
IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022 3713

Directional Sensor Planning for Occlusion Avoidance
Jake Gemerek , Member, IEEE, Bo Fu, Member, IEEE, Yucheng Chen , Zeyu Liu , Min Zheng, David van

Wijk , and Silvia Ferrari , Senior Member, IEEE

Abstract—Directional sensors, such as video cameras, have be-
come ubiquitous to many autonomous robots applications, such as
monitoring and surveillance. The performance of these sensors and
processing algorithms, however, may be hindered by the presence of
objects that block visibility. This article presents a novel approach
for planning the path of a mobile directional sensor deployed to
observe multiple targets distributed in an environment populated
with multiple obstacles and occlusions. Unlike existing art gallery
or watchman’s route methods, the visibility theory and motion
planners developed in this article account for both line-of-sight
visibility and bounded field-of-view constraints, and can provide
obstacle avoidance based on robot geometry and kinodynamic
constraints. The computational complexity analysis and exper-
iments on a camera-equipped drone demonstrate that, despite
the challenging geometric characteristics of directional C-targets,
the approach scales to real-world problems. Furthermore, when
compared to algorithms inspired by traveling salesman and target
coverage approaches, the directional visibility planners presented
in this article are significantly more effective both at guaranteeing
complete target visibility and at minimizing distance traveled.

Index Terms—Avoidance, camera, coverage, directional, line of
sight (LOS), obstacle, occlusion, path planning, sensor, visibility,
target.

I. INTRODUCTION

D IRECTIONAL sensors are characterized by a preferred
sensing direction that may be interrupted by the presence

of occlusions [1]. Examples include but are not limited to monoc-
ular cameras [2], [3], stereo cameras [4], [5], radar [6], active
sonar [7], [8], neuromorphic vision sensors [9], [10], and many
other imaging sensors. When the sensor position and orientation
is known, the visibility of a target at a known location and in the
presence of potential occlusions can be established by check-
ing the line-of-sight (LOS) visibility requirement. Directional

Manuscript received 10 November 2021; revised 29 April 2022; accepted 11
May 2022. Date of publication 15 September 2022; date of current version 6
December 2022. This work was supported by the Office of Naval Research
under Grants N00014-17-1-2175 and N00014-19-1-2144. This article was
recommended for publication by Associate Editor J. O’Kane and Editor F.
Chaumette upon evaluation of the reviewers comment. (Corresponding author:
Silvia Ferrari.)

Jake Gemerek is with the Moog Inc., Elma, NY 14059 USA (e-mail:
jrg362@cornell.edu).

Bo Fu, Yucheng Chen, Zeyu Liu, Min Zheng, and Silvia Ferrari are
with the Laboratory for Intelligent Systems and Controls, Cornell University,
Ithaca, NY 14850 USA (e-mail: bf284@cornell.edu; yc2383@cornell.edu;
zl542@cornell.edu; minzheng486@gmail.com; ferrari@cornell.edu).

David van Wijk is with the Land, Air and Space Robotics Laboratory, Texas
A&M University, College Station, TX 77840 USA (e-mail: dev37@cornell.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2022.3180628.

Digital Object Identifier 10.1109/TRO.2022.3180628

sensors are typically characterized by a bounded field of view
(FOV) that limits the range and opening angle of its visibility
region. Therefore, when the sensor is installed on a mobile robot,
its position and orientation along the robot path can greatly
influence the quality of the images. Planning an effective path is
especially important when targets must be observed repeatedly
over time, e.g., in demining [7], [11] and monitoring of gas
pipelines and marine structures [8], [12], [13], or when collisions
and occlusions present a safety hazard, e.g., in autonomous
vehicles [14], digital agriculture [15], and monitoring of indoor
or urban environments [2], [16].

Methods that account for LOS visibility include solutions
to the art gallery problem (AGP) [17] and the watchman’s
route problem (WRP) [18]. AGP solutions seek to determine
the minimum number of stationary omnidirectional cameras
required to simultaneously view a set of targets in a polygonal
workspace characterized by occlusions [17]. Because AGP solu-
tion approaches do not obtain visibility representations in closed
form, they are not applicable to mobile sensors and do not take
into account bounded FOVs or obstacles to be avoided by the
robot on which the sensor is installed. WRP methods check the
LOS requirement while searching for the shortest path that maps
the entire workspace by following the gradient of visibility-level
set functions [18]. Although relevant to the LOS requirement
used here, WRP and AGP methods are not applicable, nor scale
up to mobile sensors observing a set of point targets, and cannot
be modified to account for the bounded geometry of the FOV.

The new visibility theory and sensor path planning algorithms
developed in this article allow us to take into account both LOS
and bounded FOV requirements while optimizing the distance
traveled by the mobile sensors and avoiding collisions with ob-
stacles. The approach is demonstrated on a benchmark problem
that consists of observing a set of targets located at known
and fixed positions in the sensor workspace. The construction
of visibility regions presented in this article is obtained by
extending the geometric concepts known as C-targets [19]–[21]
and coverage cones [16], [22] to directional sensors. Using the
coverage cone and convex hull of the occlusion, a directional
visibility region can be obtained in closed form as a function
of the target and sensor positions (see Section III), excluding a
so-called “shadow region” that precludes LOS visibility inside
the FOV.

The resulting visibility regions are shown to amount to subsets
of the free configuration space that are possibly intersecting, con-
cave, and may exhibit holes. As a result, they cannot be utilized
by existing planning algorithms (e.g., [3], [19], [20], [23]–[26]).
A novel approach for constructing a directional visibility graph

1552-3098 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5587-6056
https://orcid.org/0000-0001-7836-3993
https://orcid.org/0000-0003-0276-8913
https://orcid.org/0000-0003-4494-601X
https://orcid.org/0000-0002-7652-6311
mailto:jrg362@cornell.edu
mailto:bf284@cornell.edu
mailto:yc2383@cornell.edu
mailto:zl542@cornell.edu
mailto:minzheng486@gmail.com
mailto:ferrari@cornell.edu
mailto:dev37@cornell.edu
https://doi.org/10.1109/TRO.2022.3180628

3714 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 1. Robot geometry, A, and sensor FOV, S, described relative to body
frame FA and operating in a workspace with inertial frame FW .

from visible target labels is presented in Section III-C. Four new
directional visibility planners are developed in Section IV and
analyzed in Section VI. These new methods are demonstrated
and implemented on an autonomous quadrotor equipped with
a monocular camera and computer vision algorithms using nu-
merical simulations in Unreal Engine [27] and, then, in physical
experiments (see Section VII-B). The results in Section VII
show that the directional sensor planning algorithms developed
in this article find efficient paths that avoid obstacles and view all
targets, both in outdoor and indoor complex environments. Fur-
thermore, the new directional connectivity and pruned visibility
(PV) graph planners presented in Sections IV-A and IV-B are
highly effective at minimizing the distance traveled, allowing the
drone to find the shortest path that yields correct identification
of all targets via region-based convolutional neural network
(R-CNN) [28].

II. PROBLEM FORMULATION AND ASSUMPTIONS

This article considers the problem of planning the path of
a mobile directional sensor, such as a camera-equipped drone,
deployed to observe multiple targets for purposes such as clas-
sification or surveillance. For illustration purposes, the robot-
mounted sensor is assumed to be operating in a workspace that
is closed, bounded, and 2-D, denoted by W ⊂ R2. This latter
assumption holds for ground robots, as well as aerial robots that
can operate in steady-level flight, at an altitude commensurate to
the sensor FOV (see Fig. 1). In this article, it is assumed that the
2-D workspace is populated with M opaque and solid objects,
Bj ⊂ W , indexed by j ∈ J , J = {1, . . .,M}, that constitute
occlusions for the sensor and obstacles for the robot.

For simplicity, it is assumed that all M opaque objects are
known, convex, polygonal, and fixed with respect toW . For non-
convex and nonpolygonal objects, the approach can be applied
by first approximating their geometry as a bounding polygonal
approximation and, then, by decomposing it into convex polyg-
onal objects, e.g., obtaining a so-called bounding rectangloid
decomposition (see [20] for more details). The sensor must
explore the workspace in order to observe N stationary targets
(objects) of interest that are each located at a known position

Fig. 2. Sensor FOV 2-D parameterization with apex s ∈ W , opening angle
α ∈ S1, and (maximum) range r > 0.

xi ∈ W , where i ∈ I, and I = {1, . . ., N}. The present formu-
lation, which can be viewed as an extension of the AGP [17]
to mobile sensors, is applicable to a number of modern surveil-
lance systems in which environmental maps are first obtained
through stationary or remote sensors and, then, a mobile sensor
is deployed on site to obtain additional target information, such
as action/object classification (see Section VII).

The sensor is mounted on a mobile robot, such as a ground,
aerial, or underwater robot, with a rigid geometryA ⊂ W . Then,
every point inA and every point in the sensor FOV, S ⊂ W , can
be represented by the position and orientation of the moving
body frameFA relative to an inertial frameFW embedded inW ,
with originOW . Assume that FA is embedded inA with origin
OA at the sensor location (e.g., camera pinhole), as illustrated
in Fig. 1. The sensor is assumed to be fixed with respect to A,
such that the sensor position s ∈ W and orientation θ ∈ S1 are
represented by the robot configuration, defined asq � [sT θ]T .

Directional sensors, such as monocular or stereo cameras, or
active sonar and radar, are characterized by a preferred sensing
direction and, thus, are only able to observe a target if it satisfies
LOS visibility and is inside the sensor FOV defined as follows.

Definition II.1 (FOV): For a sensor characterized by configu-
ration q = [sT θ]T , the sensor FOV is a rigid object that can be
described by a closed and bounded subset S(q) ⊂ W in which
the sensor may obtain target measurements.

In this article, the sensor FOV S is modeled by a sector with
opening angle α ∈ [0, 2π) and radius r > 0, representing the
sensor aperture and maximum range, respectively. The sector
apex coincides with the sensor position (e.g., camera pinhole),
s ∈ W , as shown in Fig. 2. Target LOS visibility, defined in the
following, requires that, in addition to being inside the FOV, the
target is free of occlusions caused by opaque obstacles (Bj), as
schematized in Fig. 3.

Definition II.2 (LOS): Given an opaque object Bj ⊂ W , a
target at x ∈ W is in the LOS of a directional sensor with apex
at s ∈ W if and only if

L(s,x) ∩ Bj = ∅ (1)

where L(s,x) � {(1− γ)s+ γx|γ ∈ [0, 1]} is a line segment
connecting the sensor position, s, to the target at x.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3715

Fig. 3. Opaque object Bj occludes a target at xi for a given sensor apex, s.

