actually encourages the use of our
foveating camera, because we can modulate an equally
dense angular resolution field of view using a camera sen-
sor that is quadratically smaller, and therefore more inex-
pensive, than an equiangular camera that has the same
angular resolution. Please see Section 1 of the supple-
mentary, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2021.3071588 and Fig. 15 in Discussion for further
explanations and simulation.

Fast Object Tracking With Galvanometer Mirrors. Unlike
MEMS-modulated projectors and lidars, the mirror size is
not correlated with light throughput when imaging with
cameras like we do. Using the same camera sensor and lens,
the mirror size affects the incident aperture size and how
close the mirror must be to the camera to fill the camera
field of view. However, once the camera field of view is
filled exactly, the amount of light illuminating the camera
sensor is the same no matter the mirror size that fills the
camera field of view by similar triangles. Although the
MEMS mirror size does not affect light throughput, the inci-
dent aperture that lets light hit the mirror plays a noise role
we plan to explore in future work. Tracking with large
galvo mirrors has been shown by [6]. This system adap-
tively illuminates an object moving through a FOV via opti-
cal flow, and does not distribute illumination to other
objects.

2 FOVEATING CAMERA PROTOTYPE

Our prototype in Fig. 2 consists of a Mirrorcle Technologies
3.6 mm bonded MEMS mirror, Mirrorcle USB MEMS con-
troller, FLIR BFS-U3-16S2C-CS with a 35 mm f/8 Edmund
Optics lens, and custom synchronization circuitry for trig-
gering the sensors. We chose the camera parameters and
mirror size that make the camera FOV roughly the same
size as a face at from 3 m to 5 m.

Fig. 1. Moving mirror creates many virtual views.
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Using thin lens equations and our camera parameters,
we can form a simulation for finding the camera-mirror dis-
tanceD that minimizes vignetting from the mirror by

D ¼ M

2
sin ðaÞ cot

u

2

� �
: (1)

where u is the cameras FOV for a given lens and sensor,M is
the MEMS mirror diameter and a is the angle between the
mirror and camera optical axis, which is typically p=4 by
the manufacturer provided Brewster’s angle, or the angle
that polarized light completely passes through a transparent
surface. Note we only take into account the mirror’s cover-
glass Brewster angle, since the coverglass stays constant
while the mirror moves. We used our simulation model
mainly to determine what optics enable imaging a typical
human head for eye-tracking purposes discussed in later
sections.

Resolution Calibration. Our MEMS mirror comes with a
protective coverglass that reflects light in the visible
ranges and passes in the Near Infrared Ranges (800–
900 nm), we wish to only image light reflected by the mir-
ror and not the coverglass, therefore we aim to suppress
the reflected coverglass light. We suppress coverglass
ghosting by fitting a 800–900 nm bandpass filter to the
camera, orienting the camera and MEMS mirror cover-
glass at p=4 satisfying Brewster’s angle according to man-
ufacturer specifications, and inserting an absorbing cover
over ghosting-inducing reflective packaging surrounding
the MEMS mirror. These calibrations enable much higher
image quality as seen in Fig. 3.

In Section 4 we examine eye-tracking performance as a
function of resolution for both our foveating camera and
iPhone 6 smartphone. Our foveating camera uses a 1/3”
sensor, .003 mm pixel size, and 35 mm lens resulting in a
1080 � 1920 resolution while the iPhone 6 uses a 1/3” sen-
sor, .0015 mm pixel size and a 4.15 mm lens resulting in a
3024 � 2268 resolution. In Section 4 we simulate various
optics and show associated performance for both cameras.
We opt for a 35 mm lens because this enables us to tightly
image faces at around three meters given our camera
sensor.

3 CONTROLLING THE MEMS MIRROR MOTION

Given an optically calibrated foveating camera, as described
by the previous section, we wish to move the MEMS mirror
to best capture the scene. As in Fig. 2, our camera captures
reflections off the MEMS mirror, whose azimuth and eleva-
tion are given by changes in control voltages over time,
ðuðV ðtÞÞ;fðV ðtÞÞ over the mirror FOVvmirror.

3.1 Problem Setup

Let the system bandwidth be M pixels/second. Given an
integer k > 0, we use a camera that captures M

k pixel images
at k images/second, in the foveating sensor. Since the mir-
ror moves quickly, new active vision control is possible to
distribute the k instances of the viewing cone within a
second.

