Information-driven Guidance and Control for Adaptive Target Detection and Classification

Silvia Ferrari
Pingping Zhu and Bo Fu
Mechanical and Aerospace Engineering
Cornell University
Outline

- Introduction
- MCM Motivation
- Directional Information Gain
- UUV-sonar Imaging Frames of Reference
- UUV-sonar Feature Extraction
- CNN-SVM ATR
- UUV-sonar Bayesian Modeling
- UUV-sonar Information Value Learning
- Conclusions and Q&A
Traditional paradigm:
Proprioceptive and exteroceptive sensor (output) used as feedback to vehicle in support of vehicle navigation objectives.
New paradigm:
Vehicle is used to gather information (output) to support **sensing objectives**, such as target acquisition, or DCLT.

Research challenges:
- **Represent sensor objectives in closed-form**
 Computational geometry; information theory
- **Environmental and target feedback (output)**
 Significant uncertainties; Bayesian updates
- **Information-driven guidance and control**
 Couplings between sensor measurements and vehicle dynamics
MCM Motivation and Application
Classification-driven Path Planning
Influence of UUV Position and Orientation

The sensor FOV, denoted by $S \subset \mathbb{R}^3$, is defined as a compact subset of the workspace, \mathcal{W}, in which the robot can obtain sonar measurements.

Motivation: Sonar is directional and the information gain depends on the sonar FOV geometry, position, and orientation relative to the target.
Surveillance Region and Oceanic Currents

Real CODAR-Measured Current Field (100 naut mi-NJ Coast)†

†[COOL, Rutgers University]
Directional Information Gain
Visibility Problem

- For a polygonal obstacle \mathcal{B} in a workspace \mathcal{W}, consider a sensor on \mathcal{A} observing a target \mathcal{T}.
- Determine obstacle-generated cone \mathcal{K}. Then, for a sensor FOV, S, we seek to find a shadow region, \mathcal{D}, such that the visibility region is $\mathcal{R} \cup \mathcal{R}_S$.

Solution:

- Construct a polygon with sensor at point P:
 $$S = \{P, V_1, ..., V_N\}, \text{ where } V_1, ..., V_N \text{ are the obstacle vertices.}$$
- Compute the convex hull of S:
 $$CS = \text{conv}(S) = \left\{ \sum_{i=1}^{\lvert S \rvert} k_i x_i \mid (\forall i : k_i \geq 0 \land \sum_{i=1}^{\lvert S \rvert} k_i = 1) \right\}$$
- Visibility region for one target:
 $$\mathcal{R} = CS \setminus \mathcal{B}$$
 $$\mathcal{R}_S = (S \setminus \mathcal{K}) \cup ((S \cup \mathcal{K}) \setminus (\mathcal{D} \cup \mathcal{B}))$$
Visibility Region in Closed Form

Obstacle cone in closed-form:

• Construct unit vectors k_i, k_j
• Find boundary unit vectors k_1 and k_2:
 \[
 k_1 = \frac{PV_p}{\|PV_p\|} \quad k_2 = \frac{PV_q}{\|PV_q\|}
 \]
• Compute obstacle cone \mathcal{K}:
 \[
 \mathcal{K} = cone(\hat{k}_1, \hat{k}_2) = \{x \mid x = r + c_1\hat{k}_1 + c_2\hat{k}_2, c_1, c_2 \geq 0\}
 \]
 \[
 \mathcal{D} = (S \cap \mathcal{K}) \backslash (CS)
 \]

• Visibility region for multiple targets (i) and obstacles (j):
 \[
 R_{(i)} = CS_{(i)} \backslash B_{(i)}; \quad D_{(i)} = (S \cup \mathcal{K}_{(i)}) \backslash CS_{(i)}
 \]
 \[
 R_S = \bigcup_i R_{S(i)} = \bigcup_i \{ (S \backslash \mathcal{K}_{(i)}) \cup ((S \cup \mathcal{K}_{(i)}) \backslash (D_{(i)} \cup B_{(i)})) \}
 \]
Example: Art Gallery Problem

Sensor at Single Location

Sensor at Multiple Location

Distance in meters

Distance in meters

Distance in meters

Distance in meters

\(\mathcal{B}\)

\(\mathcal{T}\)

\(\mathcal{D}\)

\(\mathcal{K}\)

\(\mathcal{R}_s\)
UUV-Sonar Directional Information Gain
UUV Kinematics Frames of Reference

Assume:
\[v = constant \]

UUV States:
\[\mathbf{x}(t) = [x_{uuv}(t), y_{uuv}(t), \theta_{uuv}(t)]^T \]

UUV Dynamics:
\[\dot{x}_{uuv} = v \cdot \cos(\theta_{uuv}) \]
\[\dot{y}_{uuv} = v \cdot \sin(\theta_{uuv}) \]
Target: T

UUV Frames Relative to Sonar Image

- UUV at $x(t_2)$, $t_2 > t_1$
- UUV at $x(t_1)$

Distance in meters

Vehicle Frame

$\mathcal{F}_A = \mathcal{F}_A(x(t))$

Sonar FOV

$\text{FOV} = \text{FOV}(x(t))$

UUV Heading Direction

Distance in meters
Consider the image segmentation as the target geometry \mathcal{T}. Then, the actual target geometry, orientation, and shape are viewed as hidden random features.