Fig. 4. Example of visible target, x, in the presence of one opaque obstacle,
Bj , occluding a portion of the sensor FOV, S.

Therefore, given a sensor with apex s and FOV S(q), a target
positioned at x is said to be visible if and only if x ∈ S(q) and
L(s,x) ∩ Bj = ∅ for all j ∈ J (see Fig. 4). For a mobile sensor,
the configuration space is the space C ∼= SE(2) of all configura-
tionsq ∈ C, defined with respect toFW . As a result, sensor plan-
ning consists of deciding the sequence of robot configurations
that avoids obstacle collisions for robotA(q), and enables target
visibility for sensor S(q). The sensor’s configuration space C is
homeomorphic to the Special Euclidean group, SE(2), meaning
that the configuration space can be represented as any space
with the same topological properties as SE(2) [30]. Thus, the
configuration space is equivalently represented as C ∼=W × S1,
and, because S1 is 2π-periodic and multiply connected, the
configuration space is also 2π-periodic and multiply connected
in the direction of the sensor rotation angle.

Let the topology of C be induced by the distance metric

D(q,q′) �
[
(q− q′)TW(q− q′)

]1/2
(2)

where

W �

⎡
⎢⎣wt 0 0

0 wt 0

0 0 wr

⎤
⎥⎦

and wt > 0 and wr ≥ 0 are translational and rotational weights,
respectively. Note that when wt = wr = 1, the distance metric
in (2) reduces to the Euclidian metric in R3. Having defined
the topology of C, the collision-free sensor path from an initial
to a final configuration, denoted by q0 and qf , respectively, is
obtained from the classic definition of a path in a topological
space [31], as follows.

Definition II.3 (Path): A path from q0 to qf is a continuous
map

τ : [0, 1]→ Cfree

with τ(0) = q0 and τ(1) = qf .
The sensor motion is governed by an ordinary differential

equation that models the robot kinematic and dynamic con-
straints as follows:

q̇(t) = f [q(t),u(t), t], q(t0) = q0 (3)

where u(t) ∈ U is the control vector, and U ⊂ Rm is the
m-dimensional space of admissible control inputs. The vector
function f(·) is obtained from a model of the robot that, for
simplicity, in this article is assumed to obey single-integrator
dynamics, such that f [·] = u(·). Then, letting the sensor path (τ)
be described by a continuous piecewise-linear path, known as a
polygonal chain, with vertices (q0,q1, . . .,qn), the path length
can be computed using the distance metric in (2) as follows:

J(τ) �
n−1∑
k=0

D(qk,qk+1) (4)

The problem considered in this article consists of finding the
minimum-distance obstacle-free path such that every target in
W is visible, at minimum, at one sensor configuration, i.e.,

min
τ

J(τ) (5)

sbj to xi ∈ S(τ(γ)) ∧ L(τ(γ),xi) ∩ Bj = {∅} (6)

∀i ∈ I, ∀j ∈ J , ∀γ ∈ [0, 1], τ(γ) ∈ Cfree (7)

where ∧ is the conjunction operator. When the goal is to min-
imize time or energy consumption, the above problem can be
modified to incorporate new objective functions along with robot
dynamic constraints that properly reflect speed, acceleration,
and power consumption, using the optimal control approach
reviewed in [1].

III. VISIBILITY THEORY

This article presents a novel theoretical framework for direc-
tional sensor planning that accounts for both LOS and bounded
FOV visibility constraints in closed form. Existing robot plan-
ning methods for obstacle avoidance consider the set of all
configurations that cause collisions between the robotA and an
obstacle Bj , by mapping Bj into the robot configuration space,
obtaining a C-obstacle defined as CBj � {q ∈ C|Bj ∩ A(q) �=
∅} [30], [32]. As a result, the robot must travel in the free
configuration space, Cfree � C\

⋃M
j=1 CBj , which represents the

subset ofC comprised of collision-free configurations. Similarly,

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3716 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

existing sensor planning methods account for the bounded sen-
sor FOVS by mapping targets into the robot configuration space
obtaining C-targets, which, for point targets, can be defined as
CT i = {q ∈ C|xi ∈ S(q)} [20], [21].

This article presents a new approach that takes into account
both the bounded sensor FOV and the LOS visibility con-
straints by constructing new directional visibility regions using
convexity theory. These visibility regions represent all sensor
configurations that enable target visibility in the presence of
occlusions comprised of opaque objects inside the sensor FOV.
Because these regions are concave and, often, enable observa-
tions from multiple targets simultaneously, existing planners
(reviewed in [33]) are not applicable. Instead, new constructs
referred to as “set visibility regions” are obtained and, then, used
to develop four new path planning methods (see Section IV) that
provide approximate solutions to the directional sensor planning
problem in (5)–(7).

A. Target Visibility

As a first step, visibility regions that guarantee both FOV and
LOS target visibility are obtained from the C-targets and the
coverage cone method first introduced in [22].

Definition III.1 (Target Visibility Region): Given a directional
sensor with apex at s ∈ W and FOV geometry S(q), the visi-
bility region of a target at xi ∈ W in the presence of M opaque
objects Bj (j = 1, . . .,M) is defined as the subset of Cfree
that simultaneously satisfies the FOV and LOS target visibility
conditions

T Vi � {q ∈ Cfree|xi ∈ S(q),
L(s,xi) ∩ Bj = ∅ ∀j ∈ J } (8)

where L(s,xi) � {(1− γ)s+ γxi|γ ∈ [0, 1]}.
The closed form expression for the target visibility region is

obtained in terms of the convex hull and coverage cone, using a
series of set operations described in this section. From convex
analysis [34], [35], given a nonempty subset A of a Euclidian
space, the “cone generated by A,” denoted by cone(A), is the
set of all nonnegative combinations of the elements of A. In the
2-D Euclidian space, the cone generated by the opaque object
Bj and with origin at s ∈ W\Bj , is defined as

K(Bj , s) � {αz+ (1− α)s|α ∈ R+, z ∈ Bj} (9)

and referred hereon as coverage cone of Bj [22].
Proposition III.2: If Bj is a convex polyhedral object, the

polyhedral coverage coneK(Bj , s) generated by Bj with origin
at s is also convex.

See [36] for a proof.
Now, let the convex polygon Bj be represented by a finite set

of vertices inW denoted by {z1, . . ., zK}. Then, the cone

cone(Bj , s) =
{
s+

K∑
k=1

ak(zk − s)

∣∣∣∣∣ zk ∈ Bj , ak ≥ 0

}

(10)
is a polyhedral cone, where {z1, . . ., zK} are the generators of
the cone [36]. The coverage cone in (10) is also known as tangent
cone or cone of feasible directions of Bj at s, and represents all

Fig. 5. Sensor shadow region (checkered color) and visibility region (orange)
obtained from the sensor FOV (pink) and the obstacle coverage cone (yellow).

line transversals of Bj through s. The convex hull of Bj , defined
as

conv(Bj) �
{

K∑
k=1

akzk

∣∣∣∣∣ zk ∈ Bj , ak ≥ 0,

K∑
k=1

ak = 1

}
(11)

represents the intersection of all convex sets containing Bj .
Now, the coverage cone and convex hull of the opaque object

can be used to obtain the so-called shadow region (e.g., check-
ered region in Fig. 5), which represents the region of the sensor
FOV occluded by the object and is defined as follows.

Definition III.3 (Sensor Shadow Region): Given a sensor
FOV,S(q), modeled by a sector with apex at s, the sensor shadow
region with respect to an obstacle Bj ⊂ W is defined as

Dj(q) � {x ∈ S(q)|L(s,x) ∩ Bj �= ∅} (12)

where L(s,x) � {(1− γ)s+ γx|γ ∈ [0, 1]}.
From (12), it follows that the visibility region is the comple-

ment of Dj in S
Vj(q) = S(q) \ Dj(q) (13)

and represents the set of target positions that are visible to the
sensor at configuration q, as illustrated in Fig. 5.

From (10) and (11), it can be easily shown that the sensor
shadow region can be obtained by the following set operations:

Dj(q) = {cone(Bj , s) \ conv(Bj)} ∩ S(q)
= {cone(Bj , s) ∩ S(q)} \ {conv(Bj ∩ S(q))}. (14)

Because the coverage cone and sensor FOV always have the
same origin (apex), their intersection is a sector. Furthermore,
the intersection of a polygonal obstacle with the sensor FOV
is a convex polygon. Therefore, the above set operations can
be carried out efficiently for all obstacles in the workspace,
provided q is known.

When planning the sensor path, however, the configuration q
is not known a priori and the presence of multiple targets and
multiple obstacles must be taken into account simultaneously.
Therefore, consider an alternate representation of the shadow
region that is based on the known target position, xi, and

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3717

Fig. 6. (a) Visibility regions of two targets x1 and x2 at a fixed orientation θ̂.
(b) Top-down view of target visibility regions in configuration space.

represents all sensor configurations at which target i is occluded
by obstacleBj despite being located inside the sensor FOVS(q),
i.e.,

D(xi) =
⋃
j∈J

(cone(Bj ,xi) \ conv(Bj ∪ {xi}))

� Di ∀i ∈ I. (15)

The above target shadow region is independent of the sensor
rotation and, thus, can be mapped fromW to C as follows:

D̂i = {q = [sT θ]T ∈ C|s ∈ Di, θ ∈ S1} ∀i ∈ I. (16)

Then, the visibility region of a target located at xi can be
computed from its shadow region and C-target

T Vi = CT i \ D̂i ∀i ∈ I (17)

reintroducing the region’s dependency on the sensor orientation
(θ).

In practice, the rotational component of the configuration
space θ ∈ [0, 2π) is discretized into κ > 0 linearly spaced inter-
vals and the C-target and shadow region are computed as planar
geometries. Examples of target visibility regions are shown in
Fig. 6, where Fig. 6(a) shows two planar visibility regions at a
sample fixed rotation θ = θ̂ and Fig. 6(b) shows the two visibility
regions in configuration space for the two target positions and
occlusion plotted in Fig. 6(a). By discretizing the rotational

component of the configuration space into a collection of κ 2-D
manifolds, existing computational geometry tools (such as [37])
can be applied to determine the visibility regions of allN targets
in the presence of M obstacles.