Consider a virtual plane P perpendicular to the optical
axis and parallel to the MEMS mirror in a resting, hori-
zontal state, i.e., ðu ¼ 0;f ¼ 0Þ. P is a fixed distance from
the MEMS mirror and is placed at the working distance
of the camera where the subjects being imaged are. Every
angular pose of the MEMS mirror ðu;fÞ corresponds to a
location ðx; yÞ on P given by perspective scaling. For the
purpose of this paper, we focus on targets that are the
faces of two people. Long range eye tracking is possible if
the mirror moves quickly between the two face locations.
We later discuss how to adapt this two target model to
multiple targets.

Our goal is to move the mirror across a 1D line segment
of length Lr that maximizes the chances of overlapping
with the targets. Let one of the end points be denoted by
ðxr; yrÞ, while its orientation is given by the angle ar w.r.t an
arbitrary reference vector, such as one parallel to the lower
edge of the MEMS mirror.

We denote the state of the sensor by the triplet qr ¼
ðxr; yr;arÞ, and this state exists in a space of possible con-
figurations given by the sensor hardware limits for 1D
motion, U ¼ ðLmin; LmaxÞ � ðvmin;vmaxÞ. U relates to
ðxr; yr;arÞ because ðxr; yr;arÞ, lying in plane P, are con-
strained by U. We encourage the reader to see Figure 1 in
the supplementary material, available online, for a visual
aid. The problem of control requires a solution that changes the
state qr of the sensor to enable target imaging.

Lmin and Lmax correspond to the min and max distance
between regions of interest in P with Lmin ¼ 0 and Lmax <
2vmax . vmin ¼ 0o and vmax is given by

vmax ¼ tanðvmemsÞ þ FOVfovea (2)

where vmems corresponds to the MEMS mirror maximum
tilt and FOVfovea corresponds to the field of view for the
camera imaging the MEMS mirror.

There are two ways to control the MEMS mirror to move
in a 1D motion. The first is point-to-point and the second is
using resonance, creating a Lissajous pattern.

Point-to-Point Algorithm. Given prior knowledge of
the objects location in the scene, which can be given by a

Fig. 2. Foveating camera prototype. Fig. 3. The coverglass induces ghosting and double images. With a com-
bination of using Brewster’s angle, NIR notch filter and absorbing film,
we eliminate the ghosting.

TILMON ETAL.: FAST FOVEATING CAMERAS FOR DENSE ADAPTIVE RESOLUTION 4869

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:33:10 UTC from IEEE Xplore.  Restrictions apply. 



co-located sensor or known initialization, it is then possible
to image each object through updating the respective dictio-
nary mirror coordinates to keep the moving objects in
frame.

Using the point-to-point control strategy, our foveating
camera begins by initializing camera parameters and
sending initial [x, y] coordinates to the MEMS controller.
These coordinates indicate where the optical axis of the
mirror points to on the arbitrary plane P. The camera
capture is triggered for every sample streamed to the mir-
ror from the controller, and this trigger signal is delayed
by 200 ms to allow the MEMS mirror to settle for clean
images. The image is then processed, which explains the
delay between mirror movement and camera exposure in
Fig. 4, and the voltages sent to theMEMSmirror are scaled to
satisfy a given criteria, such as keeping an object in frame at
the given coordinate for that object. We add an additional
delay before the mirror moves again for processing to finish.
This strategy results in a total frame rate of 40Hz with the
camera imaging 640�480 at 8-bit RGB.We use 640�480 reso-
lution since real time imaging is infeasible at the native
1920�1080. See Fig. 4 for a visualization of our cameras
timing.

Real-Time Demonstration. We now show a real-time dem-
onstration of our foveating camera using the point-to-point
control algorithm for tracking two red balls at 20 Hz for
each ball in Figs. 5 and 6. The ghosting artifacts can be sup-
pressed by inserting an absorbing filter around the MEMS
mirror as mentioned in Section 2.

Lissajous Pattern. Our main control contribution is pro-
viding closed form differential updates to MEMS mirror
1D lissajous scanning motion. However, we only use lis-
sajous scanning for the proof of concept control experi-
ment in Section 5, and use point-to-point for the real time
demonstration and data collection for eye tracking. The
benefit of lissajous scanning over point-to-point is lower

latency due to softer control on mirror coordinates. 1D lis-
sajous scan patterns are realized by,

yðtÞ ¼ Asinð2pfxtþ fxÞ: (3)

Now consider a 1D lissajous wave of amplitude Lr
2 ,

bounded by the face locations. W.l.o.g consider one of these
locations to be the “anchor” of the system, ðxr; yrÞ, while its
orientation is given by the angle ar w.r.t an arbitrary refer-
ence vector, such as one parallel to the lower edge of the
MEMS mirror.

