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Abstract— This paper presents a novel pursuit-evasion prob-
lem for systems of agents tasked with pursuing moving targets
while minimizing exposure to multiple observers. Given target
position information from remote sensor data, each agent seeks
to keep targets inside a bounded field-of-view known from
the on-board sensor. Exposure to the network of observers
is minimized by avoiding their sensor fields-of-view while
pursuing the targets of interest. The optimality conditions for
the agent trajectory optimization are derived by reducing the
calculus of variations problem to an initial value problem to be
solved for the agents’ initial positions. The method is shown to
be effective at controlling the agents in numerical simulations
involving two observers programmed to cover the region of
interest, and four targets with randomized motion patterns.

I. INTRODUCTION

Many formulations of pursuit-evasion games have been
proposed to date in the literature because of their applicabil-
ity to a wide range of problems with competing objectives,
such as rescue missions in contested environments [1], space-
craft rendezvous and missile defense [2], and mobile robotics
[3]. A comprehensive survey of pursuit-evasion games and
solution strategies for different types of agents, targets,
and environments can be found in [4]. More recently, new
methods for solving classic pursuit-evasion problems have
also been developed, including potential-based trajectory
optimization [5] and distributed optimal control (DOC) [6].
Other successful solution approaches include but are not
limited to model predictive control (MPC) [7], reinforcement
learning (RL) [8], and deep learning [9].

This paper presents a new formulation of pursuit-evasion
problems that is inspired by sensing and surveillance applica-
tions such as space situational awareness (SSA) and fence-
line monitoring. In the proposed pursuit-evasion problem,
multiple mobile agents equipped with on-board sensors are
tasked with monitoring multiple mobile targets using a
bounded field-of-view, thus, also requiring the agents to
pursue the targets so as to maintain visibility over time.
In many modern sensing applications, agents must closely
monitor moving targets in a contested environment, where
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exposure to multiple observers also is to be minimized.
This paper presents a novel pursuit-evasion problem and
solution based on recent techniques for sensor modeling
[10]–[18] and calculus of variations. The paper shows that
the optimal trajectories can be obtained from an initial value
problem derived from the Euler-Lagrange equations, where
the numerical solution can be cast as the optimization of
the agents’ initial positions. The problem formulation and
approach are demonstrated via numerical simulations in
which a network of four agents seeks to pursue four moving
targets while avoiding detection by two mobile directional
sensors.

II. PROBLEM FORMULATION

Consider a rectangular region of interest (ROI) denoted
by W ⊂ R2 and populated by N agents, M targets, and P
observers that the agents must avoid at all times. The agents,
targets, and observers are all mobile with respect to W . The
agents and the observers are equipped with on-board sensors
that allow them to obtain measurements of targets and agents,
respectively, within a bounded field-of-view (FOV). The
agents are each equipped with an omnidirectional sensor
that is characterized by a circular FOV, S[xi(t)], centered
at the agent position, xi(t) ∈ W , and abbreviated by Si(t).
The observers are equipped with directional sensors, such
as cameras, whose FOV can be modeled as a sector with
origin at the observer position, sk(t) ∈ W , and an aperture,
β ∈ [0, π/2), that is assumed constant and known a priori.
The N agents to be controlled are tasked with observing
moving targets at known time-varying positions ξj(t) ∈ W ,
and thus, must pursue the targets so as to maintain them
inside the FOV, while avoiding the observers’ FOVs. The N
agents’ trajectories, xi(t) = [xi(t) yi(t)]

T (i = 1, . . . , N ),
are to be optimized in an attempt to provide persistent
target observations during a fixed time interval [t0, tf ], while
avoiding detection by the observers, and minimizing energy
consumption. For simplicity, in this paper, it is assumed that
the target and observer positions are known a priori, based
on remote sensing data, and they are denoted by ξj(t) and
sk(t), respectively, where j = 1, . . . ,M and k = 1, . . . , P .
Figure 1 shows a simple example of a workspace with
targets, agents, observers, and corresponding FOVs.

