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ABSTRACT

The problem of estimating the number and state of multiple targets using a sensor with limited sensing ability
is raised in a variety of applications, including monitoring of endangered species, civilian security, and military
surveillance. The particle filter is widely used to solve this problem since Kalman filter’s disadvantage on
estimating non-Gaussian distribution. However, the problem becomes intractable when the number of total
targets are unknown and one measurement is associated serval targets. This paper presents a novel filter technique
which combines Kalman filter and particle filter for estimating the number and state of total targets based on
the measurement obtained online. The estimation is represented by a set of weighted particles, different from
classical particle filter, where each particle is a gaussian instead of a point mass in the system state.
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1. INTRODUCTION

The problem of tracking and monitoring targets using one position-fixed sensor is relevant to a variety of applica-
tions, including monitoring of urban environments,1 tracking anomalies in manufacturing plants,2 and tracking of
endangered species.3 The position-fixed sensor is deployed to measure targets based on limited information that
only becomes available when the target enters the sensor’s field-of-view (FOV) or visibility region. The sensor’s
FOV is defined as a compact subset of the region of interest, in which the sensor can obtain measurements from
the targets.

Then, under proper assumptions that include additive random noise with a Gaussian distribution, the target
state can be estimated from frequent observations of its measurable output, using a Kalman filter.4 This approach
is well suited to long-range high-accuracy sensors, such as radars, and to moving targets with a known dynamical
model and initial conditions. However, most of these underlying assumptions are violated in modern applications
of sensors, because the targets’ motion models are unknown, and, possible, random and nonlinear. Also, due
to the use of low-cost passive sensors, measurement errors and noise may be non-additive and non-Gaussian.
An extended Kalman filter (EKF) can be used when the system dynamics are nonlinear, but can be linearized
about nominal operating conditions.5 An unscented Kalman filter (UKF) method, based on the unscented
transformation (UT) method, can be applied to compute the mean and covariance of a function up to the second
order of the Taylor expansion.6,7 However, the efficiency of these filters decreases significantly when the system
dynamics are highly nonlinear, and when the random effects are non-Gaussian. Recently, a non-parametric
method based on condensation and Monte Carlo simulation, known as a particle filter, has been proposed for
tracking multiple targets exhibiting nonlinear dynamics and non-Gaussian random effects.8 Particle filters are
well suited to modern surveillance systems because they can be applied to Bayesian models in which the hidden
variables are connected by a Markov chain in discrete time, but the target state is continuous, as in Markov
motion models.

In the classical particle filter method, a weighted set of particles or point masses are used to represent the
probability density function (PDF) of the target state by means of a superposition of weighted Dirac delta
functions.9 At each iteration of the particle filter, particles representing possible target state values are sampled
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from an importance density function.10 The weight associated with each particle is then obtained from the target-
state likelihood function, and from the prior estimation of the target state PDF. When the effective particle size is
smaller than a predefined threshold, a re-sampling technique can be implemented.11 One disadvantage of classical
particle-filtering techniques is that the target-state transition function is used as the importance density function
to sample particles, without taking new observations into account.12 As a result, when the target state transition
function is much broader than the likelihood function, few sampled particles have proper locations and weights.
An improved particle filter, the unscented particle filter (UPF) has been proposed in,12 to overcome this difficulty,
by combining UKF and the particle-filtering technique. The UKF generates a proposed distribution in which
the current measurements are considered, and then the distribution is used as the importance density to sample
particles. Another disadvantage of existing particle filters is that the point-mass representation provides limited
information about the estimated PDF of the target state, and does not account for the targets’ dynamic equations.
Another particle filter was proposed recently,13 where the particles are sampled based on the supporting intervals
of the target-state likelihood function and the prior estimation function of the target state. In this case, the
supporting interval of a distribution is defined as the 90% confidence interval.14 The weight for each particle is
obtained by considering the likelihood function and the transition function simultaneously. Then, the weighted
expectation maximization (EM) algorithm is implemented to use the sampled weighted particles to generate a
normal mixture model of the distribution.

Kreucher proposed joint multitarget probability density (JMPD)9 to estimate the number of total targets in
AOI and their state, where targets are moving. By using JMPD, the data association problem is avoided, however,
the JMPD results in a joint system state space, the dimension of which is the dimension of a target state times
number of total targets. Since the number of total targets is unknown, the joint space size remain unavailable.
To overcome this problem, it is assumed the number of total targets has a maximum value. Therefore, when the
maximum number of targets is large, the joint state space becomes intractable.

