

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

Taylor S. Clawson, Sawyer B. Fuller Robert J. Wood, Silvia Ferrari

> American Control Conference Seattle, WA May 25, 2016

Introduction

RoboBee Background

- Wing stroke angle ϕ_w controlled independently for each wing
- Thrust and body torques controlled by modulating stroke angle commands

Image Credit: [Ma K.Y., '12], [Ma K.Y., '13]

Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab

Introduction and Motivation

- Applications
 - Navigation in cluttered environments, requiring precise reference tracking
 - Robust stabilization, subject to large disturbances such as winds and gusts
- Research Goals
 - Control design, implementation, and guarantees
 - Develop high-fidelity simulation tools
- Previous work
 - Simplified RoboBee Flight Model [Fuller, S.B. '14], [Chirarattananon, P. '16]
 - 6 DOF body motion, no wing modeling
 - Linearized, uncoupled, stroke-averaged aerodynamic forces
 - Controlled with hierarchical PID and iterative learning
 - RoboBee Wing Aerodynamics [Whitney, J.P. '10], [Jafferis, N.T. '16]
 - Model wing aerodynamics with blade-element theory
 - Omit body dynamics (constant body position and orientation)

Blade-Element Overview

- Wing is divided span-wise into rigid 2D differential elements
- Differential forces are computed for each element, and then integrated along wingspan for total force on wing
- Tuned to provide close approximation of actual forces in an expression that is:
 - Closed-form
 - Computationally-efficient
 - Provides insight into dominant underlying physics

Model Description

Modeling Setup

- 3 Rigid bodies
 - Main body + two wings
- 8 DOF model
 - Main body: 6 DOF
 - Wings: 1 DOF each (pitch angle ψ_w)
 - Stroke angle ϕ_w treated as an input
 - No stroke-plane deviation θ_w

• \mathcal{B} to right wing $\mathcal{R}\left\{\widehat{x}_r, \widehat{y}_r, \widehat{z}_r\right\}$

States and Inputs

Stroke angle trajectory ϕ_w modeled as a function of input *u* following linear second-order system:

$$\ddot{\phi}_w(t) + 2\zeta \omega_n \dot{\phi}_w(t) + \omega_n^2 \phi_w(t) = A_w \sin(\omega_f t) + \bar{\phi}_w$$

For the right wing, for example,

$$A_w = \phi_0 - \frac{\phi_r}{2}, \quad \bar{\phi}_w = -\phi_p$$

x	State	ϕ_W	Wing stroke angle
u	Control Input	ϕ_0	Nominal stroke amplitude
Θ	Body orientation	ϕ_p	Pitch input
r	Body position	ϕ_r	Roll input
Θ _r	Right wing orientation	A_w	Wing stroke amplitude
ω_f	Flapping frequency	$ar{\phi}_w$	Mean stroke angle

Rigid Body Dynamics

• Angular momentum balance about body CG:

$$\sum \boldsymbol{M}_{G} = \sum \dot{\boldsymbol{H}}_{G}$$
$$\sum \boldsymbol{M}_{G}^{\mathcal{L}} + \sum \boldsymbol{M}_{G}^{\mathcal{R}} = \dot{\boldsymbol{H}}_{G}^{\mathcal{B}} + \dot{\boldsymbol{H}}_{G}^{\mathcal{L}} + \dot{\boldsymbol{H}}_{G}^{\mathcal{R}}$$

• Blade-element theory used to calculate aerodynamic forces and moments

• Aerodynamic forces act at instantaneous
centers of pressure
$$CP_L$$
, CP_R
 $\sum M_G^{\mathcal{L}} = M_{rd}^{\mathcal{L}} + r_{CP_L/G} \times F_{aero}^{\mathcal{L}} + r_{L/G} \times m_{\mathcal{L}}g$

• Angular momentum about *G* calculated as a sum of contributions from each frame

$$\dot{H}_{G}^{\mathcal{B}} = I^{\mathcal{B}} \dot{\omega}_{\mathcal{B}} + \omega_{\mathcal{B}} \times I^{\mathcal{B}} \omega_{\mathcal{B}}$$
$$\dot{H}_{G}^{\mathcal{L}} = I^{\mathcal{L}} \dot{\omega}_{\mathcal{L}} + \omega_{\mathcal{L}} \times I^{\mathcal{L}} \omega_{\mathcal{L}} + r_{L/G} \times m_{\mathcal{L}} a_{L}$$

9

Wing Rigid Body Dynamics

Negligible wing mass, but very high angular rate/acceleration

Rigid Body Dynamics

${\mathcal B}$	Body frame	CP_L	Center of pressure of
${\mathcal R}$	Right wing frame	G	Center of gravity of B
L	Left wing frame	R	Center of gravity of \mathcal{R}
CP_R	Center of pressure of \mathcal{R}	L	Center of gravity of L

M _{rd}	Rotational damping moment
$r_{A/B}$	Position of A w.r.t. B
F _{aero}	Total aerodynamic force
т	Mass
g	Gravity vector
$\dot{\pmb{H}}_{G}^{\mathcal{A}}$	Angular momentum of frame \mathcal{A} about G
$I^{\mathcal{A}}$	Inertia tensor of frame \mathcal{A}
$\pmb{\omega}_{\mathcal{A}}$	Angular rate of frame \mathcal{A}
\boldsymbol{a}_R	Acceleration of point <i>R</i>