It is assumed that each sensor is equipped with an omni-
directional sensor with range r. Then, the indicator function
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Fig. 1. Schematic of problem formulation for two agents (blue squares),
five targets (red circles), one observer (black square), and corresponding
FOV geometries.

can be used to model the FOV, as follows:

1Si [ξj(t)] ,

{
1, ‖xi(t)− ξj(t)‖2 ≤ r2

0, otherwise
, ∀i, j (1)

This implies that the number of targets that are not covered
by at least one agent is

m(t) =

M∑
j=1

N∏
i=1

{1− 1Si [ξj(t)]} (2)

Similarly, the observer FOV is modeled as a sector of a circle
centered at sk(t), with constant and known radius R and
central angle β. Because the orientation of the sector can
change over time, e.g. as a result of pan and tilt parameters,
the observer FOV is also a function of a unit vector, bk(t) ∈
R2, chosen to represent the direction of the bisecting ray.
Then, the indicator function representing the observer FOV,
denoted by Kk[sk(t),bk(t)] and abbreviated by Kk(t), is
defined as,

1Kk
[xi(t)] ,


1, ‖xi(t)− sk(t)‖2 ≤ R2 and

cos−1
(

bk(t)·[xi(t)−sk(t)]
‖xi(t)−sk(t)‖

)
≤ β/2

0, otherwise

(3)

for all i and k, where (·) denotes the dot product. In other
words, an agent i is in the FOV of observer k when the
distance between the agent and the observer is less than or
equal to the range R, and the angle between bk(t) and the
vector [xi(t) − sk(t)] is less than half the sensor aperture.
The number of observers able to detect agents at any time
t ∈ [t0, tf ] is given by,

n(t) =

N∑
i=1

P∑
k=1

1Kk
[xi(t)] (4)

where each observer and agent pair are accounted for sepa-
rately. Then, the time-averaged values of m(t) and n(t),

m̄ ,
1

tf − t0

∫ tf

t0

m(t) dt (5)

and

n̄ ,
1

tf − t0

∫ tf

t0

n(t) dt, (6)

respectively, can be optimized with respect to time.
The instantaneous energy required by agent i at time t can

be assumed to be proportional to the square of its speed, i.e.,

ei(t) = κ‖ẋi(t)‖2 (7)

where ‖·‖ denotes the L2 norm, and κ is a positive constant,
as shown in [5]. Then, the total energy required by agent i
is obtained by integrating (7) over time,

Ei = κ

∫ tf

t0

‖ẋi(t)‖2 dt (8)

and the total energy required by all agents,

E = κ

N∑
i=1

∫ tf

t0

‖ẋi(t)‖2 dt (9)

can be minimized over time.
Finally, assuming a scalar weighted combination of mul-

tiple objectives can be used to represent the agents’ perfor-
mance, the objective function to be minimized is,

J = wEE + wmm̄+ wnn̄ (10)

where wE , wm, and wn are positive weights chosen by the
user or by a Pareto optimal trade off. Since each of the
objective functions is a definite integral over the same range
of time, the objective function can be written as

J =

∫ tf

t0

L[xi(t), ẋi(t)] dt (11)

where,

L = wEκ‖ẋ(t)‖2 +
1

(tf − t0)
[wmm(t) + wnn(t)] (12)

is the Lagrangian of the optimization problem. This paper
presents an approach for optimizing the agents’ trajectories
over the time interval [t0, tf ], such that the agents are able to
pursue and observe the targets with a bounded FOV, while
simultaneously avoiding the set of observers.

III. TRAJECTORY OPTIMIZATION SOLUTION

An approach based on calculus of variations [19] is
proposed here for networks of agents of small to medium
size. In future work, the approach will be extended to large
collaborative networks by using distributed optimal control
(DOC) [6]. Based on calculus of variations, when given an
integral objective function in the form (11), the necessary
conditions for optimality are provided by the Euler-Lagrange
(EL) equations [20],

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (13)



and
d

dt

(
∂L

∂ẏi

)
− ∂L

∂yi
= 0 (14)

with boundary conditions,

∂L

∂ẋi

∣∣∣∣
t=t0

=
∂L

∂ẋi

∣∣∣∣
t=tf

= 0 (15)

and
∂L

∂ẏi

∣∣∣∣
t=t0

=
∂L

∂ẏi

∣∣∣∣
t=tf

= 0 (16)

Evaluating the derivatives of L and rewriting the equations
in vector form provides extremals that satisfy the equation
of motion,

ẍi =
1

2κwE(tf − t0)
[wm∇i(m) + wn∇i(n)] (17)

where ∇i(·) denotes the gradient with respect to xi, or

∇i(·) ,
[
∂(·)
∂xi

∂(·)
∂yi

]T
(18)

Applying (15)-(16) to the problem formulation in Section II,
boundary conditions (BCs) for the EL equations are reduced
to:

ẋi(t0) = ẋi(tf ) = 0 (19)

Together with the above BCs, the EL equations amount
to two-point boundary value problem (TPBV) that can be
solved numerically only for small N . When the kinodynamic
constraints of the agents can be neglected, the optimal agent
trajectories can be found by converting the TPBV problem
to an initial value problem (IVP) comprised of the equation
of motion (17) and the initial conditions,

xi(t0) = x∗i (20)

and
ẋi(t0) = 0 (21)

where x∗i is the unknown. The above IVP is much easier to
solve and is known to have a unique solution [21]. Thus,
the trajectory optimization problem presented in Section II
is reduced to optimizing the initial positions of the agents,
x∗i , for i = 1, . . . , N .