This paper presents a novel filter technique which combines Kalman filter and particle filter for estimating
the number and state of total targets based on the measurement obtained online. The estimation is represented
by a set of weighted particles, different from classical particle filter, where each particle is a gaussian instead of a
point mass. The weight of each particle represents the probability of existing a target, while its gaussian indicates
the state distribution for this target. More importantly, the update of particles is different from classical particle
filter. For each particle, the gaussian parameters are updated based using Kalman filter given a measurement.
To overcome the data association problem, in this paper, when one particle is updated, the other particles are
considered as the measurement condition, which will be explained in Section 4. The novel kalman-particle filter
technique requires less particles than classical particle filters, and can solve multiple target estimation problem
without increasing the state space dimensions.

The paper is organized as follows. Section 2 describes the multiple targets estimation problem formulation
and assumptions. The background on the particle filter and Kalman filter is reviewed in Section 3. Section 4
presents the Kalman-Particle filter technique. The method is demonstrated through numerical simulations and
results, presented in Section 5. Conclusions and future work are described in Section 6.

2. PROBLEM FORMULATION

A number of targets, stationary or moving, are populated in the two dimensional workspace. N denotes the
number of total targets. The whole workspace is visible to a position fixed sensor (not shown). The goal of
the sensor is to obtain the state estimation for all the targets, denoted as Xk, and number estimation of total
targets, denoted as Tk, at time step k. The target The states for total targets at k, [x1

k,x
2
k, · · · ,xNk ], is denoted

as Xk, which has N state vectors. The estimation of total target state at k, [x1
k,x

2
k, · · · ,xT

k

k ], is denoted as Xk.
T k is the estimation of total target number at tk. The ith target is modeled as

xik = Fkx
i
k−1 + vk (1)

where,
vk ≈ N(0,Qk) (2)

Fk and Qk are assumed known.



In standard estimation theory, a sensor that obtains a vector of measurements zk ∈ Rr in order to estimate
an unknown state vector set Xk ∈ Rn at time k is modeled as,

zk = h(Xk,λk) (3)

where h : Rn+℘ → Rr is a deterministic vector function that is possibly nonlinear, the random vector λk ∈ R℘
represents the sensor characteristics, such as sensor action, sensor mode, environmental conditions, and sensor
noise or measurement errors.

In this paper, the sensor is modeled as

zk = Hkxi + νk (4)

zk =
1

N

N∑
i=1

xi + νk (5)

where N is the target number, and for simplicity Hk is set as 1
N I. The white noise term is defined as

νk ∼ (N)(0,Rk) (6)

Since the whole workspace is visible to the position fixed sensor, all targets are measured at the same time.
However, this assumption can be loosened by the definition of sensor FOV, where only the targets in the FOV
can be measured.

3. BACKGROUND

3.1 Kalman Filter Methods

Kalman filter4 is a recursive method to have a statistically estimation of s system state based on a measure-
ment sequence, minimizing the estimation uncertainty. The sensor provides the measurements of the system
state, namely, position and velocity, with an additive white noise. Generally, in each iteration with the new
measurement, the Kalman filter has two steps: a) first, it predicts the system state and their uncertainties; b)
then it updates the system state and uncertainties with the latest measurement. The Kalman filter has following
assumptions on system dynamics and sensor model. The system dynamics is defined as

xk = Fkxk−1 + Bkuk + vk (7)

where subscript k and k−1 denote the current and previous time index, while Fk is the system discrete transition
matrix, and Bk and uk are the control matrix and control input. νk is the white noise, defined as

vk ∼ N(0,Qk) (8)

where Qk is the covariance. At kth time step, a measurement of the system true state xk is made by a sensor,
is given by

zk = Hkxk + νk (9)

where Hk is a mapping from system state space to measurement space, and the white noise Qk is defined as

νk ≈ N(0, Rk) (10)

It is assumed that the noise νk and v at each time step are independent.

