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Research Problem and Motivation

Problem: BNP-based sensor planning and control for modeling agent behaviors in the 
presence of significant uncertainties. 
 Learn BNP models of dynamic agents
 BNP model size and parameters are both learned from data

Motivation: BNP (e.g. DP-GP and DDP-GP) models can be used to learn trajectory and 
velocity fields from data:
 Dirichlet process mixture (DP-GP) infers number of trajectory field classes [Roy, MIT]
 Dependent Dirichlet process mixture (DDP-GP) extends to temporally evolving 
trajectory fields [Fisher, MIT]

Technical Challenges: BNP-based sensor planning and control requires an information 
value function that can be updated in real time, as the BNP model acquires new data. 
 Information theoretic function for BNP models
 Computationally tractable update of expected information value (for real time 
implementations)
 Dynamic and geometric constraints on sensor state and control
 BNP-based planning and control
 Decentralized BNP-based planning and control (for multiple, cooperative sensors)
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Technical Accomplishments – Year 2

 Developed information value functions for DP-GP models of dynamic targets
(1) Represent expected uncertainty reduction in target position and velocity field 
(2) Update iteratively over time, as the DP-GP model learns target behavior from data 

obtained in real time [Carin, Roy, How]

 Demonstrated new hybrid system approximate dynamic programming (ADP) 
algorithm on a benchmark optimal control problem.
 Important for performing distributed learning control through ADP, for teams of 
heterogeneous autonomous static and mobile agents involving both discrete and 
continuous state and control variables

 Developed planning/control algorithms for DP-GP models of dynamic targets
(1) Demonstrated on camera intruder problem with continuous state and control 

(static sensors) [How, Carin]
(2) Extension to multiple mobile sensors tracking multiple moving targets

 Developed decentralized planning/control algorithms for DP-GP models of 
dynamic targets for multiple sensors with continuous state and control, tracking 
multiple moving targets [Leonard]



Problem Formulation and Assumptions

Consider one or more sensors with configuration q(t), and control inputs u(t), such that:

Targets are non-cooperative, independent and obey a time-invariant velocity field:

with I.C.  q(t0) = q0
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 Target j follows vj with Pr{Cj = i} = πi, ∀i,j;  

Problem: Sensor planning/control for modeling dynamic target behaviors via DP-GP

( ) ( ) ( ),ttt BuAqq += “sensor dynamic constraints”

 Using the available control inputs u(t), the position 
and size (mode) of the sensor’s FOV or visibility 
region S can be controlled to obtain measurements in 
the sensor workspace W

 The sensor objective is to learn a model of target 
behavior from data, in the form of a DP-GP (or other 
BNP).

( ) ( ) )(,...,1),(][ tNjtjtjt jj =≡= vxfx

11 =∑ =
M
i iπ

 When target j first enters W, its initial position is known without error; Perfect 
measurement-target association; velocity field is of class C1.

{ }π,F→ “target model”



Sensor agent

Mobile, autonomous

Sensors
Wireless communication

Application Example

Multi-agent Monitoring and Surveillance
Target agents

• Microscopic level: local agent model, 
communication, and inference 
algorithms; agent actions, constraints. 

• Macroscopic level: mission objectives 
(performance) and constraints; field-level inference 
and situational awareness; CBBA task allocation. 
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Problem: learn target dynamics and track targets by controlling the 

cameras’ pan-tilt-zoom (PTZ) variables (control inputs).

Raven Testbed at MIT

Application Benchmark



Camera-Intruder Problem
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Target

Future 
Trajectory

Sensor FOV

 Camera control: u
Continuous control: Position of oA

Discrete control: Zoom level l

oAow
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S[u(k)]



Pan-Tilt-Zoom (PTZ) Camera 
Model and Assumptions
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Camera FoV 

 Zoom level: l = 1(in)                             l = 2(out)

 Measurement Model: 
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 Assumptions
 Camera is fully controlled by the command (control vector), i.e., 

u(k) = [qT(k)  l(k)]T, where q(k) is the position of O inW at time k 
and  l(k) is the zoom level.

 u(k) ∈ U (k), whereU (k) is the admissible control space at time k.