Unlike the previous point-to-point method, the Lissa-
jous pattern runs in resonance, which has both advan-
tages and disadvantages. Speed and the lack of any
settling time, as in Fig. 4 are an obvious advantage. How-
ever, since the MEMS mirror is in a balistic mode, images
are obtained in the gaps between the target that must
automatically be removed. Finally, the end points of the
mirror motion may not be consistent, and therefore align-
ment must take place.

In the next section, we detail how to update qr, the state
of the mirror, which is general and impacts any technique
for 1D mirror control for two targets.

3.2 Control Algorithm Overview

To change the state to match the people’s motion around
the scene, we define a control vector ur ¼ ðvr;vrÞ for a
new desired motion, by specifying the velocity vr by
which the length of the 1D motion should change and the
angular velocity vr by which the angle of the 1D motion
should change. In the supplementary material, available
online, summarized briefly in Section 3.3, we use an
optional Kalman filter to estimate the current state of the
MEMS mirror’s 1D motion and the face locations, given a
previous state and face locations and the desired control
vector. Proability distributions can be obtained from a co-
located sensor instead of the Kalman filter. Our contribu-
tion mainly lies in the subsequent sections Sections 3.4
and 3.6, where we discuss how to come up with a control
vector, given previously captured imagery from our sen-
sor. Our model and control algorithm are adapted from
the unicycle model of robot control [45].

3.3 Optional Kalman Filter for State and Target
Tracking

A probability distribution of the targets over time is nec-
essary to control the viewing direction of the MEMS mir-
ror in our camera. For experiments in Section 4 we have
used a vision-based face-tracker as a proxy for this filter.
For completeness we have provided the description of a
Kalman filter tracker in the supplementary material,

Fig. 4. Timing description of our foveating camera. tmirror is the mirror
settling time used to delay the camera trigger signal, texposure is the cam-
era exposure time and tsystem is the total time of one frame capture after
all motion and processing delays.

Fig. 5. Helper smartphone image.

Fig. 6. Raw output of our foveating camera switching between two red
objects based on point-to-point algorithm.
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available online. That supplementary material, available
online, defines a control matrix BrðkÞ to update the state
vector using the control vector urðkÞ

qrðkþ 1Þ ¼ I3qrðkÞ þBrðkÞurðkÞ þQr; (4)

where Qr is the covariance matrices of the MEMS controller
noise and I3 is the identity representing the state transition
for a calibrated, controlled sensor (i.e., only our control vec-
tor and noise matters in changing the state).

Let the left and right face locations, on plane P, be qf ¼
½xlf ylf xrf yrf �. Adding the face locations to the sensor state
gives a full state vector, qðkÞ ¼ ½qTr ðkÞ qTf ðkÞ�T . Since we have
no control over the location of the faces, the full control vec-
tor uðkÞ ¼ ½urðkÞ 0�T . The full prediction is

qðkþ 1Þ ¼ F qðkÞ þBðkÞ uðkÞ þ w; (5)

where F is a target motion matrix, based on optical flow
equations, derived in the supplementary material, avail-
able online, and w represents the process noise in the
MEMS controller and the target motion and is denoted
as covariance matrices Qr and Qt. Let the covariance
matrix of the state vector (MEMS mirror + target faces)
be Pk ¼ ½PrðkÞ 0; 0 PtðkÞ�, where PrðkÞ is the covariance
matrix representing the uncertainty in the MEMS mirror
state and PtðkÞ is the covariance matrix representing the
uncertainty in the target location. Then the change in
uncertainty is

P ðkþ 1Þ ¼ ½BrðkÞTPrBrðkÞ 0; 0 Pt� þ ½QrðkÞ 0; 0 QtðkÞ�;
(6)

where the untracked noise is represented in the MEMS con-
troller and the target as covariances Qr and Qt.