To further introduce the classical Kalman filter method, let xk denote the true state value, and let x̃k denote
the predicted state estimation given x̂k−1 without zk, where x̂k−1 is the updated estimation of system state at
k − 1 time step with zk−1 and x̂k−2. Furthermore, let Ω̃k denote the predicted covariance given Ω̂k−1, where
Ω̂k−1 is the updated estimation covariance at k − 1. First, in the predicting step,

x̃k = Fkx̂k−1 + Bkuk (11)

Ω̃k = FkΩ̂k−1F
T
k + Qk (12)



In the updating step, the measurement zk is used, together with above predicted state and covariance, to update
the state and covariance. The residual, yk between measurement and predicted state is given by

yk = zk −Hkx̃k (13)

The innovation covariance Sk is given by

Sk = HkΩ̃kH
T
k + Rk (14)

Then, the optimal Kalman gain is calculated as

Kk = Ω̃kH
T
k S−1k (15)

Therefor, the state and covariance can be updated by

x̂k = x̃k + Kkyk (16)

Ω̂k = (I−KkHk)Ω̃k (17)

3.2 Particle Filter Methods

The particle filter technique is a recursive model estimation method based on sequential Monte Carlo Simulations.
It is applicable to nonlinear system dynamics with non-Gaussian random inputs. Moreover, because of their
recursive nature, particle filters are easily applicable to online data processing and variable estimation. The
main idea of particle filters is to represent the PDF functions with properly weighted and relocated point-mass,
known as particles. These particles are sampled from an importance density which is crucial to the particle filter
algorithm. Let {xκj,p, wκj,p}Np=1 denote the weighted particles that are used to approximate the posterior PDF

f(xκj | Zκj ) for the jth target at tκ, where Zκj = {z0j , . . . , zκj } denotes the set of all measurements obtained by
sensor i, from target j, up to tκ. Then, the posterior probability density function of the target state, given the
measurement at tκ can be modeled as,

f(xκj | Zκj ) =

N∑
p=1

wκj,pδ(x
κ
j,p),

N∑
p=1

wκj,p = 1 (18)

where wκj,p is non-negative and δ is the Dirac delta function.8 Although different particle filter techniques have

been proposed,10 the techniques always consist of the recursive propagation of the particles and the particle
weights. In each iteration, the particles xκj,p are sampled from the importance density q(x). Then, weight wkj,p
is updated for each particle by

wκj,p ∝
p(xκj,p)

q(xκj,p)
(19)

where p(xκj,p) ∝ f(xκj,p | Zκj ). Additionally, the weights are normalized at the end of each iteration.

Since the target state transition function is often used as the importance density function without considering
the available new measurement, the sampled particles can not fully represent the target state estimation. An-
other common drawback of particle filters is the degeneracy phenomenon,12 i.e., the variance of particle weights
accumulates along iterations. This phenomenon indicates that a number of particles have low weights and no
contributions in approximating the probability density function f(xκj | zκj ) but put heavy computational burden
to the algorithm. The number of particles with high weights is not sufficient to provide a good approximation.
A common way to evaluate the degeneracy phenomenon is the effective sample size Ne,

11 obtained by,

Ne =
1∑N

p=1(wκj,p)
2

(20)

where wκj,p, p = 1, 2, . . . , N are the normalized weights. In general, a re-sampling procedure is taken when

Ne < Ns, where Ns is a predefined threshold, and is usually set as N
2 . Let {xκj,p, wκj,p}Np=1 denote the particle



set that needs to be re-sampled, and let {xκ∗j,p, wκ∗j,p}Np=1 denote the particle set after re-sampling. The main

idea of this re-sampling procedure is to eliminate the particles having low weights by re-sampling {xκ∗j,p, wκ∗j,p}Np=1

from {xκj,p, wκj,p}Np=1 with the probability of p(xκ∗j,p = xκj,s) = wκj,s. At the end of the resampling procedure,
wκ∗j,p, p = 1, 2, . . . , N are set as 1/N . However, the resampling procedure repeats the particles with high weights
a number of times stochastically. This leads to diversity loss of particles.

In this paper, a novel Kalman-particle filter technique which combines Kalman filter and particle filter for
estimating the number and state of total targets based on the measurement obtained online. The estimation is
represented by a set of weighted particles, different from classical particle filter, where each particle is a gaussian
instead of a point mass.