F_A: Vehicle Frame F_T: Image Frame

$\mathcal{T} = \mathcal{T}(x)$: Target Image Region
Image Frame and Target Frame

\[F_W \]: Target Frame
\[F_T \]: Image Frame

Aspect Angle: \(\theta = \theta_{uuv} - \theta_T \)
Image and Target Distance Vectors

\[\mathbf{r} = \mathbf{r}_i + \Delta \mathbf{r} \]

\[= [(x_T - x), (y_T - y)]^T \]
UUV-Sonar Feature Extraction
• **Training Phase:** Train SVM classifier with Sonar Image I_s and true classification Y_T
• **Testing Phase:** Matched filter for image segmentation and CNN+SVM for target classification
Automatic segmentation is performed via matched filter
- Matched filter provides better performance than Markov random fields (MRFs)
- Deep learning features extracted from segmentation by Pre-trained AlexNet
- AlexNet CNN provides better performance than other features extraction techniques such as HOG and LBP.
Legend:
- TP: True Positive
- FP: False Positive
- TN: True Negative
- FN: False Negative
- G_i: Image Group i

Classification Accuracy:

$$CA = \frac{n_{TP} + n_{TN}}{n_{TP} + n_{FN} + n_{FP} + n_{TN}}$$

Probability of detection (Matched Filter performance): 88.31%

CNN Performance: True Positive Rate

Legend:
- TP: True Positive
- FP: False Positive
- TN: True Negative
- FN: False Negative
- G_i: Image Group i

True Positive Rate (TPR):

\[
TPR = \frac{n_{TP}}{n_{TP} + n_{FP}}
\]

Probability of detection (Matched Filter performance): 88.31%

CNN Performance: False Alarms

Legend:
- TP: True Positive
- FP: False Positive
- TN: True Negative
- FN: False Negative
- G_i: Image Group i

False Positive Rate (FPR):

$$FPR = \frac{n_{FP}}{n_{FP} + n_{TN}}$$

Probability of detection (Matched Filter performance): 88.31%

UUV-Sonar Information Value
UUV-Sonar Information Value

Minefield:
520 Targets, 20 Mine objects

*Courtesy of Jason Isaacs, NSWC Panama City, FL
Key Variable Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{uuv}</td>
<td>Vehicle Position</td>
<td>X_T</td>
<td>Target Position</td>
</tr>
<tr>
<td>θ_{uuv}</td>
<td>Vehicle Orientation</td>
<td>θ_T</td>
<td>Target Orientation</td>
</tr>
<tr>
<td>d</td>
<td>Relative Distance</td>
<td>θ</td>
<td>Relative Orientation</td>
</tr>
<tr>
<td>Y_T</td>
<td>True Classification</td>
<td>\hat{Y}</td>
<td>Estimated Classification</td>
</tr>
<tr>
<td>S</td>
<td>Object Shape</td>
<td>L</td>
<td>Object Length</td>
</tr>
<tr>
<td>W</td>
<td>Object Width</td>
<td>H</td>
<td>Object Height</td>
</tr>
<tr>
<td>I_s</td>
<td>Segmented Image</td>
<td>z</td>
<td>CNN output Features</td>
</tr>
<tr>
<td>M</td>
<td>Sensor Mode</td>
<td>E</td>
<td>Noise level</td>
</tr>
</tbody>
</table>

Assume Constant

$\mathbf{r} = [d, \theta]$
Key Variables and Causal Relationships
Information Value Function Learning

• Assume information gain can be modeled as Expected Entropy Reduction (EER)

\[
EER(\hat{y}_{pri}, \hat{F}, \hat{r}_{pri}, \hat{r}_{post}) = H_{pri}(\hat{y}_{pri}, \hat{F}, \hat{r}_{pri}) - \frac{1}{N} \sum_{i=1}^{N} H_{post}(\hat{y}_{pri}, \hat{y}^{(i)}_{post}, \hat{F}, \hat{r}_{pri}, \hat{r}_{post})
\]

• Example:

 Prior Image location
 \(\hat{r}_{pri} = \{[0, 75), [5\pi/4, 7\pi/4), \} \)

 Posterior Image location
 \(\hat{r}_{post} = \{[75, 150], [-\pi/4, \pi/4), \} \)

\(\hat{y}^{(i)}_{post} \): given in training data

Discretization:
\(r = [d, \theta]; d = \{[0, 75), [75, 150]\}; \theta = \{[-\pi/4, \pi/4), [\pi/4, 3\pi/4), [3\pi/4, 5\pi/4), [5\pi/4, 7\pi/4]\} \)
Continuous probabilities (PDF’s) are difficult to learn, random variables are first discretized.