B. Set Visibility

Unlike C-targets [20], target visibility regions are typically
concave even for point targets and convex sensor FOVs. Further-
more, for dense target environments and/or long-range sensors,
multiple visibility regions may intersect giving rise to valuable
subsets of the free configuration space that enable simultaneous
observations from multiple targets. As a result, by visiting
these regions, the robot is able to avoid occlusions and obtain
measurements (e.g., images) from multiple targets that appear
simultaneously inside its FOV. For this reason, after computing
the visibility regionsT Vi (i = 1, . . . , N) for all known targets in
W , it is convenient to determine their intersections as explained
in this section.

For N target visibility regions that are not mutually disjoint,
every region of intersection can be associated with an index
set that represents the indices of all targets visible from the
corresponding set of sensor configurations. Then, a one-to-one
correspondence can be established between target sets and vis-
ibility by introducing the following definition.

Definition III.4 (Set Visibility Region): Given a set ofN target
visibility regions {T Vi|i ∈ I}, let P ⊆ I denote the set of in-
dices of two or more intersecting regions, T Vi1 ∩ T Vi2 ∩ · · · ∩
T Vin �= ∅, such that P = (i1, . . ., in). Then, the set visibility
region is defined as

VP � {T Vi1 ∩ · · · ∩ T Vin |P = (i1, . . ., in), i1, . . ., in ∈ J }
(18)

where P is an ordered tuple of visible targets’ indices.
A closed-form expression for the set visibility region is ob-

tained as follows:

VP =

{⋂
i∈P
T Vi

}
\
{⋃

i/∈P
T Vi

}
(19)

and, under the assumptions in Section II, consists of a 3-D subset
of the free configuration space Cfree. The 2-D cross sections
of set visibility regions can be obtained by considering the
intersections of target visibility regions at a constant sensor
orientation [as can be seen in Fig. 6(a)].

An example of the closed-form set visibility region in (19) is
illustrated in Fig. 7, where six set visibility regions are obtained
in a workspace with three targets at positions x1, x2, and x3,
and two opaque objects B1 and B2. The three target visibility
regions are obtained at a fixed sensor orientation (θ̂), and their
intersections lead to six set visibility regions labeled by the
index set of the visible targets. In this example, the sensor
configurations in V{1,2,3} are the most valuable because they
enable simultaneous observation of all three targets. Also, the
example illustrates why visibility regions are typically concave
and, possibly, disconnected (e.g., see V{3} in Fig. 7). As a result,
existing sensor planning methods [1] are not directly applicable.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3718 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 7. Set visibility regions of three targets x1, x2, and x3 (green dots), in
the presence of two occlusions B1 and B2 (grey polygons) at a fixed sensor
orientation θ̂.

As shown in the next section, the target and set visibility
regions can be used to produce a new type of connectivity
graph that captures parsimoniously both target visibility and the
connectivity of the free space. Four new planning algorithms
are then presented in Section IV that offer computationally
tractable solutions to the directional sensor planning problem in
(5)–(7).

C. Directional Connectivity Graph (DCG)

Inspired by traditional connectivity graphs for robot plan-
ning [20], [33], [38], the new DCG presented in this section
seeks to capture the free-space connectivity between sensor
configurations that are characterized by visible target informa-
tion. In order to guarantee the inclusion of all targets while
maintaining the representation tractable, the graph is grown
incrementally from samples obtained from the set visibility
regions. The nodes of the graph are then labeled with the index
set associated with the generating region so that the search for
the optimal path can continue until it is guaranteed to cover allN
targets.

The DCG, G = (N , E), is comprised of a set of nodes, N ,
and a set of undirected edges or arcs, E . Similarly to traditional
connectivity graphs, a node nl ∈ N represents an obstacle-free
robot configuration ql ∈ Cfree, and an arc (nl, np) ∈ E is placed
between two nodes, nl, np ∈ N , if there exists a (straight)
obstacle-free path between them. The arc (nl, np) is then labeled
by the distance D(ql,qp), where the metric D is defined in
(2).

Unlike traditional connectivity graphs [1], in the DCG, every
node, say nl, is labeled by the index set P of the set visibility
region that contains ql, i.e., ql ∈ VP . Furthermore, multiple
configurations are sampled from each set visibility region in
order to improve connectivity as well as path efficiency. The
set of nodes, N , is grown incrementally starting from an initial
set of configurations that are representative of the geometries of
these regions. Because the set visibility region often is concave,
its centroid may lie outside the region and, thus, may not allow
any of the targets to be visible to the sensor.

Fig. 8. Boundary-distance function (color bar) and Chebyshev center of a
concave set visibility region, V{1} obtained for the example in Fig. 7.

Therefore, the set of configurations representative of the set
visibility region VP is obtained from the set of all local maxima
of the boundary-distance function corresponding to the Cheby-
shev centers, namely,

QP =

{
q∗l ∈ VP |q∗l = arg max

q∈VP
dP (q), ‖q− q∗l‖ ≤ c

}
(20)

where

dp(q) � min
ξ∈∂VP

‖ξ − q‖ (21)

c > 0 is a user-defined margin, and l is a finite positive integer.
A Chebyshev center or “incenter” is defined as the center of
the largest inscribed circle and, for a concave polygon, requires
solving a nonconvex optimization problem [35]. As an example,
the boundary-distance function and the two Chebyshev centers
of a concave set visibility region V{1} are plotted in Fig. 8, for
the example at a fixed sensor orientation shown in Fig. 7. It can
be seen that the Chebyshev centers are the local maxima of the
boundary distance function.

In building the DCG, all of the Chebyshev centers of every
set visibility region, found from (20), are added to set of nodes
N , and each node (center) is labeled by the accompanying index
set P . Then, the sensor’s initial and final configurations, q0 and
qf , labeled by their two index sets of visible targets are added to
N . Finally, in order to guarantee connectivity, some nodes are
sampled from the rest of the free configuration space Cfree using
a roadmap method [24] and labeling each with an empty index
set to indicate the absence of visible targets.

IV. DIRECTIONAL VISIBILITY PLANNERS

The problem of finding the shortest directional sensor path
visiting all target visibility regions can now be viewed as a
generalized traveling salesman problem (GTSP) [39], [40], also
known as group TSP [41] or one-of-a-set TSP [42]. In particular,
the GTSP that arises from the directional sensor planning prob-
lem (5)–(7) is characterized by continuous regions, also known
as neighborhoods, that are typically concave, intersecting, and
disconnected. Therefore, existing GTSP algorithms, including

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3719

the growing self-organizing array (GSOA) algorithm [43], the
hybrid random-key genetic algorithm [44], or its later modifica-
tions which rely on the regions’ centroids [45], are not effective
at finding the optimal path (see Section VII).

The new planners developed in this section overcome the dif-
ficulties associated with GTSPs characterized by disconnected
and intersecting neighborhoods by exploiting the set visibility
regions and DCG presented in Section IV-A. Many graph-search
algorithms were investigated for this purpose. Search tree prun-
ing, a variant of label-correcting algorithms, was first adopted
(see Section V) because of its guarantee that the shortest path will
be found, if one exists [46]. However, because it requires storing
every unpruned branch, this algorithm runs out of memory for
real-world-size applications (see Section V). The second class of
graph algorithms investigated is known as mixed-integer linear
programming with constraints [47], including constraint gen-
eration [48], branch-and-bound [47], and branch-and-cut [49].
However, it was found that, as the workspace complexity and
number of targets increase, the tree generated by the branching
procedures becomes too large, causing the algorithm to run out
of memory before terminating.

The metaheuristic method known as Monte Carlo Tree Search
(MCTS), presented in [50], was modified to search the DCG,
as explained in Appendix A, and found to provide the best
performance thanks to its tradeoff of local versus stochastic
search, which enabled efficient explorations of the most promis-
ing regions of the graph, G. The advantages of MCTS over other
algorithms are that it overcomes the curse of dimensionality
(see Section VI-A) and is characterized by a bounded expected
cumulative regret. In particular, it can be shown that the expected
deviation of the approximate MCTS solution from the optimal
path in G is bounded by O(log(n)), where n is the number of
graph nodes along the path.

A. DCG Planner

The DCG planner seeks to search the directional connectivity
graph derived in Section III-C for the optimal sensor path that
covers all targets by imposing constraints on the union of the
nodes’ labels. The set visibility regions represent useful inter-
sections that allow us to shorten the sensor path by considering
a type of geometric hitting set problem in which one seeks to
find a path hitting the geometric set cover of the target visibility
regions [51]–[54]. Hence, the DCG search seeks to produce a
piecewise continuous path, τ , as a sequence of adjacent nodes
or channel

C = {n0, n1, . . ., nn}, (nl, nl+1) ∈ E ∀l (22)

starting at the initial configuration q0 and covering all target
labels.

The cost associated with the channel is defined in (4) as the
sum of the labels attached to the arcs in the channel, namely the
distance metric defined in (2). The set of targets visited by the
channel is given by the union of the node labels, and therefore,
the solution of the directional sensor planning problem (5)–(7)

Fig. 9. Flowchart of DCG planner (see Algorithm 1).

can be found by solving the following graph optimization

min
C∈G

J(C) =

n−1∑
k=0

D(qn,qn+1) (23)

sbj to
n⋃

k=0

Pk = I (24)

for the optimal channel C∗.
The pseudocode of the DCG method is shown in Algorithm 1,

where the user-defined parameters are the number of rotational
discretizations κ > 0 and the number of samples η > 0 used in
the roadmap step. Fig. 9 shows the flowchart representation of
the algorithm.

B. PV Planner

Although feasible for many real-world problems (see Sec-
tion VII), the DCG approach can become computationally too
burdensome for problems with a large number of targets (N). A
PV method is presented in this section in an effort to reduce the
computation required while taking advantage of the visibility
theory presented in Section IV-A. As a first step, the approach
computes the N target visibility regions in free configuration
space, T Vi ⊂ Cfree, as shown in (17), and projects them back
onto W to obtain 2-D orthographic projection of the target
visibility region

T̃i �
⋃
θ∈S1

{
x ∈ W|[x θ]T ∈ T Vi

}
⊆ W ∀i ∈ I (25)

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3720 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Algorithm 1: Directional Connectivity Graph (DCG)
Planner.

1: Require: Bj ⊂ W, ∀j ∈ J , xi ∀i ∈ I, q0 ∈ Cfree
2: Parameters: κ > 0, η > 0, μ > 0
3: Initialize: N ← ∅, E ← ∅
4: for i ∈ I do
5: T Vi ← getTargetVisibility(∪jBj ,xi;κ)
6: end for
7: for P ⊆ I do
8: VP ← getSetVisibility({T Vi}i∈I , P)
9: QP ← getChebyshevCenters(VP)

10: for q ∈ QP do
11: N ← N ∪ (q, P)
12: end for
13: end for
14: E ← connectNodes(N ,∪jBj ; η)
15: G = (N , E)
16: C∗ ← MonteCarloTreeSearch(G;μ)
17: return C∗

which can be viewed as a new “target” set of sensor positions
in the workspace from which Ti is visible provided the sensor
assumes the correct orientation.