The update step for the entire system is given by two
types of sensor measurements. The first is the propriocep-
tive sensor based on the voltage measurements made
directly with a USB oscilloscope that receives the same vol-
tages sent to the MEMS. The second is a camera that views
the reflections of the mirror and applies a standard face rec-
ognition classifier to each location, determining a probabil-
ity distribution of left and right face locations across the
FOV. From these two measurements we can propose both
the estimated state vector and its covariance matrix,
½zðkÞ; RðkÞ�. Note that the measurement function (usually
denoted as HðkÞ) is the identity in our setup since all the
probability distributions share the same domain, i.e., the 2D
plane P created in front of the sensor. The remaining Kal-
man filter equations are

K
0 ¼ P ðkþ 1ÞðP ðkþ 1Þ þRðkþ 1ÞÞ�1: (7)

q
0 ðkþ 1Þ ¼ qðkþ 1Þ þK

0 ðzðkþ 1Þ � qðkþ 1ÞÞ: (8)

P
0 ðkþ 1Þ ¼ P ðkþ 1Þ �K

0
P ðkþ 1Þ: (9)

3.4 A Metric for Good Mirror Control

We define a metric for control as the difference between the
groundtruth (unknown) state qðkÞ and the current state as
predicted by the filter q

0 ðkþ 1Þ. This is useful to quantify
the tracking performance of our system. However, if there

is no face detection, then the filter cannot be applied and we
default to the previous state moved by the control vector,
given by qðkþ 1Þ. The filter cannot be applied because the
face detections are necessary to fully define our state space
qðkÞ. Let Pd be the probability that all faces were detected
successfully.

Mk ¼ PdE½e0 ðkþ 1ÞT e
0 ðkþ 1Þ� þ ð1� PdÞE½eðkþ 1ÞT eðkþ 1Þ�:

(10)

where

e
0 ðkþ 1Þ ¼ qðkÞ � q

0 ðkþ 1Þ: (11)

eðkþ 1Þ ¼ qðkÞ � qðkþ 1Þ: (12)

(13)

Using the trace trick, similar to [45], we can convert Mk into
an expression using the covariance matrices,

Mk ¼ tr½P ðkþ 1Þ� � Pdðtr½P ðkþ 1Þ� � tr½P 0 ðkþ 1Þ�Þ:
(14)

Since tr½P ðkþ 1Þ� � tr½P 0 ðkþ 1Þ� is always positive (due to
uncertainty reduction of a Kalman filter), maximizing Pd

reduces the error Mk. This is our metric for good performance,
which should illuminate how to control the MEMS mirror
with the control vector ur.

3.5 Updating the Control Vector

The conclusion of the previous section’s discussion can be
depicted as a control law,

maxurPd; (15)

where Pd is defined as the probability that all the faces are
detected, and is given by integrating the probability of see-
ing a face over the MEMS mirror path given by the state of
the sensor, qrðkÞ ¼ ðxrðkÞ; yrðkÞ;arðkÞÞ. We now discuss a
gradient-based iterative update to the control vector, given
the sensor state and uncertainty.

Calculating Pd as a Slice. Given a parameter s, we can
express the locations along which the probability Pd must
be integrated as,

PdðqrðkÞÞ ¼
Z L

s¼0

ftðxrðkÞ þ s cosarðkÞ; yrðkÞ þ s sinarðkÞÞds;
(16)

where ft is the probability distribution function of the faces
in the canonical plane P. The distribution ft comes from the
estimates of face location, which could be from the Kalman
filter or from another process, and can be modeled as a pair
of bi-variate Gaussian distributions, of equal weight (i.e.,
the mixing parameter is 0.5), such that ftðx; yÞ ¼ flðx; yÞ þ
frðx; yÞ, where each Gaussian component centered at the
two previously estimated left and right face locations given
by qfðk� 1Þ ¼ ½xlfðk� 1Þ ylfðk� 1Þ xrfðk� 1Þ yrfðk� 1Þ�.

In Other Words, Pd is an Integral Along a Slice Through Two
Bivariate Gaussian Distributions. For each left and right case,
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we know the correlation matrix of both 2D gaussians, from
the Kalman filter, given by ½s1l; s2l; rl� for the left and
½s1r; s2r; rr�. Therefore the term ftðxrðkÞ þ s cosarðkÞ; yrðkÞ þ
s sinarðkÞÞ can be split into two components, where x ¼
xrðkÞ þ s cosarðkÞ and y ¼ yrðkÞ þ s sinarðkÞ, the first given
by flðx; yÞ

1

2ps1ls2l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2l

q e
�
ðx�xlf Þ2

s2
1l

�2rlðx�xlf Þðy�ylf Þ
s1ls2l

þðy�ylf Þ2
s2
2l

2ð1�r2
l
Þ ; (17)

and the second given by frðx; yÞ

1

2ps1rs2r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2r

p e
�
ðx�xrf Þ2

s2
1r

�2rlðx�xrf Þðy�yrf Þ
s1rs2r

þðy�yrf Þ2
s2
2r

2ð1�r2r Þ : (18)

3.6 Arguments for Using Gradient Descent

In this section we argue that maximizing the value Pd, can
be tackled with gradient descent. First we show that Pd has
at most two global maxima, by linking it to the well known
Radon transform. Second we show that this formulation of
Pd is bounded.