Blade-Element Aerodynamics

- Wing is divided spanwise into rectangular, 2D, rigid differential elements
- Differential force dF_{aero} a function of force coefficient C_F , local airspeed $V_{\delta w}$, dynamic pressure q, reference area dS

$$dF_{aero} = C_F(\alpha)qdS$$

$$q = \frac{1}{2}\rho V_{\delta w} \cdot V_{\delta w}$$

$$dS = c(r)dr$$

$$V_{\delta w} = V_G + V_{A/G} + V_{\delta w/A}$$

Blade-Element Aerodynamics

• Integrate along wingspan to obtain total force F_{aero}

$$dF_{aero} = C_F(\alpha)qdS$$

$$F_{aero} = \frac{1}{2} C_F(\alpha) \rho \int_0^R \boldsymbol{V}_{\delta w} \cdot \boldsymbol{V}_{\delta w} c(r) dr$$

• Angle of attack α approximately constant along wingspan, because velocity $V_{\delta w}$ is dominated by angular rate ω_R

$$\alpha(t) = \tan^{-1} \frac{V_{\delta w} \cdot \hat{x}_{w}}{V_{\delta w} \cdot \hat{z}_{w}}$$
small
$$V_{\delta w} = V_{G} + V_{A/G} + V_{\delta w/A}$$

$$V_{\delta w/A} = \omega_{\mathcal{R}} \times r_{\delta w/A}$$

• Integral can be decomposed so that it does not have to be evaluated at each step of simulation

R

Blade-Element Aerodynamics

q	Dynamic Pressure	ρ	Ambient air pressure
$V_{\delta w}$	Velocity of differential element	V _G	Velocity of robot body CG
$V_{A/G}$	Velocity of hinge point relative to robot body CG	$V_{\delta w/A}$	Velocity of differential element relative to hinge point
α	Angle of attack	$C_F(\alpha)$	Force coefficient
dS	Differential reference area	R	Wingspan
r	Wingspan coordinate	c(r)	Chord length

Controller Modeling

Controller Modeling Motivation

- Open-loop flight deviates quickly from hovering
- To validate model against hovering flight requires duplicating flight test controller for closed-loop simulations

Controller Overview

- Flight test controller detailed in [Ma, K.Y. '13]
- Control design replicated in simulation for purpose of validation

- Altitude: (PID) Desired lift force
- Lateral: (PID) Desired body orientation
- Attitude: (PID) Desired torque
- Signal: Generate signal for piezoelectric actuators

Altitude Controller

$$f_{L,des} = -k_{pa}e - k_{ia} \int_0^t e \, d\tau - k_{da} \dot{e}$$
$$e = z_{des} - z$$

Compute desired lift $f_{L,des}$ from the error in altitude

$f_{L,des}$	Desired lift force
k_{pa}	Proportional gain
е	Error
k _{ia}	Integral gain
k _{da}	Derivative gain
Z _{des}	Desired altitude
Ζ	Current altitude

Lateral Controller

$$\hat{\boldsymbol{z}}_{des} = -k_{pl}(\boldsymbol{r} - \boldsymbol{r}_d) - k_{dl}(\dot{\boldsymbol{r}} - \dot{\boldsymbol{r}}_d)$$

Compute desired body orientation from the position error and velocity error

$\hat{\mathbf{z}}_{des}$	Desired body vector
k_{pl}	Proportional gain
r	Position of robot
r_d	Desired position of robot
k _{dl}	Derivative gain

Attitude Controller

$$\boldsymbol{\tau}_{des} = -k_p \hat{\boldsymbol{z}}_{des} - k_d L \boldsymbol{\chi}$$

where the body Euler angles $\boldsymbol{\Theta}$ are used to compute

$$\boldsymbol{\omega} = L\boldsymbol{\Theta}$$
$$\boldsymbol{\chi} = \frac{s}{s+\lambda}\boldsymbol{\Theta}$$

.

$\pmb{ au}_{des}$	Desired body torque
k_p	Proportional gain
$\hat{\mathbf{z}}_{des}$	Desired body vector
k _d	Derivative gain
L	Nonorthogonal transformation matrix
ω	Body angular rate

Model Validation

Forced Response

High frequency forced response of simulation closely matches experimental data

Open-loop Flight

Simulation (bottom) shows similar instability to experiment (top) in open-loop flight

Closed-loop Flight

Qualitative comparison of simulated (left) experimental (right) closed-loop trajectories

Simulation

Closed-loop simulation of hovering flight

Flight Comparisons

Future Work and Conclusion

- Proportional Integral Filter (PIF) Compensator
 - Submitted to CDC '17
 - Based on linearization of full equations of motion about hovering
- Intelligent control
 - Preliminary work: [Clawson, T.S. '16]
 - Use adaptive control architecture to learn on-line
- Detailed dynamics analysis
 - Analyze periodic maneuvers and find set points
 - Determine stability of various set points

This model combines accurate aerodynamic force calculations with dynamic modeling to create an integrative flight model

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

Taylor S. Clawson, Sawyer B. Fuller¹,

Robert J. Wood², Silvia Ferrari

¹Mechanical Engineering, University of Washington, Seattle, WA ²Engineering and Applied Sciences + Wyss Institute, Harvard University, Cambridge, MA

Further questions: Taylor Clawson tsc83@cornell.edu

Related Work

Clawson, Taylor S., et al. "Spiking neural network (SNN) control of a flapping insect-scale robot." *Decision and Control (CDC), 2016 IEEE 55th Conference on.* IEEE, 2016. 28