Similarly to Definition III.4, the intersections of the 2-D
visibility regions in (25) can be computed using (19). Then,
a 2-D set visibility region, defined as

ṼP � {T̃i1 ∩ · · · ∩ T̃in |P = (i1, . . ., in), i1, . . ., in ∈ J }
(26)

represents the set of sensor positions from which a subset of
targets, labeled byP ⊆ I, is visible provided the sensor assumes
the correct orientation.

In an effort to reduce computational complexity, redundant
set visibility regions are pruned, i.e., for any pair of (nonempty)
regions ṼP1

and ṼP2
characterized by target index sets that obey

P1 ⊂ P2, region ṼP1
is eliminated because all targets in P1 are

also visible from sensor positions in ṼP2
. Then, the method in

Section III-C can be used to construct a pruned connectivity
graph, denoted by GPV = (NPV, EPV), by sampling only the
pruned set visibility regions, where now the set of nodesNPV =
{x0,x1,x2, . . .} represents a set of sensor positions, and x0 ∈
W is the initial sensor position.

Although this approach may result in longer sensor paths, it
significantly reduces computational complexity while guaran-
teeing that all targets are represented in the connectivity graph.
The results in Section VII confirm that pruning dramatically
reduces the total number of set visibility regions, thereby re-
ducing in turn the size of the connectivity graph. Because it
initially ignores sensor orientation, this planner is particularly
advantageous when performing robot rotations is significantly
less costly than performing translations. For example, PV solu-
tions are particularly well suited to unicycle robots or quadrotors
that are able to turn “on a dime,” while DCG may be more
advantageous for car-like robots with a large (minimum) turning
radius or for fixed-wing aircraft.

C. Cell Decomposition (CD) Planner

Sampling methods, such as DCG and PV, can be shown at best
to be probabilistically complete [32]. CD, on the other hand, can
guarantee completeness by obtaining a convex decomposition
of the free configuration space, under proper assumptions [32].
For comparison, an approximate CD planner for directional
sensors is presented in this section and analyzed in Section VI-C.
Because the set visibility regions are not only concave but also
possibly disconnected, an approximate CD algorithm is obtained
by considering the target visibility regions computed by the
approach developed in Section III-A. The configuration space is
discretized by considering κ > 0 orientations, θ̂1, . . ., θ̂κ. Then,
holding each orientation θ̂u fixed (u = 1, . . . , κ), a rectangloid
approximationRT i of the cross section of the ith target visibility
region at the sensor orientation θ̂u is obtained such that it satisfies
the following conditions:

RT i(θ̂u) ⊂ T Vi(θ̂u), T Vi(θ̂u) � {q ∈ T Vi|θ = θ̂u}
(27)

for all i ∈ I. A rectangloid decomposition

K(θ̂u) =
⋃
i∈I
RT i(θ̂u) (28)

can then be used to represent the N target visibility regions for
every discrete orientation θ̂u.

Rectangloid approximations of every C-obstacle (CBj), de-
noted by RBj , are similarly obtained such that CBj(θ̂u) ⊂
RBj(θ̂u) for all j ∈ J and u = 1, . . . , κ. Then, the rest of the
free configuration space can be represented by decomposing the
space that is free of both obstacles and target visibility regions,
i.e.,

Cvoid(θ̂u) = Cfree(θ̂u) \

⎧⎨
⎩
⎛
⎝⋃

j∈J
CBj(θ̂u)

⎞
⎠

∪
(⋃

i∈I
T Vi(θ̂u)

)}
, u = 1, . . . , κ (29)

obtaining a rectangloid decomposition Kvoid(θ̂u) for every dis-
crete orientation θ̂u.

Finally, the centroid of each rectangloid in the full decom-
position, K(θ̂u) ∪ Kvoid(θ̂u), along with the corresponding ori-
entation, θ̂u, provides a sensor configuration that is represented
by a node in the CD connectivity graph GCD = (NCD, ECD).
Two nodes in NCD are connected by an arc in ECD if they are
characterized by adjacent rectangloid cells with the same sensor
orientation, or if the corresponding rectangloids have a nonzero
intersection and the corresponding orientation angles, say θ̂i and
θ̂j , satisfy |θ̂i − θ̂j | ≤ ε, where ε > 0 is a user-defined threshold.
A schematized representation of the key differences between
the novel DCG, PV, and CD planners developed in this article
is illustrated in Fig. 10. A detailed performance comparison,
including a study of the influence of the user-defined parameters,
is provided in Section VII.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3721

Fig. 10. Conceptual representation of (a) DCG, (b) PV, and (c) CD planners’ key differences.

D. GTSP Planner

A fourth planner is developed and implemented by treating
the target visibility regions as the neighborhoods of a GTSP in
configuration space [45], [55]. Because even Euclidian TSPN
is known to be APX-hard [56], GTSP solution algorithms all
rely on heuristic approaches to reduce computational complex-
ity [45], [57], [58]. These and other recent GTSP solution meth-
ods, reviewed and compared in [59], either reduce GTSP to a
classic traveling salesman problem (TSP), inevitably increasing
the problem size, or exploit restricted types of neighborhoods,
such as disks or polygons. Because the target visibility regions
do not obey any of these restricted geometries and typically
consist of concave, disconnected, and intersecting regions, the
GTSP planner developed in this section adopts a heuristic TSP
solution approach.

A TSP graph, GTSP = (NTSP, ETSP), is obtained by assign-
ing a node to each target location inW , and then augmenting the
node set using the same roadmap sampling method used by the
DCG planner (see Section IV-A). The nodes in the TSP graph are
connected by first constructing a classic visibility diagram [60],
[61], such that any two nodes characterized by target labels are
connected by an edge if and only if they satisfy LOS visibility
(see Definition II.2). As a final step, the remaining nodes are
connected using a roadmap local planner that samples a uniform
distribution over the workspace in order to avoid collisions with
obstacles and guarantee that GTSP is fully connected. By this
approach, the directional sensor planning problem (5)–(7) is
transformed into a classic TSP problem [25] that can be solved
using the MCTS algorithm in Appendix A to find a path that
visits all N targets.

This heuristic TSP solution significantly increases the prob-
lem size even under the stated simplifying assumptions. There-
fore, a tractable solution to real-world problems (see Sec-
tion VII) is obtained by neglecting the sensor orientation and
bounded FOV at the expense of target coverage.

V. OPTIMAL DIRECTIONAL SENSOR PLANNING SOLUTION

When the size of the directional visibility graph allows for
search-tree pruning or label-correcting algorithms to be imple-
mented, the optimal path may be found by imposing additional
search constraints on the target labels attached to the target visi-
bility nodes. Also, in some special cases, the optimal sensor path
maybe found analytically. This section shows that, by imple-
menting the (scalable) MCTS algorithm presented in Appendix

Fig. 11. Hexagonal benchmark example and optimal solution.

A, the DCG planner returns solutions that are approximately
optimal and, yet, can be applied to the real-world problems
presented in Section VII-B.

A. Hexagonal Benchmark Example

Consider the simple directional sensor planning problem il-
lustrated in Fig. 11, in which the robot is at an initial configura-
tion labeled by A, with zero heading angle, and a single target of
interest is located at a position (x) labeled by B. A single large
(regular) hexagonal occlusion is present in this workspace, with
edge length equal to l. The optimal (shortest) path is given by
an analytical solution comprised of a straight line of length L
from A to the second vertex in the direction of the target and,
followed by a second straight line with a turn angle θ. Given the
user-defined translational and rotational weights, wt and wr, in
the robot distance metric (2), the optimal value of the turn angle
depends on the sensor FOV and can be found by minimizing

J(τ) = wt

{
L+ l sin

(π
6
+ θ

)
− r cosφ

}
+ wrθ (30)

with respect to θ, subject to the constraint imposed by the law
of sines:

φ = arcsin

{
l

r
sin

(π
3
− θ

)}
(31)

By substituting (31) in (30), the optimal turn radius is found by
solving a simple minimization problem, such that, for wt = 1
[m−1] andwr = 0.1 [rad−1], θ∗ = 1.026 [rad]. Then, the optimal
path has a total cost J∗ = 4.5037, while the approximately opti-
mal path found by the DCG planner, using the MCTS algorithm,
shown in Fig. 12, has a cost J = 5.2392.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3722 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 12. Approximately optimal path obtained by the DCG planner applied to
the hexagonal example in Fig. 11.

Fig. 13. Wall benchmark example and optimal solution.

B. Wall Benchmark Example

Consider the directional sensor planning problem illustrated
in Fig. 13, in which the robot must observe two targets of
interest, with positions (x1 and x2) labeled by B and C (green
dots). The targets are both located between two walls of known
dimensions and, because of the robot initial position (A), they
are both occluded by the right wall. Additionally, the sensor
FOV (pink sector) is bounded and small relative to the size of the
workspace. Thus, the robot must arrive at a suitable position and
orientation in order to observe each target. When the rotational
weightwr equals zero, an optimal path can be found analytically
by minimizing the cost

J(τ) = L1 + L2 + l1(θ) + l2(θ, φ) (32)

with respect to θ and φ.
In particular, when wt = 1 [m−1] (and wr = 0), the optimal

solution is given by θ∗ = 4.817 [rad] and φ∗ = 0.500 [rad], and
is characterized by the total cost J∗ = 14.572. In comparison,
the approximately optimal path found by the DCG planner,
shown in Fig. 14, has a cost J = 16.142 and is remarkably close
to the optimal solution.

C. Search-Tree Benchmark Example

When an analytical solution cannot be found but the problem
size is sufficiently small, a near-optimal solution can be found
by implementing the DCG planner with an optimal graph search
algorithm, such as search-tree pruning or label-correcting. In this
case, under the assumptions stated in Section II, the problem

Fig. 14. Approximately optimal path obtained by the DCG planner applied to
the wall example in Fig. 13.