Global Maxima: Pd is obtained by slicing through the two
Gaussians at a line segment given by qr ¼ ðxr; yr;arÞ. By
reconstituting this as a slice through a line with y intercept
yrad ¼ yr þ xr � ðtanðarÞÞ and slope srad ¼ tanðarÞ, we notice
that Pd is the Radon transform of a bi-variate distribution.
For each Gaussian distribution individually, this transform
has been shown to be unimodal with a global maxima and
continuous [46] for a zero-mean Gaussian. Since translations
and affine transformations do not affect the radon trans-
form, these hold for any Gaussian distribution. For the sum
of radon transforms of two such Gaussians, there can be at
most two global maxima (if these are equal) and at least one
maxima (if these overlap perfectly). Finally, the Radon
transform is computationally burdensome for a robot to
compute at every frame, which supports using iterative gra-
dient descent.

Bounded Domain. Consider any slice through the bi-vari-
ate distribution. Consider a slice that has the centers of the
two Gaussians on the same side of the slice as in Fig. 8 Ic.
Then, by moving the slice towards the two centers, we can
increase both components of Pd exponentially and mono-
tonically. So such a slice cannot maximize Pd. From the
above argument, the slice that maximizes Pd goes through a

line segment between the centers of the two Gaussians as in
8 II(c). In other words, the domain, within the Radan trans-
form of bi-variate Gaussians, where we must search for the
maximal slice, is bounded.

Algorithm 1.Gradient-Based Update of Control Vector ur

Input: Kalman filter outputs, valid space U, epsilon error
threshold �, learning rate h and initial control vector ur

Output: Updated control vector ur

1 while 1 do
2 utmp

r ¼ ur þ h
dPdðqrðkþ1ÞÞ

dur
3 if utmp

r 62 U
4 return
5 else if kutmp

r � urk < �
6 return
7 else
8 ur ¼ utmp

r

9 end if
10 end
11 return ur

Optimal Path is Not the Line Joining Gaussians’ Center.
While the line joining the Gaussians’ center is a useful heu-
ristic, it is not a general solution since the length of the inte-
gral L could be smaller than the distance between the
Gaussian centers. Second, the heuristic tends to work when
the Gaussians are similar; if one Gaussian dominates, as in
Fig. 7, then the optimal line can be different.

From these arguments of bounded domain and
continuity, the application of gradient descent is a rea-
sonable strategy for lightweight optimization of the con-
trol law.

3.7 Gradient Descent

Gradients and Algorithm. We compute the Jacobian (i.e.,
derivatives) of Pdðqrðkþ 1ÞÞ, given by ur

dPdðqrðkþ 1ÞÞ
dur

¼ dPdðqrðkþ 1ÞÞ
dqrðkþ 1Þ

dqrðkþ 1Þ
dur

: (19)

Since the second term is the sensor motion model
BrðkÞdt, we just need to calculate the first term,

dPdðqrðkþ 1ÞÞ
dqrðkþ 1Þ ¼

d
dxr

Pdðqrðkþ 1ÞÞ
d
dyr

Pdðqrðkþ 1ÞÞ
d

dar
Pdðqrðkþ 1ÞÞ

2
64

3
75: (20)

We can rewrite this by setting x ¼ xrðkÞ þ s cosarðkÞ and
y ¼ yrðkÞ þ s sinarðkÞ, and by splitting ft into left and right
Gaussians, as

dPdðqrðkþ 1ÞÞ
dqrðkþ 1Þ ¼

d
dxr

R L

s¼0 flðx; yÞds
d
dyr

R L
s¼0 flðx; yÞds

d
dar

R L
s¼0 flðx; yÞds

2
66664

3
77775þ

d
dxr

R L

s¼0 frðx; yÞds
d
dyr

R L
s¼0 frðx; yÞds

d
dar

R L
s¼0 frðx; yÞds

2
66664

3
77775:

(21)

These gradients can easily be calculated after every itera-
tion of the Kalman filter, allowing for the closed form

Fig. 7. Heterogeneity.
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update of the MEMS mirror based on the movement of the
faces, sensor state and uncertainty. In our experiments, we
computed closed forms of these using a commercially avail-
able symbolic calculator, and the accompanying files repre-
senting the derivatives are provided in the supplementary
material, available online. In Algorithm 1 we use these gra-
dients to update the control vector.