Conditional probability table (CPT) is estimated from dataset:

\[P(\hat{Y} | Y_T, S, L, W, H, r) \]

Entropy \(H \) is calculated based on estimated conditional probability

Information Value Function (EER) is learned from the dataset images and Features.
Bayesian Network Model

- Training data set: \(\mathcal{D} = \{(s_i, l_i, w_i, h_i, d_i, \theta_i, y_{T,i}, \hat{y}_i)\}_{i=1}^n \)
 - Random variables: \(S, L, W, H, D, \Theta, Y_T, \) and \(\hat{Y} \)
 - Realization variables: \(s_i, l_i, w_i, h_i, d_i, \theta_i, y_{T,i}, \) and \(\hat{y} \)

- Probability parameters learned from dataset:
 - Prior: \(P(Y_T | \hat{F}, \hat{r}) \)
 - Likelihood: \(P(\hat{y} | Y_T, \hat{F}, \hat{r}) \)

\[
\begin{align*}
S &= \{\text{Cylindrical, Rectangular}\}; \\
V &= (LWH)^{1/3} = \{[0, 0.14), [0.14, 0.3), [0.3, 1.1), [1.1, 1.7]\} \\
r &= [d, \square]; d = \{[0,75), [75,150]\}; \square = \{[-\pi/4, -\pi/4), [-\pi/4, 3\pi/4), [3\pi/4, 5\pi/4), [5\pi/4, 7\pi/4]\}
\end{align*}
\]
Bayesian Network Model,
Features \(F = \{S, H, W, L\} \)

- Bayesian parameter estimation:
 - Parameters are random variables \(\eta_{ijk} \)
 - Multinomial likelihood of training data set:
 \[
 P(D | \eta) = \prod_i \prod_j \prod_k n_{ikj} \eta_{ikj}^{N_{ikj}}
 \]
 - Dirichlet Prior of the parameter:
 \[
 P(\eta | \alpha) = \frac{\Gamma(\sum_k \alpha_{ijk}) \prod_i r_i (\alpha_{ijk} - 1)}{\prod_k \Gamma(\alpha_{ijk}) \prod_{k=1}^{r_i} \eta_{ikj}^{(\alpha_{ijk} - 1)}} = \text{Dirichlet}(\eta_{ij}; \alpha_{ij1}, \ldots, \alpha_{ijr_i})
 \]
 - Hyper parameter: \(\alpha = [\alpha_{ij1}, \ldots, \alpha_{ijr_i}] \)
 - Posterior of the parameter:
 \[
 P(\eta | D, \alpha) \propto \prod_{ijk} \eta_{ikj}^{(N_{ijk} + \alpha_{ijk} - 1)}
 \]
 - MAP estimate:
 \[
 \hat{\eta}_{ijk}^{MAP} = \frac{N_{ijk} + \alpha_{ijk}}{\sum_j (N_{ijk} + \alpha_{ijk})}
 \]
Posterior Probability Learning

- Posterior probabilities calculated via Bayes rule:
 - Given image I_{pri}
 \[
 P(Y_T = 1 \mid \hat{y}_{\text{pri}}, \hat{F}, \hat{r}_{\text{pri}}) = \frac{P(Y_T = 1 \mid \hat{F}, \hat{r}_{\text{pri}})P(\hat{y}_{\text{pri}} \mid Y_T = 1, \hat{F}, \hat{r}_{\text{pri}})}{P(\hat{y}_{\text{pri}} \mid \hat{F}, \hat{r}_{\text{pri}})}
 \]
 - Given image I_{pri} and I_{post}
 \[
 P(Y_T = 1 \mid \hat{y}_{\text{pri}}, \hat{y}_{\text{post}}, \hat{F}, \hat{r}_{\text{pri}}, \hat{r}_{\text{post}}) = \frac{P(Y_T = 1 \mid \hat{F}, \hat{r}_{\text{pri}}, \hat{r}_{\text{post}})P(\hat{y}_{\text{pri}} \mid Y_T = 1, \hat{F}, \hat{r}_{\text{pri}})P(\hat{y}_{\text{post}} \mid Y_T = 1, \hat{F}, \hat{r}_{\text{post}})}{P(\hat{y}_{\text{pri}}, \hat{y}_{\text{post}} \mid \hat{F}, \hat{r}_{\text{pri}}, \hat{r}_{\text{post}})}
 \]
 - Instantiations can also be calculated:
 \[
 P(\hat{y}_{\text{pri}} \mid \hat{F}, \hat{r}_{\text{pri}}) \text{ and } P(\hat{y}_{\text{pri}}, \hat{y}_{\text{post}} \mid \hat{F}, \hat{r}_{\text{pri}}, \hat{r}_{\text{post}})
 \]
Results
Influence of UUV position on Classification