Fig. 15. Performance comparison between the solution obtained via (a) search-
tree pruning and (b) MCTS.

can be solved numerically by searching the DCG, and the only
approximation arises from the (rotational) discretization of the
target visibility regions, defined in Section III-A. In this case,
the DCG solution is nearly optimal provided the total number
of discretizations, κ, is sufficiently large. For a small workspace
with few targets of interest, such as the example in Fig. 15, a
large κ affords a nearly optimal solution, because the search-tree
algorithm is guaranteed to find the shortest path. In comparison,
the DCG solution obtained by the MCTS is not guaranteed to
be the optimal path in the graph, as shown by the results in
Fig. 15(b), but is significantly more efficient and, therefore, is
applicable to larger real-world problems.

In fact, when the search-tree pruning algorithm is applied to
the solution of a problem with four obstacles/occlusions (not
shown for brevity) and an increasing number of targets, the
algorithm runs out of memory at N = 5 targets (see Fig. 16).
On the other hand, the MCTS solution continues to be tractable
for N ≥ 11 (see Fig. 16), when the simulations are performed
on a PC with Intel Xeon processor and 32 GB RAM. Additional

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3723

Fig. 16. Processing time required by search-tree pruning and MCTS algo-
rithms for a benchmark example of dimensions analogous to Fig. 15, but with
four occlusions and an increasing number of targets (N).

results regarding the planners’ computational complexity and
performance are provided in the following two sections.

VI. COMPLEXITY ANALYSIS

This section presents computational complexity results for the
three novel planners developed in this article, namely, the DCG,
PV, and CD planners. All three planners require the implemen-
tation of a graph optimization algorithm. In this article, graph
optimization was carried out using the MCTS method presented
in Appendix A, which was found to significantly outperform all
other graph-search algorithms (results omitted for brevity). The
computational complexity required by MCTS to find the optimal
channel in a graph,G, isO(μbd), whereμ is the number of Monte
Carlo simulations, b is the maximum breadth of the (spanning)
tree, and h is the maximum depth of the tree. Because the width
and depth of the spanning tree must never exceed the number
of targets in the workspace (N), the computational complexity
required by MCTS algorithm to find the optimal directional
sensor path is O(μN2). The computational complexity required
by DCG, PV, and CD to obtain the graphs G, GPV, and GCD,
respectively, is derived in the next three sections.

A. Computational Complexity Analysis of DCG Algorithm

The computational complexity of the target visibility regions
(17) is found to be O(κNMm logm+ κNMm), where κ is
the number of discretizations for the sensor orientation θ, M
is the number of obstacles, mj is the number of vertices of the
polygonal (opaque) object Bj , and

m � 1

M

M∑
j=1

mj (33)

is the average number of vertices of the objects in W . The
first term (contribution) to the algorithm’s complexity derives
from the computation of the convex hull in (14), which requires
O(m logm) time [62] for an opaque object with m vertices and

is repeated κNM times to determine the shadow regions of N
targets in the presence of M occlusions. The second term of
the target-visibility regions’ computational complexity derives
from the calculation of the coverage cone, which requires O(m)
time because finite generated, and is also repeated κNM times.

Finding the set visibility regions in (19) requires determining
the power set of the targets, with complexityO(2N), for discrete
sensor orientations (i.e., κ times). Thus, the set visibility regions
require time O(κ2N) and may be prohibitive for very large
N . Finally, ensuring that the DCG is connected requires the
use of probabilistic roadmaps and Dijkstra’s algorithm [30],
which results in a computational complexity O(η2), where η
is the number of samples used to construct the roadmap. Then,
connecting the DCG graph, G, requires O(κNη2) time, and
searchingG for the optimal channel via MCTS requiresO(μN2)
time. Because the stated operations are conducted in series, the
computational complexity of the DCG algorithm is

O(κNMm logm+ κNMm+ κ2N + κNη2 + μN2) (34)

It can be seen that the term κ2N dominates the runtime of
the DCG algorithm. The computation required can be reduced
by exploiting the fact that set visibility regions do not exist for
targets that are more than twice the maximum sensing radius
from each other, that is

‖xi − xj‖ > 2r ⇒ T Vi ∩ T Vj = ∅ (35)

By considering only the indices of targets that are within a dis-
tance 2r of each other, the computation required can be greatly
reduced. Let R denote the maximum number of targets inside
any ball of radius 2r inW , also referred to as neighboring targets.
Then, the set visibility region requires O(2R) time and, if the
targets are approximately uniformly distributed in a workspace
of area A(W), it follows that

R ≈ πr2

A(W)
N. (36)

Therefore, as long as r2 � A(W), the computation required
by the DCG algorithm remains tractable. The numerical results
plotted in Fig. 17 illustrate that, for small values of the ratio
a = R/N (e.g., a� 0.2), the computational complexity of the
set visibility regions is far less than its upper bound (black line)
for any number of targets (including N > 15, not shown for
brevity).

B. Computational Complexity Analysis of PV Algorithm

The PV algorithm requires computing all target visibility
regions, with complexityO(κNMm logm+ κNMm), but not
all of the set visibility regions. By using the projections of set vis-
ibility regions with large cardinality, the computation required
can be significantly reduced. Assume VP �= ∅ for i ∈ P . Then,
any other set visibility region VQ, with Q � i and |Q| < |P |,
is ignored by the PV algorithm, and the graph GPV is obtained
from samples of VP . By this approach, the maximum number
of set visibility regions required is N . Also, because the PV
algorithm projects these regions ontoW , their construction is not
repeated for every (discrete) sensor orientation. As a result, the

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3724 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 17. Computational complexity of set visibility regions as a function of
the number of neighboring targets over the total number of targets.

computational complexity is reduced from O(κ2N) to O(N),
in every case (regardless of relative target locations).

The time required by the other steps of the PV algorithm is the
same as that of the DCG algorithm. Therefore, the computational
complexity of the PV algorithm is

O(κNMm logm+ κNMm+N +Nη2 + μN2) (37)

Clearly, as N increases the PV algorithm provides significant
savings when compared to the DCG method, reducing the lead-
ing complexity from exponential to linear. Furthermore, the PV
graph size is inevitably much smaller than that of the DCG graph,
and, thus, the time required by the MCTS optimization is also
greatly reduced (see Section VII).

C. Computational Complexity Analysis of CD Algorithm

The computational complexity of rectangloid decomposi-
tions [20] is applied here by considering the decomposition of
C-obstacles and target visibility regions that are possibly con-
cave and characterized by a total of b and v edges, respectively.
The discretization of the sensor orientation in configuration
space is incorporated linearly, such that obtaining the rectangloid
decomposition K ∪ Kvoid requires O(κ(b+ v)2) time. Then,
the construction of the CD graph, GCD, requires O(κ(b+ v))
time, as shown in [20].

The search for the optimal path in GCD is conducted via
MCTS. However, in this case, the search can lead to much wider
and deeper trees, with approximate dimensions κ(b+ v), and,
therefore, the MCTS optimization requires O(μκ2(b+ v)2)
time. Thus, the computational complexity of the CD algorithm
is

O(κ(b+ v)2 + κ(b+ v) + μκ2(b+ v)2) (38)

Because v can be relatively large for complex workspaces, the
CD algorithm can become prohibitive for complex and large
workspaces populated by many targets.

Fig. 18. Robot and sensor FOV used in Unreal Engine simulation environment.

In summary, the computation required by the DCG method
scales exponentially in the number of targets, that of the PV
algorithm scales quadratically in the number of targets, and that
of the CD algorithms scales quadratically in the total number of
edges of occlusions and visibility regions.

VII. DIRECTIONAL SENSOR PLANNING RESULTS

The performance and computational complexity of the four
sensor planning algorithms developed in this article are tested
and compared both in simulations and in physical experiments.
Although the DCG algorithm is expected to provide the best
path performance by leveraging a complete representation of
the set visibility regions, the other planners also present several
advantages and can offer useful solutions depending on the
problem characteristics. For instance, the PV algorithm is shown
to provide a good tradeoff between computational efficiency and
path performance by discarding set visibility regions with small
cardinality and projecting them onto the 2-D sensor workspace.
The CD algorithm, on the other hand, is potentially useful
for guaranteeing completeness, but may be computationally
prohibitive for complex occlusions’ and visibility regions’ ge-
ometries.

The four novel planners presented in Section IV are also
compared here to a coverage algorithm inspired by the WRP
solution in [18]. The coverage algorithm combines the notion
of lawnmower path in the sensor workspace with a probabilistic
roadmap in order to cover all targets while avoiding collisions
with obstacles. Because WRP solutions do not account for the
bounded sensor FOV, target coverage is not guaranteed. The
performance of the algorithms is evaluated by means of the path
length J(τ) in (4), the number of targets observed along a path,
denoted by nT (τ) ∈ [0, N], and the overall sensor performance
nT (τ)/J(τ). The normalized target coverage metric,nT (τ)/N ,
is used to compare different workspaces, where the maximum
value of one represents complete coverage, i.e., all N targets are
observed at least once by the sensor.

A. DCG Simulation Results

In this section, the effectiveness of the visibility theory and
DCG algorithm presented in this article is demonstrated using
the simulation of a camera equipped drone (see Fig. 18) operat-
ing in a complex and photorealistic workspace (see Fig. 19), sim-
ulated using Unreal Engine [27]. All simulations and algorithms

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3725

Fig. 19. Unreal Engine simulation environment.

Fig. 20. Geometric rendering of simulation workspace in Fig. 19 used to obtain
the set visibility regions and the optimal sensor path, illustrated by a solid line
and six sample sensor configurations (q1, . . . ,q6).

Fig. 21. Examples of camera frames obtained by the DCG algorithm enabling
human target detection (green bounding boxes) by the onboard R-CNN.

are implemented on a Dell Precision Tower 7910 equipped with
two Intel 2.40 GHz Xeon CPU processors. The Unreal Engine
camera is simulated to be at high-resolution (1080p image
resolution) and to have a maximum sensing range r = 25m. The
Unreal Engine environment is populated with human targets (see
Fig. 21) and opaque objects comprised of elaborate buildings and
machineries (see Fig. 19). The DCG algorithm is implemented
in MATLAB 2019b and interfaced with Unreal Engine, as
well as with an off-the-shelf faster R-CNN algorithm [28] for
target detection. These Unreal Engine simulations also allow for
variable luminosity and shadow conditions, as shown in Fig. 19.