Simulations. In Fig. 8 we show simulations of Algorithm 1
on 20 pairs of 2D Gaussians. In Fig. 8 Ia we select four from
these 20, showing the ground-truth “slice” that maximizes
target probability, Pd , calculated from the radon transform.
In Fig. 8 Ib we show the results of the experiments. For each
Gaussian pair, we began the gradient descent at an initiali-
zation from the ground-truth, using a shift of mean zero
and standard deviation s such that 3 � s varies from 0 to
about a 25 percent of the image width. This means that at
the extreme case, initialization could be anywhere in a 50
percent chunk of the image near the ground-truth. Fig. 8 II
shows similar experiments where we only allowed initiali-
zations in the constrainted domain of the segment between
the maxima of the Gaussians. This reduces the overall error
percentage slightly in Fig. 8 IIb.

Fig. 8 I-IIb graphs show euclidean distance between the
converged slice and ground truth, averaged over five trials.
Note that most results converge even for large deviations
from the ground-truth. In Fig. 8 I-IIc we show the conver-
gence path for these examples, and in Fig. 8 I-IId we show
that the L2 norm of the gradients decreases as it converges.

Practical Considerations. While we have provided gra-
dients for optimization, other factors influence convergence
such as the learning rate. Failure cases of our setup are due

to initializations that are too distant from either Gaussian
and, therefore, have small gradients (i.e., local minima).
Again, more capable optimization strategies, using our gra-
dients, can result in better convergence.

4 REMOTE EYE-TRACKING FOR FRONTAL FACES

We demonstrate the benefit of modulating a dense low-FOV
over a wide-FOV through remote eye-tracking, where both
high angular resolution and wide FOV for multi-person
imaging are necessary. Remote eye-tracking for frontal faces
has potential applications in situations where the faces are
directly viewed by the camera, such as human-robot inter-
action, automobile safety, smart homes and in educational,
classroom settings.

In this section, we describe our testbed for remote eye-
tracking, where we compare the eye tracking performance
using the iTracker convolutional neural network [47] for
both our foveating camera and a near-co-located smart-
phone. We also present a proof-of-concept remote eye-track-
ing system that uses our MEMS mirror enabled foveating
camera to capture images.

4.1 Our Eye-Tracking Setup

Our setup, shown in Fig. 9, consists of our foveating camera,
placed between two NIR floodlights. The setup is at the top
of a textureless lambertian plane of width approximately
100cm� 100cm. A video projector, placed at 2m distance,
projects a 5�5 grid of points spanning the width and height
of the lambertian plane, as in the figure.

Fig. 8. Simulations of 1D slice optimization: In (I) and (II) we created simulations to test the iterative optimization in Algorithm 1. (I) is a free-form opti-
mization, whereas (II) constrains the optimization along the proposed bounded region. Note that the percent error for (II) is slightly lower.
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Two subjects at 3m distance from the camera, view the
patterns, focusing on each dot for about 5 seconds. The
smartphone camera has a FOV of 55� and views both sub-
jects. Our camera has a FOV of 8:6� and alternates between
the two subjects. In Section 5, we describe how to control
the movement of the mirror due to subject motion, but in
this section we will assume that only the eyes of the subjects
move. Therefore in all our experiments, for the same pixel band-
width of 1920� 1080 for our sensor and the smartphone, we are
able to increase the angular resolution by a factor of 55

8:6 � 6 times.
This is the main advantage of the foveating camera. Now
we discuss the impact of this increased resolution on eye-
tracking performance.

4.2 Fine-Tuning a Gaze-Tracking Network

The iTracker convolutional neural network [47] takes in four
inputs derived from a single capture of a face (both eyes,
cropped face and face location), assumed to be captured on
a smartphone, at arms length from the face. Each of these
inputs goes into a dedicated Alexnet-inspired network,
with the eye-layers sharing weights. The outputs of the
layers are a 2D gaze location, relative to the camera; e.g., the
output is (0, 0) for someone looking directly at the camera.

86 percent of the iTracker imagery is iPhone data trained
on eye angles varying in y from 2 cm (4.5o) to 10 cm (21.8o)
and � from �1cm (2.3o) to 5 cm (13.5o). To maintain these
angles at 3m for our data, we trained on patterns spanning
� from �39 cm to 39 cm (7.4o) and y from �21 cm (4o) to
�82 cm (15.3o).