A. Evaluating the Indicator Functions and their Gradients

The indicator functions used to model the sensor FOVs
Si(t) and Kk(t) can be expressed in terms of the Heaviside
function, H(·), as follows,

1− 1Si [ξj(t)] = H(‖xi(t)− ξj(t)‖2 − r2) (22)

and,

1Kk
[xi(t)] = H(R2 − ‖xi(t)− sk(t)‖2) (23)

×H{bk(t) · [xi(t)− sk(t)]− ‖xi(t)− sk(t)‖ cos(β/2)}

where

H(ζ) ,

{
1, ζ ≥ 0

0, ζ < 0
(24)
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Fig. 2. Sigmoidal approximation of Heaviside function.

Substituting the above expressions into objective functions
(2) and (4) allows one to re-write these objectives as,

m(t) =

M∑
j=1

N∏
i=1

H(‖xi(t)− ξj(t)‖2 − r2) (25)

and

n(t) =

P∑
k=1

N∑
i=1

H(R2 − ‖xi(t)− sk(t)‖2) (26)

×H{bk(t) · [xi(t)− sk(t)]− ‖xi(t)− sk(t)‖ cos(β)}

Because the Heaviside function H(ζ) is non-differentiable
at ζ = 0, an approach is proposed to obtain the gradients of
m and n in (17) by implementing a smooth approximation
of H(ζ) provided by the sigmoidal function,

h(ζ) =
1

1 + exp(−αζ)
(27)

where α is a positive constant chosen here by the user.
The above function is infinitely differentiable and its first
derivative is given by:

h′(ζ) =
α

2 + exp(−αζ) + exp(αζ)
(28)

Figure 2 shows how the value of α can be adjusted to im-
prove the approximation of the Heaviside function. Because
the derivative of the sigmoidal function approaches infinity
as the approximation improves, a suitable tradeoff must be
chosen to represent a gradual deterioration in performance
as a target or agent approaches the boundary of the FOV.

Substituting the sigmoidal function approximation (27) in
objective functions (25) and (26), the following differentiable
objectives,

m(t) =

M∑
j=1

N∏
i=1

h(‖xi(t)− ξj(t)‖2 − r2j ) (29)

and

n(t) =

P∑
k=1

N∑
i=1

h(R2 − ‖xi(t)− sk(t)‖2) (30)

× h{bk(t) · [xi(t)− sk(t)]− ‖xi(t)− sk(t)‖ cos(β)}



are obtained. This makes it possible to compute the gradients
of the target-pursuit objective with respect to xl,

∇l(m) =2

M∑
j=1

(xl − ξj)
h′(‖xl − ξj‖2 − r2)

h(‖xl − ξj‖2 − r2)

×
N∏
i=1

h(‖xi − ξj‖2 − r2)

(31)

and the gradient of the observer-avoidance objective with
respect to xl,

∇l(n) =

P∑
k=1

∇l[1Kk
(xl)] (32)

where,

∇l[1Kk
(xl)] = −2[xl − sk]h′(R2 − ‖xl − sk‖2)

× h{bk · [xl − sk]− ‖xl − sk‖ cos(β)}

+ 2

[
bk −

xl − sk
‖xl − sk‖

cos(β)

]
h(R2 − ‖xl − sk‖2)

× h′{bk · (xl − sk)− ‖xl − sk‖ cos(β)}

and time arguments are omitted for brevity.

IV. SIMULATION AND RESULTS

The methodology presented in the previous section is
demonstrated via numerical simulations involving multiple
agents, targets, and observers. The workspace is given by
W = [−L/2, L/2]× [−L/2, L/2], where L = 4 Km. The
target trajectories are parameterized by quadratic functions
of time,

ξj(t) = ajt
2 + bjt+ cj , j = 1, . . . , 4 (33)

where aj , bj , and cj are (2 × 1) constant vectors that are
randomly generated for every value of j. The trajectories of
the observers are chosen to be along circles with a constant
radius S, centered at the origin of an inertial reference frame
FW embedded in W (Fig. 3). These motion patterns are
motivated by monitoring applications in which the observers
must periodically cover a pre-defined ROI by means of a
bounded FOV. For P = 2 observers that move at a constant
speed, the trajectories are chosen to perform one revolution
per hour, such that the observers are located on opposite
sides of the circle at any given time (Fig. 3).