The workspace, W , in this simulation consists of M = 59
opaque objects and N = 13 human targets. The opaque objects

also comprise obstacles to be avoided by the drone, making up
several narrow passages. The initial configuration (q0 in Fig. 20)
is given with no visible targets, and the polygonal representation
of the objects (see Fig. 20) is obtained from the Unreal Engine
mesh data. The convex hull of each opaque object is obtained
from its vertices, extruding the geometries to be uniform in the
vertical direction. After constructing the set visibility regions
(as shown in Section III) the DCG planner (see Section IV-A)
is used to obtain the optimal sensor path. The sensor position is
plotted as a solid blue line in Fig. 20 along with six sample sensor
configurations, in order to illustrate the sensor orientation (and
corresponding FOV in pink) at six moments in time. The DCG
sensor path provides both position and orientation at every time
step and is executed by interfacing it with the drone feedback
controller. As shown in Fig. 20, the optimal DCG sensor path
successfully observes all 13 targets (green circles). As a result,
the onboard R-CNN object recognition algorithm successfully
recognizes the 13 human targets, as shown by the R-CNN
bounding boxes (green rectangles) plotted in Fig. 21 for six
sample frames obtained by the camera-equipped drone.

As shown in Fig. 22, the DCG algorithm finds configurations
capable of viewing multiple targets simultaneously, thanks to
the use of set visibility regions. It can be seen that, by using
knowledge of the occlusions, the drone configuration allows the
onboard camera to observe a human inside a narrow passage
using a short and efficient path (see Fig. 20). Finally, a small
workspace in Fig. 23 is used to illustrate that the visibility
theory and the DCG algorithm presented in this article allow us
to simultaneously optimize the sensor performance and avoid
drone collisions with the obstacles. In this example, one of the
targets is only visible through a narrow passage between two
walls that the drone may reach only by flying through another
narrow passage in its workspace.

1) Performance Comparison: The four novel planners pre-
sented in this article (see Section IV) and the WRP-inspired
coverage algorithm are compared in this section using multiple
workspaces and sensor conditions, generated as follows. A
variable number of targets (N) and opaque objects (M) are
chosen by the user, while the initial sensor configuration (q0),
and the target and object positions and geometries (x1, . . . ,xN

and B1, . . . ,BM) are randomly generated. Positions are sam-
pled uniformly over W , and polygonal objects are randomly
obtained with a number of vertices between 3 and 8. An example
workspace, obtained by this approach, is shown in Fig. 24 for
M = 25 obstacles and N = 8 targets, along with the optimal
DCG sensor path. The same MCTS parameters are used for
all four novel planners. Then, three case studies are used to
investigate and compare the algorithm performance as a function
of number of targets, number of occlusions, and maximum
sensor range.

In the first case study, the number of targets varied from
N = 1 to N = 15, while the number of opaque objects and
the sensor range were held fixed at M = 25 and r = 5 m,
respectively. The results, averaged over multiple workspaces
and conditions and plotted in Fig. 25, show that, for small N ,
the algorithms perform similarly. But, as the number of target
increases, the DCG and PV algorithms provide the shortest

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3726 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 22. (a) Bird-eye view of a sensor configuration along the DCG optimal
path, enabling the view of two targets including a human inside a narrow passage,
with (b) geometric rendering, and (c) corresponding camera frame with R-CNN
human bounding boxes plotted in green.

distance while covering all targets. The TSP algorithm in this
case is the only one that fails to observe all targets because
the sensor misses targets that are close to the occlusions for
its inability to prevent collisions while guaranteeing visibility.
Because the number of MCTS simulations (μ) is held constant
for all N , the PV algorithm eventually outperforms DCG as
the size of its graph does not grow as rapidly as that of DCG.
However, the DCG algorithm could be made to outperform PV
by increasing the value of μ at the expense of computation.

In the second case study, the number of opaque objects is
varied from M = 1 to M = 30, while N = 10 and r = 5 m are
held constant. The results, averaged over multiple workspaces
and conditions and plotted in Fig. 26, show that PV and DCG
provide the best sensor performance, and that all of the three
target-visibility-based planners (PV, DCG, and CD) guarantee
coverage of all targets even as the number of occlusions in-
creases. Also, it can be seen from Fig. 26(c) that the density of

Fig. 23. Example of DCG optimal sensor path enabling simultaneous obstacle
avoidance by the drone and efficient camera viewing of two targets through the
only opportunity presented by a narrow passage.

Fig. 24. Example of sensor workspace, randomly generated to include
M = 25 opaque objects and N = 8 targets, and optimal DCG sensor path.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3727

Fig. 25. (a) Sensor path length, (b) normalized target coverage, and
(c) sensor performance as a function of the number of targets.

opaque objects does not decrease the performance of these three
planners, while it does prevent complete coverage by the TSP
and coverage algorithms [see Fig. 26(b)].

In the third case study, the maximum sensing range is in-
creased from r = 0 (point sensor) to r = 15 m, while N = 3
and M = 25 are held constant. The average results, plotted in
Fig. 27, show that the performance of all four novel planners
presented in Section IV does not vary significantly with the
sensor range, with DCG displaying the best performance overall.

Fig. 26. (a) Sensor path length, (b) normalized target coverage, and
(c) sensor performance as a function of the number of opaque objects.

As before, the TSP algorithm cannot provide full coverage.
Although in this case the coverage algorithm is successful at
observing all targets, it also requires a very long path, such
that even for large r its performance is far less than that of
the planners developed in this article. In the limit of r = 0, the
sensor must visit every target, and, thus, the coverage algorithm
requires the sensor to travel a very large distance compared to
other methods.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3728 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 27. (a) Sensor path length, (b) normalized target coverage, and
(c) sensor performance as a function of maximum sensor range.

From the computational complexity analysis in Section VI,
it can be seen that the number of targets N is the parameter
with the greatest influence on running time required by the
target-visibility-based algorithms (DCG, PV, and CD) presented
in this article. Therefore, a comparison of the computational
requirements as a function of N is provided in Tables I–V.
The graph size, shown in Tables I and II, highlights the reason
for the high CD and DCG computational complexity. The PV

TABLE I
NUMBER OF GRAPH NODES

TABLE II
NUMBER OF GRAPH EDGES

TABLE III
GRAPH CONSTRUCTION TIME (SECONDS)

TABLE IV
GRAPH OPTIMIZATION TIME (SECONDS)

TABLE V
TOTAL RUN TIME (SECONDS)

method, on the other, requires a significantly smaller graph while
achieving competitive sensor performance. In fact, the number
of nodes required by PV is bounded as follows: |NPV| ≤ N + 1.
Therefore, PV is always at least as efficient as TSP in terms of
graph size. Tables III and IV show the time required to respec-
tively generate and optimize each of the graphs, confirming the
analysis in Section VI. The total runtime, obtained by summing
the entries of Tables III and IV, is shown in Table V. Overall,
CD is shown to be the most expensive of the methods, followed
by the DCG method. Interestingly, PV is more computationally
efficient than the TSP algorithm, because it takes advantage

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3729

Fig. 28. DCG planner performance decreases with the number of discretiza-
tions (κ) based on the size of the sensor FOV, r (results shown for a workspace
with N = M = 4, not shown for brevity).

Fig. 29. Processing time required for DCG graph construction and search
increases with the number of discretizations (κ) based on the size of the sensor
FOV,r (results shown for a workspace withN = M = 4, not shown for brevity).

of intersecting target visibility regions. Although the coverage
algorithm is by far the most computationally efficient, it is
ultimately unable to observe all targets, as shown in Figs. 25–27.

2) Impact of Discretization on DCG Planner Performance:
Because the DCG planner seeks an optimal path in configuration
space, the target visibility regions derived in Section III-A typ-
ically must be discretized with respect to the robot orientation,
usingκ intervals. From an extensive set of simulation studies, the
most significant results shown in Figs. 28 and 29 demonstrate
that the best choice of κ depends primarily on the size of the
sensor FOV, r. For a given value of r, a good compromise for
the choice of κ can be found such that the path performance
is close to optimal (see Fig. 28) with minimal processing time
(see Fig. 29). After this ideal tradeoff (elbow of the curves in
Fig. 28), increasing the value of κ continues to increase the
processing time (as anticipated by the computational complexity
analysis in Section VI) without significantly improving the path
performance.

Fig. 30. DJI Quadrotor used in physical experiments equipped with an onboard
CMOS monocular camera.

Fig. 31. (a) Indoor workspace for physical experiments conducted near and
inside the LISC, located on the fifth floor of Upson Hall at Cornell University,
and (b) polygonal map representation used by the DCG planner.

B. Experimental Results

The DCG method, shown to have the best overall sensor path
performance of all the algorithms developed in this article, was
also tested on a DJI Mavic 2.0 quadrotor equipped with a 1-inch
CMOS monocular camera (see Fig. 30). The quadrotor was also
equipped with multiple vision and time-of-flight depth sensors
for highly accurate state estimation via the built-in DJI function-
ality, and with a GPS operable in most outdoor environments.
The experiments were conducted both indoor and outdoor on
the Cornell University campus in Ithaca, NY, USA. As shown
in Figs. 31– 34, a variety of targets including backpacks, laptop
computers, umbrellas, and bottles, to name a few, were placed

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

3730 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

Fig. 32. Optimal DCG sensor path executed by quadrotor to observe all nine
targets in the indoor workspace in Fig. 31.

Fig. 33. Quadrotor camera frames, obtained indoor by executing the optimal
DCG sensor path in Fig. 32, show that all nine targets are recognized by the
R-CNN (red bounding boxes).

in the workspace, and their location was used along with a map
of the workspace to develop the target and set visibility regions.

Using the initial drone configuration (position and orien-
tation), the optimal sensor path was obtained by the DCG
algorithm prior to takeoff. A closed-loop trajectory-following
controller was implemented in Java on a Dell Alienware mobile
workstation with an Intel CPU. The drone state estimate was
computed onboard and communicated to the workstation over a
Wi-Fi connection, such that the corresponding motor control in-
puts could be computed and communicated back to the quadrotor
in real time. The R-CNN object recognition software [28] was
then used to process the camera frames and detect the targets
in the sensor FOV by producing a bounding box (red box in
Fig. 33). Once detected via R-CNN, a target was considered
“covered” by the sensor. Two experimental case studies were
considered: 1) an indoor workspace located in Cornell Upson
Hall (see Fig. 31), and 2) an outdoor workspace located in
Cornell Hollister parking lot, adjacent to Hollister Dr. (see
Fig. 34).