Relative Distance d (m)

Probability of Correct Classification

Relative Orientation θ (rad)

Dataset A: Low Frequency

Probability of correct classification (total):
- Cylindrical object 91.11%
- Rectangular object 83.02%
Influence of UUV position on Classification

Probability of correct classification (total):
- Cylindrical object 87.04%
- Rectangular object 86.27%

Dataset A: High Frequency

Relative Distance d (m)

Relative Orientation θ (rad)
Influence of UUV position on Classification

Relative Distance d (m)

Probability of Correct Classification

Relative Orientation θ (rad)

Dataset B: Low Frequency

Probability of correct classification (total):
- Cylindrical object 70.97%
- Rectangular object 43.48%
Influence of UUV position on Classification

Probability of correct classification (total):
- Rectangular object 86.23%
- Cylindrical object 77.03%

Dataset B: High Frequency
Information Value Function Learning

• Assume information gain can be modeled as Expected Entropy Reduction (EER)

\[
EER(\hat{y}_{pri}, \hat{F}, \hat{r}_{pri}, \hat{r}_{post}) = H_{pri}(\hat{y}_{pri}, \hat{F}, \hat{r}_{pri}) - \frac{1}{N} \sum_{i=1}^{N} H_{post}(\hat{y}_{pri}, \hat{y}^{(i)}_{post}, \hat{F}, \hat{r}_{pri}, \hat{r}_{post})
\]

• Example:

 - Prior Image location
 \(\hat{r}_{pri} = \{[0,75), [5\pi/4, 7\pi/4,)\}\)
 - Posterior Image location
 \(\hat{r}_{post} = \{[75,150], [-\pi/4, \pi/4,)\}\)

\(\hat{y}^{(i)}_{post}\): given in training data

Discretization:
\(r = [d, \theta]; d = \{[0,75), [75,150]\}; \theta = \{[-\pi/4, \pi/4), [\pi/4, 3\pi/4), [3\pi/4, 5\pi/4), [5\pi/4, 7\pi/4]\}\)
Results: Learned Information

• **Target #2**: $y_T = 1$, $s =$ Rectangular, $l = 1.25\text{m}$, $w = 0.61\text{m}$, $h = 0.47\text{m}$

• Correct classification ($\hat{y}_{pri} = 1$)

• Incorrect classification ($\hat{y}_{pri} = 0$)

\mathcal{F}_T: Target Frame \hspace{1cm} \mathcal{F}_A: Vehicle Frame
Results: Learned Information Gain

- **Target #230**: $y_T = 0$, $s =$ Circular, $l = 0.05\,\text{m}$, $w = 0.20\,\text{m}$, $h = 0.27\,\text{m}$
- Correct classification ($\hat{y}_{pri} = 0$)
- Incorrect classification ($\hat{y}_{pri} = 1$)

\mathcal{F}_T: Target Frame \hspace{1cm} \mathcal{F}_A$: Vehicle Frame
CNN-SVM Learning with limited data

![Graph showing the probability of correct classification versus the percentage of data used for training. The graph illustrates a positive correlation between the amount of training data and the accuracy of classification.]
MCM Unmanned Autonomy Evaluation Simulator (MUAES)
Conclusions

MCM information-driven path planning and control:

- Directional information gain
- Automatic CNN-SVM target recognition and detection
- New reference frames and problem formulation
- Bayesian model of UUV-sonar sensing problem
- Information gain function learning
- MUAES visualization and testing

Ongoing and Future Work:

- Information-driven MCM acquisition and classification
- MCM path planning and control
- Validation in MUAES-Sonar Imaging
Acknowledgments

Collaborators:

- **Jason Isaacs**, Ph.D.
 Naval Surface Warfare Center
 Panama City, FL

- **Drew Lucas**, Ph.D.
 Naval Surface Warfare Center
 Panama City, FL

- **Matt Bays**, Ph.D.
 Naval Surface Warfare Center
 Panama City, FL

- **Pingping Zhu**, Ph.D.
 LISC, MEMS, Duke

- **Bo Fu**, Ph.D.
 LISC, MAE, Cornell

This work was funded by ONR Code 321OE, MCM Autonomy Program