While this network has been trained on the GazeCapture
dataset of around 1400 subjects in a variety of domains, it can-
not be used directly on our setup (described next), since the
geometry of the setup is different (i.e., subjects are much fur-
ther away, 25 cm in iTracker versus 3m for us) which changes
the perspective of howmuch the eyes appear to move for the

same angle. Further, our data is in the NIR range, which is
different domain than the data used in the paper. In all our
results, we compare the original results with fine tuning with
domain-specific data collected with our setup. All our train-
ing and testingwas done at 3m from the camera.

4.3 Data Collection for Fine-Tuning

The network performs poorly using the provided network
weights at the same span of test points at 3 m as the iPhone
tests. This is expected since viewing a 12 cm spanned x,
y pattern (iPhone) at 3 m gives less than 1o eye angle. Com-
mercial eye trackers typically employ 1o eye angle tolerance
or higher. To circumvent lack of eye angle, we fine tuned
the network on data with the correct in-situ angular
properties.

Experiments with four volunteers (3 male and 1 female,
see Fig. 10 I) enabled the collection of fine-tuning data in-
situ with the device, in NIR, for the grid pattern in Fig. 9
along with the smartphone. Each data collection experiment
lasted 20 minutes, and data was collected simultaneously
for smartphone and foveating camera. We record 400
images per point, giving 10,000 images per subject or 40,000
total images. We use 33,000 images due to faulty face and
eye detections being discarded to maintain high-fidelity
data. We randomly split the dataset into 23,000 train, 4,000
validation, and 6,000 test for our foveating camera and
smartphone. For fine-tuning, we begin with identical
weights to [47], except we lower our learning rate ten fold.
We do not freeze any layers. We found 10 epoch fine-tuning
to fit our dataset properly, and all results in this section are
from 10 epoch fine-tuning.

4.4 Experimental Results

In our experiments, the subjects were at 3m distance and six
people were involved overall, four for training and testing,

Fig. 9. Our eye tracking setup and gaze pattern used for our finetuning dataset.

Fig. 10. Sample images from our dataset. Our foveating camera data is
on the left and iPhone 6 smartphone is on the right. Some faces are off
center due to this being a real experiment with the camera moving.

TABLE 1
Random Initialization Fails (Train/Val error)

Camera L2 Error (10 epochs) (cm)

Smartphone (random initial.) 55.91

Smartphone (iTracker initial.) 6.5

Foveating camera (random initial.) 45.77

Foveating camera (iTracker initial.) 4.45
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two for the proof of concept experiment in Section 5. To
show that this relatively small fine-tuning dataset does not
adversely affect our results, we show, in Table 1, that vali-
dation errors after 10 epochs for both our camera and the
smartphone are much higher when starting from random
weights, than from the pre-trained weights. So, our small
dataset is simply used for fine-tuning and does not overfit
after 10 epochs, and we do indeed utilize the 1,400 users
encapsulated in the pre-trained weights.

Simulating Angular Resolution. We now show the bene-
fit of our foveating camera by analyzing eye tracking
error as a function of simulated angular resolutions for
our foveating camera and smartphone. We introduce a
simulation model to downsample and then upsample
network inputs, changing the angular resolution of the
inputs. We finetune, validate, and test the network all
using simulated network inputs according to the below
simulation model. The test data is reshuffled for each
simulation while the network hyper-parameters remain
identical to Section 4.2.

Simulation Model. We outline the equations and provide
code for our simulation model in Section 2 of the supple-
mentary, available online, but give the main idea here. We
pick different camera parameters for both our foveating
camera and smartphone. We then downsample and upsam-
ple the network inputs based on how many pixels from
each new simulated camera are left over in the original field
of view to simulate angular resolution loss.

Simulation Results. Our simulations show that we can
maintain low eye-tracking error even at very small image
resolutions. Figs. 11a, 11b, and 11c demonstrate the eye
tracking performance drastically degrading for the

smartphone as angular resolution decreases while our
foveating camera error degrades more gradually and has
a much lower extreme. Our foveating camera and smart-
phone converged to similar errors at high angular resolu-
tions with the smartphone performing slightly better at
image sizes above 2MP. Even though the simulated angu-
lar resolution of our foveating camera and smartphone
are equivalent on Figs. 11a, 11b, and 11c x axis, downsam-
pling and upsampling causes different degradation’s for
our foveating camera and smartphone since their images
were sampled at different native angular resolutions. We
do not see the smartphone outperform the foveating cam-
era until we use a smaller pixel size (larger number of
pixels) in Fig. 11c. The smartphone is able to beat the
foveating camera because the foveating camera is
degraded just enough after our resizing operation in com-
parison to the smartphone to make the resulting true
angular resolution worse than the smartphone true angu-
lar resolution after our resizing operation.