In the indoor case study, the GPS is not available to help
localize the quadrotor. The velocity of the quadrotor is estimated
by fusing the data from an IMU and the optical flows computed
from a down-facing camera. Then, the position is obtained by
numerically integrating the estimated velocity, and the heading is
estimated by fusing the information from an IMU and a magnetic

Fig. 34. Outdoor workspace for physical experiments conducted in (a) the
Hollister parking lot at Cornell University and (b) polygonal map representation
used by the DCG planner (see [63] for a video of the experiments).

compass. The workspace included ample occlusions and narrow
passages because of the presence of a hallway, sitting area, and
cluttered LISC lab space. Nine targets comprised of backpacks,
computers, and other objects were placed in this workspace
modeled by 26 opaque objects that also functioned as obstacles
for the quadrotor. The optimal DCG sensor path was executed
successfully by the quadrotor also covering all nine targets, as
shown by the results in Fig. 32. The quadrotor was able to avoid
collisions and navigate successfully through narrow passages,
such as the doorway connecting the LISC to the hallway, in
order to find and observe all nine targets. The resulting camera
frames, processed via R-CNN for object recognition, are shown
in Fig. 33 and show that by this approach the onboard camera
was able to obtain occlusion-free high-quality frames from all
nine targets.

In the outdoor case study, the quadrotor operated in a larger
scale outdoor environment, shown in Fig. 34, that was populated

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3731

Fig. 35. Optimal DCG sensor path executed by quadrotor to observe all
11 targets in the outdoor workspace in Fig. 34 (see [63] for a video of the
experiments).

by 21 opaque objects comprised of large buildings (red regions)
and trees (blue regions) that constitute obstacles for the robot
and occlusions for the onboard camera. Eleven stationary targets
comprised of umbrellas, athletic gear, other inanimate objects,
as well as a human (see Fig. 34), were placed in this workspace,
resulting in the successful execution of optimal DCG sensor
paths, as shown by the example in Fig. 35. These experiments,
filmed in [63], demonstrate that the DCG approach developed in
this article can be successfully applied to real-world problems
of useful dimensions. In this case, the drone was able to access
GPS coordinates and use them to follow the optimal DCG path,
thereby recognizing all 11 targets using the R-CNN algorithm.

VIII. CONCLUSION

This article presents novel visibility theory for mobile direc-
tional sensors, such as cameras, characterized by both a bounded
FOV and LOS visibility. Using the coverage cone and convex
hull of polygonal occlusions, relative to the sensor position (FOV
apex), the shadow region of each occlusion can be determined.
Similarly, the target and set visibility regions can be obtained in
closed form, as a function of the target positions, and used to con-
struct a connectivity graph representation of directional visibility
in free configuration space. Three novel planning approaches,
DCG, PV, and CD, are developed using directional visibility
theory and, then, compared to two TSP and lawnmower coverage
algorithms developed based on existing paradigms. The com-
putational complexity analysis and comparative studies show
that, although the three directional visibility planners present
different advantages, DCG and PV significantly outperform DC.
Their effectiveness is demonstrated both through extensive sim-
ulations with varying densities of targets and occlusions, as well
as indoor and outdoor physical experiments on camera-equipped
autonomous drones. In all cases, DCG and PV outperform other
methods, including coverage and TSP, and achieve both target
coverage and collision avoidance with minimum distance trav-
eled. Future work will extend the theory and methods presented

in this article to problems involving moving targets, moving
occlusions, and online planning.

APPENDIX A
MCTS OPTIMIZATION

An MCTS metaheuristic optimization approach inspired by
the work in [64] is developed in order to adaptively search a
connectivity graph G for a path connecting the root node n0 to
the shortest path achieving the goals of the chosen directional
sensor planning algorithm (see Section IV). Consider the DCG
planner as an example. For every node np in a fully connected
graph G, with (n0, np) ∈ E , μ Monte Carlo (MC) simulations
are performed, where μ > 0 is chosen by the user. One MC
simulation consists of iteratively and randomly adding a node
to the path until all targets labels have been covered or there
are no unvisited nodes in G. At the end of the MC simulation,
the total length of the path is evaluated, such that, after μ
simulations, the node nl with minimum path length is selected,
where (np, nl) ∈ E . Then, the process is repeated with nl as the
root node, considering the set of unvisited nodes connected to
nl. This process continues until the shortest path has visited all
targets. The value function used for the MC simulation is defined
as

Q(np) �
1

J̄
+ γ

√
logNl

Np
(39)

where Nl and Np are the number of times nodes nl and np

have been visited, respectively, and γ is a predefined parameter
that represents the exploration–exploitation tradeoff. J̄ is the
minimum-length path found over all MC simulations that have
traversed edge (nl, np) ∈ E .

REFERENCES

[1] S. Ferrari and T. Wettergren, Information-driven Planning and Con-
trol (Cyber physical systems series). Cambridge, MA, USA: MIT
Press, 2021. [Online]. Available: https://books.google.com/books?id=
ijCXzQEACAAJ

[2] J. Gemerek, S. Ferrari, B. H. Wang, and M. E. Campbell, “Video-guided
camera control for target tracking and following,” in Proc. 2nd Annu. Conf.
Cyber- Phys. Hum. Syst., 2018, pp. 176–183.

[3] H. Wei et al., “Camera control for learning nonlinear target dynam-
ics via Bayesian nonparametric Dirichlet-process Gaussian-process (DP-
GP) models,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014,
pp. 95–102.

[4] G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza,
“Perception-aware path planning,” 2016, arXiv:1605.04151.

[5] V. E. Gai, I. V. Polyakov, and O. V. Andreeva, “Depth mapping
method based on stereo pairs,” in Proc. Int. Conf. Neuroinform., 2019,
pp. 303–308.

[6] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation radar
sensors in automotive sensor fusion systems,” in Proc. IEEE Sensor Data
Fusion: Trends, Solutions, Appl., 2017, pp. 1–6.

[7] P. Zhu, J. Isaacs, B. Fu, and S. Ferrari, “Deep learning feature ex-
traction for target recognition and classification in underwater sonar
images,” in Proc. IEEE 56th Annu. Conf. Decis. Control, 2017,
pp. 2724–2731.

[8] B. Englot and F. Hover, “Inspection planning for sensor coverage of 3D
marine structures,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2010,
pp. 4412–4417.

[9] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asynchronous
convolutional networks for object detection in neuromorphic cameras,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2019,
pp. 1656–1665.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

https://books.google.com/books{?}id=ijCXzQEACAAJ
https://books.google.com/books{?}id=ijCXzQEACAAJ

3732 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 6, DECEMBER 2022

[10] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K.
Daniilidis, “The multivehicle stereo event camera dataset: An event camera
dataset for 3D perception,” IEEE Robot. Automat. Lett., vol. 3, no. 3,
pp. 2032–2039, Jul. 2018.

[11] M. J. Bays, A. Shende, D. J. Stilwell, and S. A. Redfield, “A solution to
the multiple aspect coverage problem,” in Proc. IEEE Int. Conf. Robot.
Automat., 2011, pp. 1531–1537.

[12] J. R. Gemerek, S. Ferrari, and J. D. Albertson, “Fugitive gas emis-
sion rate estimation using multiple heterogeneous mobile sensors,”
in Proc. ISOCS/IEEE Int. Symp. Olfaction Electron. Nose, 2017,
pp. 1–3.

[13] J. D. Albertson et al., “A mobile sensing approach for regional surveillance
of fugitive methane emissions in oil and gas production,” Environ. Sci.
Technol., vol. 50, no. 5, pp. 2487–2497, 2016.

[14] A. M. Nascimento et al., “A systematic literature review about the impact
of artificial intelligence on autonomous vehicle safety,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 12, pp. 4928–4946, Dec. 2020.

[15] I. A. Hameed, “Intelligent coverage path planning for agricultural robots
and autonomous machines on three-dimensional terrain,” J. Intell. Robot.
Syst., vol. 74, no. 3–4, pp. 965–983, 2014.

[16] H. Wei and S. Ferrari, “A geometric transversals approach to sensor motion
planning for tracking maneuvering targets,” IEEE Trans. Autom. Control,
vol. 60, no. 10, pp. 2773–2778, Oct. 2015.

[17] J. Urrutia, “Art gallery and illumination problems,” in Handbook of
Computational Geometry. Amsterdam, The Netherlands: Elsevier, 2000,
pp. 973–1027.

[18] R. Goroshin, Q. Huynh, and H.-M. Zhou, “Approximate solutions to
several visibility optimization problems,” Commun. Math. Sci., vol. 9,
no. 2, pp. 535–550, 2011.

[19] W. Lu, G. Zhang, and S. Ferrari, “An information potential approach to
integrated sensor path planning and control,” IEEE Trans. Robot., vol. 30,
no. 4, pp. 919–934, Aug. 2014.

[20] C. Cai and S. Ferrari, “Information-driven sensor path planning by ap-
proximate cell decomposition,” IEEE Trans. Syst., Man, Cybernet., Part
B., Cybernet., vol. 39, no. 3, pp. 672–689, Jun. 2009.

[21] A. Swingler and S. Ferrari, “On the duality of robot and sensor
path planning,” in Proc. 52nd IEEE Conf. Decis. Control, 2013,
pp. 984–989.

[22] K. Baumgartner and S. Ferrari, “A geometric transversal approach to
analyzing track coverage in sensor networks,” IEEE Trans. Comput.,
vol. 57, no. 8, pp. 1113–1128, Aug. 2008.

[23] H. Wei, W. Lu, P. Zhu, G. Huang, J. Leonard, and S. Ferrari, “Optimized
visibility motion planning for target tracking and localization,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014, pp. 76–82.

[24] G. Zhang, S. Ferrari, and M. Qian, “An information roadmap method
for robotic sensor path planning,” J. Intell. Robot. Syst., vol. 56, no. 1–2,
pp. 69–98, 2009.

[25] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study. Princeton, NJ, USA:: Prince-
ton Univ. Press, 2006.

[26] H. Choset, “Coverage for robotics—A survey of recent results,” Ann. Math.
Artif. Intell., vol. 31, no. 1–4, pp. 113–126, 2001.

[27] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” Field and Service
Robotics, Springer, Cham, 2018.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Toward real-time
object detection with region proposal networks,” Adv. neural inf. process.
syst., vol. 28, 2016.

[29] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[30] T. Bröcker and K. Jänich, Introduction to Differential Topology. Cam-
bridge, U.K.: Cambridge Univ. Press, 1982.

[31] J.-C. Latombe, Robot Motion Planning, vol. 124. Berlin, Germany:
Springer Science & Business Media, 2012.

[32] S. Ferrari and C. Cai, “Information-driven search strategies in the board
game of clue,” IEEE Trans. Systems, Man, Cybern. Part B, Cybern., vol. 39,
no. 3, pp. 607–625, Jun. 2009.

[33] D. P. Bertsekas, Convex Analysis and Optimization. Belmont, MA, USA:
Athena Scientific, 2003.