OA

FA FA
OA



Camera Systems
Measurement Noise / FOV 
w.r.t. Zoom Level 

Control: Continuous FOV 
Position Discrete Zoom Levels

Multiple Moving Targets

Learning 
Velocity Fields

Dirichlet process-Gaussian process 
mixture model (DP-GP)

Expected Kullback–Leibler divergence 
(EKL)

Tracking Targets Particle Filter Expected mutual information (EI)

Optimal Planning

Find Optimal FOV Positions and 
Zoom Levels

 Active Sensing: Camera-Intruder Problem 

Measurement

Target Position and velocity

Algorithmic Architecture



BNP-based Objective Function
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Expected KL-divergence:
reward to update DP-GP model

Expected mutual information:
reward to track targets

KL-MI Information value function for  active sensing control:



BNP-based Camera Control Design
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u(k)≈∑j j [F; m j(k+1) | M j(k),ε(k),u(k)]

 Centralized Control problem

ϕ̂

j [u(k)] ≈1/P∑               j[χp
j(k+1)]ϕ̂

χp
j∈s[u(k)] V̂

u(k)=argmax ∑j j [F; m j(k+1) | M j(k),ε(k),u(k)]ϕ̂
u(k)



Camera-Intruder Example Problem
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First velocity field Second velocity field Third velocity field
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Simulation Results

 Active Camera Control for mobile intruder BNP modeling and tracking

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

Gaussian particle 

Target 
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Results: Measurement Comparison
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Prior Measurements
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Goal: Control camera PTZ to maximize the expected reduction in uncertainty of 
future sensor measurements (information value) / optimize the DP-GP target model.
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Results: Performance Comparison
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Absolute error:

Performance Evaluation: error time histories of DP-GP target velocity estimate

Relative error:

KL-MI Control Law MI Control Law

k



Results: Performance Comparison
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Performance Evaluation: error time histories of DP-GP target velocity estimate

Random Search: camera PTZ levels are controlled by a random search algorithm.

Heuristic Search: camera PTZ levels are controlled such that the FoV centroid tracks 
the estimated position of the nearest target.



Decentralized Control for 
Camera-Intruder Problem 

Problem Formulation: control multiple cameras for modeling multiple targets via DP-GP.

Camera FOV at 
Zoomed-in level

Camera FOV at 
Zoomed-out level

Camera FOV 
constraint

Target

Gaussian particle for 
instantaneous target 
position at (k+1)

Assumptions: communications between cameras is instantaneous; each camera has a 
computer and wireless adaptor; each target can only be observed by a camera iff the time 
integral of its distribution in D exceeds a pre-defined threshold.
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Simulation Results

 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, without FOV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

Gaussian particle 

Target 
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Simulation Results

 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, with FoV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

FoV constraint 

Target 



Results: Performance Comparison
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Performance Evaluation: error time histories of DP-GP target velocity estimate
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Centralized, one sensor, four targets
Decentralized, two sensors, four targets
Decentralized, two sensors, eight targets

Heuristic Decentralized Control: camera PTZ levels are controlled by BNP-based 
control, using a target-camera assignment algorithm.



Decentralized BNP-based Control
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u(k)=argmax ∑j j [F; m j(k+1) | Mj(k),ε(k),u(k)]ϕ̂
u(k)

 Centralized control problem

 Decouple:

 {us(k)}j: control set of cameras associated with target j

 Decouple problem into multiple tasks:

1. Let usj(k) denote us∈ {us(k)}j, and Is={j | us(k)∈ {us(k)}j}

2.

s.t. ∀ us(k)∈ {us(k)}j

∑j max j [F; m j(k+1) | Mj(k),ε(k), {usj(k)}j]ϕ̂
{usj(k)}j

u(k)=argmax ∑j j [F; m j(k+1) | Mj(k),ε(k), {usj(k)}j]ϕ̂
u(k)

0)(
1)(

1)(
,

=
−

− ∑ ∈≠ sIjj s
s

sj k
Isize

k




uu



Decentralized Optimization Approach
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4. Decouple, task j for target j
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Decouple problem into multiple tasks:
3. Augment objective function
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Summary and Future Work

Technical Accomplishments – Year 2:

Future Work:
 Complete decentralized BNP planning/control theory and implementation
 Extensions to DDP-GP and other BNP models
 Implementation of hybrid ADP for BNP-based control
 Decentralized BNP control convergence guarantees
 Decentralized BNP planning/control complexity analysis
Application of decentralized BNP planning/control to mobile sensors

 Developed information value functions for DP-GP models of dynamic targets

 Developed hybrid system approximate dynamic programming (ADP) algorithm

 Developed planning/control algorithms for DP-GP models of dynamic targets

 Developed decentralized planning/control algorithms for DP-GP models of 
dynamic targets for multiple sensors with continuous state and control, tracking 
multiple moving targets
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Questions?
?
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