A Blade Element Approach to Modeling Aerodynamic Flight of an

 Insect-scale RobotTaylor S. Clawson, Sawyer B. Fuller

American Control Conference Seattle, WA

$$
\text { May 25, } 2016
$$

Introduction

RoboBee Background

- Wing stroke angle ϕ_{w} controlled independently for each wing

- Thrust and body torques controlled by modulating stroke angle commands

Introduction and Motivation

- Applications
- Navigation in cluttered environments, requiring precise reference tracking
- Robust stabilization, subject to large disturbances such as winds and gusts
- Research Goals
- Control design, implementation, and guarantees
- Develop high-fidelity simulation tools
- Previous work
- Simplified RoboBee Flight Model [Fuller, S.B. '14], [Chirarattananon, P. '16]
- 6 DOF body motion, no wing modeling
- Linearized, uncoupled, stroke-averaged aerodynamic forces
- Controlled with hierarchical PID and iterative learning
- RoboBee Wing Aerodynamics [Whitney, J.P. '10], [Jafferis, N.T. '16]
- Model wing aerodynamics with blade-element theory
- Omit body dynamics (constant body position and orientation)

Blade-Element Overview

- Wing is divided span-wise into rigid 2D differential elements
- Differential forces are computed for each element, and then integrated along wingspan for total force on wing
- Tuned to provide close approximation of actual forces in an expression that is:
- Closed-form
- Computationally-efficient
- Provides insight into dominant underlying physics

Model Description

Modeling Setup

Fixed frame to body frame

$$
\mathcal{F}\{\hat{\boldsymbol{\imath}}, \hat{\jmath}, \widehat{\boldsymbol{k}}\} \Rightarrow \mathcal{B}\{\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}, \hat{\mathbf{z}}\}
$$

Similar for:

- \mathcal{B} to left wing $\mathcal{L}\left\{\widehat{\boldsymbol{x}}_{l}, \widehat{\boldsymbol{y}}_{l}, \hat{\mathbf{z}}_{l}\right\}$
- \mathcal{B} to right wing $\mathcal{R}\left\{\widehat{\boldsymbol{x}}_{r}, \widehat{\boldsymbol{y}}_{r}, \widehat{\mathbf{z}}_{r}\right\}$

States and Inputs

$$
\begin{aligned}
& \boldsymbol{x}=\left[\begin{array}{llllllll}
\boldsymbol{\Theta}^{T} & \boldsymbol{r}^{T} & \boldsymbol{\Theta}_{r}^{T} & \boldsymbol{\Theta}_{l}^{T} & \dot{\boldsymbol{\Theta}}^{T} & \dot{\boldsymbol{r}}^{T} & \dot{\mathbf{\Theta}}_{r}^{T} & \dot{\boldsymbol{\Theta}}_{l}^{T}
\end{array}\right]^{T} \\
& \boldsymbol{u}=\left[\begin{array}{lll}
\phi_{0} & \phi_{p} & \phi_{r}
\end{array}\right]^{T}
\end{aligned}
$$

Stroke angle trajectory ϕ_{w} modeled as a function of input \boldsymbol{u} following linear second-order system:

$$
\ddot{\phi}_{w}(t)+2 \zeta \omega_{n} \dot{\phi}_{w}(t)+\omega_{n}^{2} \phi_{w}(t)=A_{w} \sin \left(\omega_{f} t\right)+\bar{\phi}_{w}
$$

For the right wing, for example,

$$
A_{w}=\phi_{0}-\frac{\phi_{r}}{2}, \quad \bar{\phi}_{w}=-\phi_{p}
$$

\boldsymbol{x}	State	ϕ_{W}	Wing stroke angle
\boldsymbol{u}	Control Input	ϕ_{0}	Nominal stroke amplitude
$\boldsymbol{\Theta}$	Body orientation	ϕ_{p}	Pitch input
\boldsymbol{r}	Body position	ϕ_{r}	Roll input
$\boldsymbol{\Theta}_{\mathrm{r}}$	Right wing orientation	A_{w}	Wing stroke amplitude
ω_{f}	Flapping frequency	$\bar{\phi}_{w}$	Mean stroke angle

Rigid Body Dynamics

- Angular momentum balance about body CG:

$$
\begin{aligned}
\sum \boldsymbol{M}_{G} & =\sum_{\boldsymbol{H}_{G}} \\
\sum \boldsymbol{M}_{G}^{\mathcal{L}}+\sum \boldsymbol{M}_{G}^{\mathcal{R}} & =\dot{\boldsymbol{H}}_{G}^{\mathcal{B}}+\dot{\boldsymbol{H}}_{G}^{\mathcal{L}}+\dot{\boldsymbol{H}}_{G}^{\mathcal{R}}
\end{aligned}
$$