4. METHODOLOGY

In this paper, the system state consists of all the targets’ state, and according to the sensor model (4), one
measurement is associated with all the targets’s state. Thus if only the Particle filter is used directly, the number
of sampled particles is quite large due to the high dimensions of the system state. While if the Kalman filter only
is applied, the measurement model does not satisfy the Kalman filter requirements. Therefor, these two filter
techniques are combined to solve the high dimension problem. Different from classical Particle filter, the particles
used to represent the estimation for number of total targets and their state is a set of weighted Gaussian. The
ith particle at time k is denoted as

P ik = {wik,N (xik|µik,Ωi
k)} (21)

where wik is the probability of existing a target having a state distribution as N (xik|µik,Ωi
k). By this particle

definition, the dimensions of the system state remain the same as the dimensions of each individual target xik,
which is [x, y, ẋ, ẏ] When these particles are calculated at k, the estimated number of total targets can be given
as

Tk =

Np∑
i=1

wik (22)

where Np is the number of all particles and it is not necessary a constant. It is worth mentioning that
∑Np

i=1 w
i
k

doesn’t necessary equal 1.

Since the particle representation is different from classical particle filter, where each particle represents a
possible value of system state, the updating of each particle and total weights are different. In the remainder of
this paper, a modified Kalman filter is used to update each particle, the weight and the gaussian distribution.
Different from Classical Kalman filter, where one measurement is associated with one target, the modified Kalman
filter has to deal with the one measurement which is associated with all the targets in FOV at k.

The algorithm proposed in this paper is a recursive method. Without losing generality, it is assumed that
at time k, the measurement zk is available, and the estimation of the system, Tk and Xk at time step k − 1, is

represented by a particle set, denoted as Pk−1 = {P 1
k−1, P

2
k−1, . . . , P

Np

k−1}, where Np is the number of all particles.

By using the target dynamic function 1, Pk−1 can be updated to P̃k without using the zk. The parameters for
each particle in P̃k is also added by a .̃ Due to limit of FOV, only a few particles may have contribution to
the measurement. Let PS denote set including the particles lie in the FOV, while let P̄ = P̃k/PS denote the
complementary set. The particles in P̄ are only updated by applying (1), while the particles in PS are updated
by (1) and the modified Kalman filter using zk. Please Note the size of PS is small, since the size of FOV is
limited. Without loss of generality, it is assumed that PS = {P̃ 1

k , P̃
2
k , . . . , P̃

s
k}, where s is the number of particles.

According to the sensor model (4), Hk is a function based on number of total targets in the FOV, therefore,
a combination of particles in PS are needed to apply the (4) with the help of a boolean set Ec = [ec1, e

c
1, . . . , e

c
s],

where eci ∈ {0, 1} and c ∈ IE . IE is the index set for possible combinations. Only the combination Ec, such that
Π(wi)

eci (1 − wi)1−e
c
i > ε, is considered, where ε is a predefined threshold. Then, the modified Kalman filter is

used to give the updated gaussian parameters of all particles with ecj = 1. For updating jth particle with ecj = 1,



the following procedures are executed. According to sensor model 4, the measurement is given by

zk =

∑s
i=1 µ

i
ke
c
i∑s

i=1 e
c
i

+
1

(
∑s
i=1 e

c
i )

2

s∑
i=1,i6=j

eciΩi + νk (23)

Compare the above function to (9), we have following setting

Hk = I × 1

(
∑s
i=1 e

c
i )

(24)

zk = zk −
∑s
i=1,i6=j µ

i
ke
c
i∑s

i=1 e
c
i

(25)

Rk =
1

(
∑s
i=1 e

c
i )

2

s∑
i=1,i6=j

eciΩi + ωk (26)

Then, by applying Kalman procedure

yk = zk −Hkµ̃
j
k (27)

Sk = HkΩ̃
j
kH

T
k + Rk (28)

Kk = Ω̃j
kH

T
k S−1k (29)

µj,ck = µ̃jk + Kkyk (30)

Ωj,c
k = (I−KkHk)Ω̃j

k (31)

The proof can be found in Appendix.