See Figs. 12 and 13 for a visualization of the iTracker net-
work output for our foveating camera and smartphone,
respectively. The L2 error of our foveating camera was
5.18cm and the smartphone was 11.06 cm. The camera
parameters for this visualization include increasing sensor
pixel sizes by 1.5, using 5 mm and 2.5 mm lenses for our
foveating camera and smartphone, respectively, giving a
common vertical angular resolution of .4 pixels/mm
between the smartphone and foveating camera, as in in
Fig. 11a. Since our native FOV was 466 mm � 262 mm (W �
H), the image size at these parameters was 332 � 104, this
clearly shows the benefit of our camera: we are able to sacri-
fice significant resolution and maintain high performance.

Fig. 11. Angular resolution experiment results.

Fig. 12. Raw network output for our foveating camera test data with
5.15cm error. The ground truth locations are black dots.

Fig. 13. Raw network output for smartphone test data with 11.06 cm
error. Ground truth locations are black dots.
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5 PROOF-OF-CONCEPT CONTROL EXPERIMENT

Finally, we use the control from Section 3, along with the
eye-tracking capability described in the previous section, to
demonstrate a proof-of-concept capability of our sensor. In
this experiment, one of the pair of persons from our test
subjects not used in training, validating, or testing the net-
work are looking at a square pattern the network has not
seen. This pattern has a smaller span than the 5 � 5 grid
used in Section 4.

We use a the bounding box from a simple face-
tracker [48] as a proxy for the Kalman filter, and use the a
user defined ratio k � 3 to map the maximum box dimen-
sion dmax to the variance s ¼ k � dmax in a symmetric Gauss-
ian centered on the box that approximates the probability
distribution of the face. Combining this for both faces pro-
vides the probability distribution of the targets Pd, required
in our control law.

In Fig. 14, we show the initial state of the scene for the
two test subjects and the corresponding gaze track for the
square at the initial mirror position of [�1 0] for the left per-
son and [1 0] for the person on the right and the control state
is qr ¼ ½�1 0 0�. Then, one person moves, as shown in the
figure. Algorithm 1 converges to mirror positions of [�.86
0.331] and [.915 �0.05] respectively with a state vector of
qr ¼ ½:915 � 0:05 p

24�. Note that, at these new positions, both
faces are clearly visible, and the gaze tracking experiment
for the square pattern, redone at this new mirror position,
also produces good quality results (6:8 cm and 6:03 cm L2
error respectively).

6 CONCLUSION

Limitations. Multi-object tracking with 2D lissajous scanning
is an area of focus moving forward, and we hope to provide
derivations for these mirror position updates in future work
to move towards a generalized control law.

Integrating an auto-focusing element such as a liquid
lens into our camera would improve the shallow depth
of field of our camera caused by the MEMS mirror size.
Liquid lenses are easily embedded into camera systems
and would allow for increased imaging distance and
depth of field.

While our camera is fairly compact at 15cm � 10cm �
10 cm, we acknowledge this size will need to be reduced
before foveating cameras could easily be integrated into
robotic imaging systems. This could be accomplished by
replacing the bulky MEMS controller with a MEMS driver
board giving dimensions of 3.5cm x 4cm x 1cm, and using
optics and sensor housing that optimize for smallest possi-
ble form factor. We also note that using a MEMS driver
board instead of MEMS controller should increase the frame
rate of the camera due to less software overhead from the
ease of use the controller provides.

Discussion. Further comparison with competing sensors
and datasets is necessary to further show our camera’s per-
formance. We provide initial simulations comparing our
foveating image capture technique to an equivalent full
frame camera in Fig. 15 and in the supplementary, available
online.

Foveating cameras change a cameras viewpoint such that
it can see multiple regions of interest at resolutions and
speeds typically not possible. Quickly modulating a pixel-
dense camera viewpoint has direct applications to robotics,
augmented reality and autonomous vehicles where densely
sampling specific regions could help complete 3D reconstruc-
tions, aid long range visual navigation tracking, and increase
safety by increased sampling on critical regions of interest.
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