- Blade-element theory used to calculate aerodynamic forces and moments
- Aerodynamic forces act at instantaneous centers of pressure $C P_{L}, C P_{R}$

$$
\sum \boldsymbol{M}_{G}^{\mathcal{L}}=\boldsymbol{M}_{r d}^{\mathcal{L}}+\boldsymbol{r}_{C P_{L} / G} \times \boldsymbol{F}_{\text {aero }}^{\mathcal{L}}+\boldsymbol{r}_{L / G} \times m_{\mathcal{L}} \boldsymbol{g}
$$

Wing Rigid Body Dynamics

- Single DOF: wing pitch ψ_{W}
- Angular momentum balance in span-wise direction

$$
\widehat{\boldsymbol{y}}_{r} \cdot \sum \boldsymbol{M}_{A}=\widehat{\boldsymbol{y}}_{r} \cdot \dot{\boldsymbol{H}}_{A}
$$

Negligible
$\sum \boldsymbol{M}_{A}=\boldsymbol{M}_{r d}^{\mathcal{R}}+\boldsymbol{r}_{C P_{R} / A} \times \boldsymbol{F}_{\text {aero }}^{\mathcal{R}}+\overbrace{\boldsymbol{r}_{R / G} \times m_{\mathcal{R}} \boldsymbol{g}}+\boldsymbol{M}_{k}^{\mathcal{R}}$

Center of Pressure location
constant in span-wise direction

$\dot{\boldsymbol{H}}_{A}=\boldsymbol{I}^{\mathcal{R}} \dot{\boldsymbol{\omega}}_{\mathcal{R}}+\hat{\boldsymbol{\omega}} \boldsymbol{\omega}_{\mathcal{R}} \times \boldsymbol{I}^{\mathcal{R}} \boldsymbol{\omega}_{\mathcal{R}}+\boldsymbol{r}_{R / A} \times m_{\mathcal{R}} \boldsymbol{a}_{R}$

$$
\boldsymbol{r}_{C P_{R} / A}=y_{C P} \widehat{\boldsymbol{y}}_{r}+z_{C P}(\alpha) \hat{\boldsymbol{z}}_{r}
$$

Rigid Body Dynamics

\mathcal{B}	Body frame	$C P_{L}$	Center of pressure of \mathcal{L}
\mathcal{R}	Right wing frame	G	Center of gravity of \mathcal{B}
\mathcal{L}	Left wing frame	R	Center of gravity of \mathcal{R}
$C P_{R}$	Center of pressure of \mathcal{R}	L	Center of gravity of \mathcal{L}

$\boldsymbol{M}_{r d}$	Rotational damping moment
$\boldsymbol{r}_{A / B}$	Position of A w.r.t. B
$\boldsymbol{F}_{\text {aero }}$	Total aerodynamic force
\boldsymbol{m}	Mass
\boldsymbol{g}	Gravity vector
$\dot{\boldsymbol{H}}_{G}^{\mathcal{A}}$	Angular momentum of frame \mathcal{A} about G
$\boldsymbol{I}^{\mathcal{A}}$	Inertia tensor of frame \mathcal{A}
$\boldsymbol{\omega}_{\mathcal{A}}$	Angular rate of frame \mathcal{A}
\boldsymbol{a}_{R}	Acceleration of point R

Blade-Element Aerodynamics

- Wing is divided spanwise into rectangular, 2D, rigid differential elements
- Differential force $d F_{\text {aero }}$ a function of force coefficient C_{F}, local airspeed $\boldsymbol{V}_{\delta w}$, dynamic pressure q, reference area $d S$

$$
\begin{aligned}
d F_{\text {aero }} & =C_{F}(\alpha) q d S \\
q & =\frac{1}{2} \rho \boldsymbol{V}_{\delta w} \cdot \boldsymbol{V}_{\delta w} \\
d S & =c(r) d r \\
\boldsymbol{V}_{\delta w} & =\boldsymbol{V}_{G}+\boldsymbol{V}_{A / G}+\boldsymbol{V}_{\delta w / A}
\end{aligned}
$$

Blade-Element Aerodynamics

- Integrate along wingspan to obtain total force $F_{\text {aero }}$

$$
\begin{gathered}
d F_{\text {aero }}=C_{F}(\alpha) q d S \\
F_{\text {aero }}=\frac{1}{2} C_{F}(\alpha) \rho \int_{0}^{R} \boldsymbol{V}_{\delta w} \cdot \boldsymbol{V}_{\delta w} c(r) d r
\end{gathered}
$$

- Angle of attack α approximately constant along wingspan, because velocity $\boldsymbol{V}_{\delta w}$ is dominated by angular rate ω_{R}

$$
\alpha(t)=\tan ^{-1} \frac{\boldsymbol{V}_{\delta w} \cdot \widehat{\boldsymbol{x}}_{w}}{\boldsymbol{V}_{\delta w} \cdot \hat{\mathbf{z}}_{w}}
$$

$$
\begin{equation*}
\boldsymbol{V}_{\delta w}=\boldsymbol{V}_{G}+\underline{\boldsymbol{V}_{A / G}}+\underline{\boldsymbol{V}_{\delta w / A}} \tag{small}
\end{equation*}
$$

$$
\boldsymbol{V}_{\delta w / A}=\boldsymbol{\omega}_{\mathcal{R}} \times \boldsymbol{r}_{\delta w / A}
$$