After all the particles appearing in combination Ec are updated, the weight wc is for the particle combination
Ec can be obtained by

wc = Πi=1s(wi)
eci (1− wi)1−e

c
i × 1

2π2‖Ω−1c ‖
× exp{−(zk − µc)TΩ−1c (zk − µc)} (32)

where c ∈ IE , and µc) and Ωc is given by

µc = Hk

∑
i

µi,ck (33)

Ωc = Hk

∑
Ωi,c
k HT

k + Rk (34)

Then, the particles appearing with eci = 1 are put into a set Gc, and the set Gc is associated with the weight wc.

After all Gc with Ec such that Π(wi)
eci (1− wi)1−e

c
i > ε are updated, the weights for all set Gc are updated

by

wc =
wc∑
c∈IE wc

(35)

Then, in each group Gc, the weight of ith particle is updated as

wic =
wik

Πei=1wik
∗ wc (36)

After above calculation, for the particle P̃ jk , it has some updated versions, namely, {wic,N (µj,ck ,Ωj,c
k }c lying

in different sets Gc such that ecj = 1. A K-mean algorithm is used to merge all {wic,N (µj,ck ,Ωj,c
k }c if needed. If

two particles, p̃j,ck and p̃j,dk are close enough, then they are combined as one particle, the weight of which is set
as the summation of both weights, as

wjk = wjc + wjd (37)



and its covariance is updated as
Ωj
k = mean(Ωj,c

k ,Ωj,d
k ) (38)

While, the distance between two particles is defined as

(µj,ck − µ
j,d
k j)T (µj,ck − µ

j,d
k j) (39)

If the particle {wic,N (µj,ck ,Ωj,c
k }c is sufficiently far from any other particles, than this particle is added as

one particle. By merging close particle and keeping the probability of have more particles give the method a
advantage of better estimating the system state, namely, number of total targets and targets’ state. The method
is verified in a number of simulations in the following section.

5. SIMULATION AND RESULTS

we will add result tomorrow

6. CONCLUSION AND FUTURE WORK

This paper presents a novel filter technique which combines Kalman filter and particle filter for estimating the
number and state of total targets based on the measurement obtained online. The estimation is represented by a
set of weighted particles, different from classical particle filter, where each particle is a gaussian instead of a point
mass. The weight of each particle represents the probability of existing a target, while its gaussian indicates the
state distribution for this target. More importantly, the update of particles is different from classical particle
filter. For each particle, the gaussian parameters are updated based using Kalman filter given a measurement.

7. APPENDIX

Without losing generality, PS = {P̃ 1
k , P̃

2
k , . . . , P̃

s
k}, E = [e1, e2, . . . , es], for any particle such that ej = 1, its µjk

and Ωj
k, given zk and PS .

yk = zk −
∑s
i=1 µ

i
kei∑s

i=1 ei
) (40)

Ωj
k = COV(xjk − µ

j
k) (41)

= COV(xjk − (µ̃jk +Kj
kyk)) (42)

= COV(xjk − (µ̃jk +Kj
k(

∑s
i=1 x

i
kei∑s

i=1 ei
) + νk −

∑s
i=1 µ̃

i
kei∑s

i=1 ei
)) (43)

= COV((I − 1∑s
i=1 ei

IKj
k)(xjk − µ̃

j
k)−Kj

kνk −
s∑

i=1,i6=j

Kj
k(xik − µ̃ik)) (44)

= (I − 1∑s
i=1 ei

IKj
k)Ω̃jk(I − 1∑s

i=1 ei
IKj

k)T +Kj
kRkK

j
k (45)

+
1∑s
i=1 ei

IKj
k

s∑
i=1,i6=j

Ωi
k(

1∑s
i=1 ei

IKj
k)T (46)

By setting

∂Ωj
k

∂Kj
k

= 0 (47)

therefore,

Kj
k = Ωj

k(
1∑s
i=1 ei

I)T (Rk +
1∑s
i=1 ei

I

s∑
i=1

Ωi
k(

1∑s
i=1 ei

I)T )−1 (48)

=
1∑s
i=1 ei

Ωj
k(Rk +

1

(
∑s
i=1 ei)

2

s∑
i=1

Ωi
k)−1 (49)



then,
µjk = µ̃jk +Kj

kyk (50)

Ωj
k = Ω̃j

k −
1∑s
i=1 ei

Ω̃j
k(Rk +

1∑s
i=1 ei

I

s∑
i=1

Ωi
k(

1∑s
i=1 ei

I)T )−1Ω̃j
k (51)
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