Based on the above description, the observers’ trajectories
can be obtained from the equations of a circle,

sk(t) =

[
S cos(Ωt+ kπ)
S sin(Ωt+ kπ)

]
, k = 1, 2 (34)

where Ω is a constant angular rate chosen by the user. The
observers’ boresights spin at a constant rate and are in-phase
and, therefore, the FOV orientation is given by,

bk(t) =

[
cos(ωt)
sin(ωt)

]
, k = 1, 2 (35)

where ω is a constant angular rate chosen by the user.
The angular rates and other constant parameters used in
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Fig. 3. Optimal agent trajectories (blue) given the known motion patterns of
four targets (red) and two observers (black), with initial and final positions
labeled by squares and stars, respectively.

TABLE I
VALUES OF SCALAR PARAMETERS USED IN NUMERICAL SIMULATIONS.

Parameter Symbol Value Units
Number of targets M 4 —
Number of agents N 4 —
Number of observers P 2 —
Observer FOV radius R 3 km
Agent FOV radius r 1 km
Observer path radius S 3 km
Workspace dimension L 4 km
Observer FOV aperture β π/6 rad
Start time t0 0 h
End time tf 1 h
Power coefficient κ 1 W/(km/h)2

Energy consumption weight wE 1 J−1

Missed target weight wm 100 —
Agent detection weight wn 100 —
Observer path angular speed Ω 2π rad/h
Observer boresight angular speed ω 24π rad/h
Sigmoidal function parameter α 1 —

the simulations are listed in Table I. The objective function
weights wm and wn are chosen to be 100 times greater
than wE in order to prioritize target tracking and observer
avoidance over energy consumption.

The optimal agent trajectories are plotted by blue lines in
Figure 3, along with the paths of the targets and observers
simulated based on the laws in (33)-(35), and the parameters
in Table I. Figure 4 shows the resulting numbers of missed
targets and agent detections over time. The time history of
the total energy consumption is plotted in Figure 5.

The results in Figure 4 show that the agents are fairly
successful in pursuing the targets and avoiding observers.
There are times when one or two targets escape the agents
by exiting their FOVs, but this happens only sporadically
and, then, only for a short time interval, on the order of
few minutes. Also, agents are detected by observers only
twice toward the end of the time interval. Furthermore,



TABLE II
VALUES OF MATRIX PARAMETERS USED IN TARGET SIMULATIONS.

Parameter Value Units

a

[
−0.831 −1.156 −2.003 0.520
−0.979 −0.534 0.964 −0.020

]
km/h2

b

[
−0.035 1.019 −0.715 −0.225
−0.798 −0.133 1.351 −0.589

]
km/h

c

[
−0.294 −1.120 1.655 −1.257
−0.848 2.526 0.308 −0.865

]
km

Notation: a = [a1 · · · aM ], etc.

 

 

  

Fig. 4. Number of missed targets (m) and agent detections (n) over time
resulting from the optimal agent trajectories in Fig. 3.

while the minimization of energy consumption has lower
priority relative to the pursuit-evasion objectives, the agent
trajectories are very efficient and require a remarkably low
amount of energy (Figure 5).

V. CONCLUSION

This paper presents an approach for optimizing the tra-
jectories of multiple distributed agents tasked with pursuing
multiple moving targets, while avoiding being detected by
multiple moving observers. In this problem, the motion
of targets and observers is assumed known from remote
sensor data, while the controllable agents are in charge of
obtaining in-situ high-quality measurements that can allow,
for example, to monitor, model, and classify the targets of
interest. The approach could be modified and this assumption
relaxed by including objectives related to state estimation and
prediction.

The approach presented in this paper shows that by ne-
glecting kinodynamic constraints, the optimal trajectories can
be obtained by reducing the Euler-Lagrange equations to an
initial value problem in which the variables correspond to the
initial positions of the agents. The simulation results show
that this approach can optimize both pursuit and evasion
objectives, while requiring a minimal amount of energy
expenditure. Future work will investigate the use of other
objective functions and the presence of kinodynamic con-
straints in order to improve the pursuit-evasion performance
as well as guarantee reachability of the optimal trajectories.

 

 

  

Fig. 5. Total energy consumption required by the agents when following
the optimal trajectories in Fig. 3.
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