- Integral can be decomposed so that it does not have to be evaluated at each step of simulation

Blade-Element Aerodynamics

q	Dynamic Pressure	ρ	Ambient air pressure
$\boldsymbol{V}_{\delta \mathrm{w}}$	Velocity of differential element	\boldsymbol{V}_{G}	Velocity of robot body CG
$\boldsymbol{V}_{A / G}$	Velocity of hinge point relative to robot body CG	$\boldsymbol{V}_{\delta w / A}$	Velocity of differential element relative to hinge point
α	Angle of attack	$C_{F}(\alpha)$	Force coefficient
$d S$	Differential reference area	R	Wingspan
r	Wingspan coordinate	$c(r)$	Chord length

Controller Modeling

Controller Modeling Motivation

- Open-loop flight deviates quickly from hovering
- To validate model against hovering flight requires duplicating flight test controller for closed-loop simulations

Controller Overview

- Flight test controller detailed in [Ma, K.Y. '13]
- Control design replicated in simulation for purpose of validation

Altitude:
Lateral:
Attitude:
Signal:
(PID) Desired lift force
(PID) Desired body orientation
(PID) Desired torque
Generate signal for piezoelectric actuators

Altitude Controller

$f_{L, d e s}=-k_{p a} e-k_{i a} \int_{0}^{t} e d \tau-k_{d a} \dot{e}$ $e=z_{\text {des }}-z$

Compute desired lift $f_{L, d e s}$ from the error in altitude

$f_{L, \text { des }}$	Desired lift force
$k_{p a}$	Proportional gain
e	Error
$k_{i a}$	Integral gain
$k_{d a}$	Derivative gain
$z_{\text {des }}$	Desired altitude
z	Current altitude

Lateral Controller

$$
\hat{\mathbf{z}}_{d e s}=-k_{p l}\left(\boldsymbol{r}-\boldsymbol{r}_{d}\right)-k_{d l}\left(\dot{\boldsymbol{r}}-\dot{\boldsymbol{r}}_{d}\right)
$$

Compute desired body orientation from the position error and velocity error

$\hat{\mathbf{z}}_{\text {des }}$	Desired body vector
$\boldsymbol{k}_{p l}$	Proportional gain
\boldsymbol{r}	Position of robot
\boldsymbol{r}_{d}	Desired position of robot
$\boldsymbol{k}_{d l}$	Derivative gain

Attitude Controller

$$
\boldsymbol{\tau}_{\text {des }}=-k_{p} \hat{\mathbf{z}}_{\text {des }}-k_{d} L \chi
$$

where the body Euler angles $\boldsymbol{\Theta}$ are used to compute

$$
\begin{aligned}
\boldsymbol{\omega} & =L \dot{\boldsymbol{\Theta}} \\
\boldsymbol{\chi} & =\frac{s}{s+\lambda} \boldsymbol{\Theta}
\end{aligned}
$$

$\boldsymbol{\tau}_{\text {des }}$ Desired body torque
$k_{p} \quad$ Proportional gain
$\hat{\mathbf{z}}_{\text {des }}$ Desired body vector
$k_{d} \quad$ Derivative gain
L Nonorthogonal transformation matrix
ω Body angular rate

Model Validation

Forced Response

High frequency forced response of simulation closely matches experimental data

Open-loop Flight

Simulation (bottom) shows similar instability to experiment (top) in open-loop flight

Closed-loop Flight

Qualitative comparison of simulated (left) experimental (right) closed-loop trajectories

Simulation

0.02 1.0x

Closed-loop simulation of hovering flight

Flight Comparisons

Future Work and Conclusion

- Proportional Integral Filter (PIF) Compensator
- Submitted to CDC '17
- Based on linearization of full equations of motion about hovering
- Intelligent control
- Preliminary work: [Clawson, T.S. '16]
- Use adaptive control architecture to learn on-line
- Detailed dynamics analysis
- Analyze periodic maneuvers and find set points
- Determine stability of various set points

This model combines accurate aerodynamic force calculations with dynamic modeling to create an integrative flight model

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

Taylor S. Clawson, Sawyer B. Fuller ${ }^{1}$, Robert J. Wood ${ }^{2}$, Silvia Ferrari
${ }^{1}$ Mechanical Engineering, University of Washington, Seattle, WA
${ }^{2}$ Engineering and Applied Sciences + Wyss Institute, Harvard University, Cambridge, MA

Further questions: Taylor Clawson tsc83@cornell.edu

Related Work