[34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[35] J. A. De Loera, R. Hemmecke, and M. Köppe, Algebraic and Geometric
Ideas in the Theory of Discrete Optimization. Philadelphia, PA, USA:
SIAM, 2012.

[36] MATLAB, version 9.5.0 (R2019b). Natick, MA, USA: The MathWorks
Inc., 2010.

[37] C. Cai and S. Ferrari, “Comparison of information-theoretic objective
functions for decision support in sensor systems,” in Proc. IEEE Amer.
Control Conf., 2007, pp. 3559–3564.

[38] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning for a
symbiotic UAV and UGV system for precision agriculture,” IEEE Trans.
Robot., vol. 32, no. 6, pp. 1498–1511, Dec. 2016.

[39] A. K. Budhiraja, “View point planning for inspecting static and dynamic
scenes with multi-robot teams,” Ph.D. dissertation, Virginia Tech, Blacks-
burg, VA, USA 2017.

[40] K. Elbassioni, A. V. Fishkin, N. H. Mustafa, and R. Sitters, “Approximation
algorithms for Euclidean group TSP,” in Proc. Int. Colloq. Automata,
Lang., Program., Berlin, Heidelberg: Springer, 2005.

[41] J. S. Mitchell et al., “Geometric shortest paths and network optimization,”
in Handbook of Computational Geometry, vol. 334, Amsterdam, The
Netherlands: Elsevier Science, 2000, pp. 633–702.

[42] J. Faigl, “GSOA: Growing self-organizing array-unsupervised learning for
the close-enough traveling salesman problem and other routing problems,”
Neurocomputing, vol. 312, pp. 120–134, 2018.

[43] K. Vicencio, B. Davis, and I. Gentilini, “Multi-goal path planning based
on the generalized traveling salesman problem with neighborhoods,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014, pp. 2985–2990.

[44] J. Faigl, P. Váňa, and J. Deckerová, “Fast heuristics for the 3-D multi-goal
path planning based on the generalized traveling salesman problem with
neighborhoods,” IEEE Robot. Automat. Lett., vol. 4, no. 3, pp. 2439–2446,
Jul. 2019.

[45] D. P. Bertsekas and A. Scientific, “Dynamic programming and optimal
control: 4th and earlier editions,”.

[46] A. H. Land and A. G. Doig, “An automatic method for solving discrete
programming problems,” in 50 Years of Integer Programming 1958–2008.
Berlin, Heidelberg: Springer, 2010, pp. 105–132.

[47] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” J. Oper. Res. Soc. Amer., vol. 2, no. 4,
pp. 393–410, 1954.

[48] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[49] C. B. Browne et al., “A survey of Monte Carlo tree search methods,” IEEE
Trans. Comput. Intell. AI games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[50] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, “Optimal packing and
covering in the plane are NP-complete,” Inf. Process. Lett., vol. 12, no. 3,
pp. 133–137, 1981.

[51] N. H. Mustafa and S. Ray, “Improved results on geometric hitting set
problems,” Discrete Comput. Geometry, vol. 44, no. 4, pp. 883–895, 2010.

[52] P. K. Agarwal and J. Pan, “Near-linear algorithms for geometric hitting
sets and set covers,” in Proc. 13th Annu. Symp. Comput. Geometry, 2014,
pp. 271–279.

[53] N. Bus, N. H. Mustafa, and S. Ray, “Practical and efficient algorithms
for the geometric hitting set problem,” Discrete Appl. Math., vol. 240,
pp. 25–32, 2018.

[54] S. Alatartsev, S. Stellmacher, and F. Ortmeier, “Robotic task sequencing
problem: A survey,” J. Intell. Robot. Syst., vol. 80, no. 2, pp. 279–298,
2015.

[55] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopoulos, M. H. Overmars,
and A. F. van der Stappen, “TSP with neighborhoods of varying size,” J.
Algorithms, vol. 57, no. 1, pp. 22–36, 2005.

[56] K. Helsgaun, “Solving the equality generalized traveling salesman prob-
lem using the Lin–Kernighan–Helsgaun algorithm,” Math. Program. Com-
put., vol. 7, no. 3, pp. 269–287, 2015.

[57] S. L. Smith and F. Imeson, “GLNS: An effective large neighborhood search
heuristic for the generalized traveling salesman problem,” Comput. Oper.
Res., vol. 87, pp. 1–19, 2017.

[58] W. K. Mennell, “Heuristics for solving three routing problems: Close-
enough traveling salesman problem, close-enough vehicle routing prob-
lem, sequence-dependent team orienteering problem,” Ph.D. dissertation,
Univ. Maryland, College Park, MD, USA 2009.

[59] S. K. Ghosh and D. M. Mount, “An output-sensitive algorithm for com-
puting visibility graphs,” SIAM J. Comput., vol. 20, no. 5, pp. 888–910,
1991.

[60] C. Nissoux, T. Siméon, and J.-P. Laumond, “Visibility based probabilistic
roadmaps,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems. Hum.
Environ. Friendly Robots With High Intell. Emotional Quotients (Cat. No.
99CH36289), 1999, vol. 3, pp. 1316–1321.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

GEMEREK et al.: DIRECTIONAL SENSOR PLANNING FOR OCCLUSION AVOIDANCE 3733

[61] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm,” SIAM J. Comput., vol. 15, no. 1, pp. 287–299, 1986.

[62] Y. Chen and D. van Vijk, “LISC drone experiments on occlusion
avoidance,” Cornell University, 2021. [Online]. Available: https://www.
youtube.com/watch?v=RcrCskNsyZM

[63] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Monte Carlo tree search
with macro-actions and heuristic route planning for the physical travelling
salesman problem,” in Proc. IEEE Conf. Comput. Intell. Games, 2012,
pp. 234–241.

Jake Gemerek (Member, IEEE) received the B.S.
degree in mechanical and aerospace engineering from
the University at Buffalo, Buffalo, NY, USA, in 2016,
and the M.S. and Ph.D. degrees in mechanical engi-
neering from Cornell University, Ithaca, NY, USA, in
2020.

His Ph.D. research focused on active vision, per-
ception, and planning for resource constrained au-
tonomous systems equipped with directional sensors.
He was a Research Assistant with the Laboratory for
Intelligent Systems and Controls, Cornell University.

He is currently a Systems Engineer with the Technology and Advanced Pursuits
Group, Moog Inc., Elma, NY, USA, where he develops state-of-the-art percep-
tion and autonomy systems.

Bo Fu (Member, IEEE) received the Ph.D. degree
in mechanical and aerospace engineering from the
University of California, Davis, Davis, CA, USA, in
2016.

He is the founder of Oiler (Oiler Equation, Inc.),
a startup company focused on delivering the next-
generation innovative and intelligent gas detection so-
lutions. He was a Postdoctoral Associate and Visiting
Scientist with the Laboratory for Intelligent Systems
and Controls, Cornell University, Ithaca, NY, USA,
where his work focused on machine learning, com-

puter vision, and image sciences. His current research focuses on video-based
real-time detection algorithms.

Yucheng Chen received the bachelor’s degree in
aeronautics and astronautics and a minor in computer
science from Purdue University, West Lafayette, IN,
USA, in 2017. He is currently working toward the
Ph.D. degree in the Laboratory for Intelligent Systems
and Controls, Cornell University, Ithaca, NY, USA.

He is currently working on human decision mod-
eling and its applications to robots. His research in-
terests include machine learning and optimization.

Zeyu Liu received the B.S. degree (magna cum laude)
in mechanical engineering from Tongji University,
Shanghai, China, and Politecnico di Milano, Milan,
Italy, in 2016. He worked on his M.S. degree with
the Laboratory for Intelligent Systems and Controls,
Cornell University, Ithaca, NY, USA.

His research interests include probabilistic reason-
ing, optimal control, computer vision, and machine
learning, with a focus in unmanned ground vehicles.

Min Zheng received the B.S. degree in mechanical
engineering from the University of Southern Cal-
ifornia, Los Angeles, CA, USA, in 2016, and the
M.S. degree in mechanical engineering from Cornell
University, Ithaca, NY, USA, in 2018.

She was a student with the Laboratory for In-
telligent Systems and Controls, Cornell University.
She is currently working as a Software Engineer in
the industry. Her research focuses on autonomous
vehicle.

David van Wijk received the B.S. degree in mechan-
ical engineering from Cornell University, Ithaca, NY,
USA, in 2021. He is currently working toward the
Ph.D. degree with the Land, Air and Space Robotics
Laboratory, Texas A&M University, College Station,
TX, USA.

He was an Undergraduate Researcher with the Lab-
oratory for Intelligent Systems and Controls, Cornell
University. His research interests include robotics,
autonomous systems, and machine learning.

Silvia Ferrari (Senior Member, IEEE) received the
B.S. degree in aerospace engineering from Embry–
Riddle Aeronautical University, Daytona Beach, FL,
USA, in 1997, and the M.A. and Ph.D. degrees in
mechanical and aerospace engineering from Prince-
ton University, Princeton, NJ, USA, in 2002.

She was a Professor of Engineering and Computer
Science with Duke University, and the Founder and
Director of the NSF Integrative Graduate Education
and Research Traineeship (IGERT) and Fellowship
Program on Wireless Intelligent Sensor Networks

(WISeNet). She is currently a John Brancaccio Professor of Mechanical and
Aerospace Engineering with Cornell University, Ithaca, NY, USA. She is also the
Director of the Laboratory for Intelligent Systems and Controls (LISC), Cornell
University, and the Co-Director of the Cornell-Unibo Veho Institute on Vehicle
Intelligence, Cornell Tech. She is the co-author of the book Information-driven
Path Planning and Control (MIT Press, 2021), and of the TED talk “Do robots
dreams of electric sheep?”. Her principal research interests include active percep-
tion, robust adaptive control, learning and approximate dynamic programming,
and control of multiscale dynamical systems.

Dr. Ferrari is a Fellow of ASME, Associate Fellow of AIAA, and a Member of
SPIE and SIAM. She was the recipient of the ONR Young Investigator Award in
2004, the NSF CAREER Award in 2005, the Presidential Early Career Award for
Scientists and Engineers (PECASE) Award in 2006, and the Cornell University
Award for Research Excellence in 2020, to name a few.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 27,2023 at 04:31:38 UTC from IEEE Xplore. Restrictions apply.

https://www.youtube.com/watch{?}v=RcrCskNsyZM
https://www.youtube.com/watch{?}v=RcrCskNsyZM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

