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Research Problem and Motivation

Problem: BNP-based sensor planning and control for modeling agent behaviors in the 
presence of significant uncertainties. 
 Learn BNP models of dynamic agents
 BNP model size and parameters are both learned from data

Motivation: BNP (e.g. DP-GP and DDP-GP) models can be used to learn trajectory and 
velocity fields from data:
 Dirichlet process mixture (DP-GP) infers number of trajectory field classes [Roy, MIT]
 Dependent Dirichlet process mixture (DDP-GP) extends to temporally evolving 
trajectory fields [Fisher, MIT]

Technical Challenges: BNP-based sensor planning and control requires an information 
value function that can be updated in real time, as the BNP model acquires new data. 
 Information theoretic function for BNP models
 Computationally tractable update of expected information value (for real time 
implementations)
 Dynamic and geometric constraints on sensor state and control
 BNP-based planning and control
 Decentralized BNP-based planning and control (for multiple, cooperative sensors)
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Technical Accomplishments – Year 2

 Developed information value functions for DP-GP models of dynamic targets
(1) Represent expected uncertainty reduction in target position and velocity field 
(2) Update iteratively over time, as the DP-GP model learns target behavior from data 

obtained in real time [Carin, Roy, How]

 Demonstrated new hybrid system approximate dynamic programming (ADP) 
algorithm on a benchmark optimal control problem.
 Important for performing distributed learning control through ADP, for teams of 
heterogeneous autonomous static and mobile agents involving both discrete and 
continuous state and control variables

 Developed planning/control algorithms for DP-GP models of dynamic targets
(1) Demonstrated on camera intruder problem with continuous state and control 

(static sensors) [How, Carin]
(2) Extension to multiple mobile sensors tracking multiple moving targets

 Developed decentralized planning/control algorithms for DP-GP models of 
dynamic targets for multiple sensors with continuous state and control, tracking 
multiple moving targets [Leonard]



Problem Formulation and Assumptions

Consider one or more sensors with configuration q(t), and control inputs u(t), such that:

Targets are non-cooperative, independent and obey a time-invariant velocity field:

with I.C.  q(t0) = q0
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 Target j follows vj with Pr{Cj = i} = πi, ∀i,j;  

Problem: Sensor planning/control for modeling dynamic target behaviors via DP-GP

( ) ( ) ( ),ttt BuAqq += “sensor dynamic constraints”

 Using the available control inputs u(t), the position 
and size (mode) of the sensor’s FOV or visibility 
region S can be controlled to obtain measurements in 
the sensor workspace W

 The sensor objective is to learn a model of target 
behavior from data, in the form of a DP-GP (or other 
BNP).

( ) ( ) )(,...,1),(][ tNjtjtjt jj =≡= vxfx

11 =∑ =
M
i iπ

 When target j first enters W, its initial position is known without error; Perfect 
measurement-target association; velocity field is of class C1.

{ }π,F→ “target model”



Sensor agent

Mobile, autonomous

Sensors
Wireless communication

Application Example

Multi-agent Monitoring and Surveillance
Target agents

• Microscopic level: local agent model, 
communication, and inference 
algorithms; agent actions, constraints. 

• Macroscopic level: mission objectives 
(performance) and constraints; field-level inference 
and situational awareness; CBBA task allocation. 
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Problem: learn target dynamics and track targets by controlling the 

cameras’ pan-tilt-zoom (PTZ) variables (control inputs).

Raven Testbed at MIT

Application Benchmark



Camera-Intruder Problem
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Target

Future 
Trajectory

Sensor FOV

 Camera control: u
Continuous control: Position of oA

Discrete control: Zoom level l
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Pan-Tilt-Zoom (PTZ) Camera 
Model and Assumptions
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Camera FoV 

 Zoom level: l = 1(in)                             l = 2(out)

 Measurement Model: 
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 Assumptions
 Camera is fully controlled by the command (control vector), i.e., 

u(k) = [qT(k)  l(k)]T, where q(k) is the position of O inW at time k 
and  l(k) is the zoom level.

 u(k) ∈ U (k), whereU (k) is the admissible control space at time k.

OA

FA FA
OA



Camera Systems
Measurement Noise / FOV 
w.r.t. Zoom Level 

Control: Continuous FOV 
Position Discrete Zoom Levels

Multiple Moving Targets

Learning 
Velocity Fields

Dirichlet process-Gaussian process 
mixture model (DP-GP)

Expected Kullback–Leibler divergence 
(EKL)

Tracking Targets Particle Filter Expected mutual information (EI)

Optimal Planning

Find Optimal FOV Positions and 
Zoom Levels

 Active Sensing: Camera-Intruder Problem 

Measurement

Target Position and velocity

Algorithmic Architecture



BNP-based Objective Function
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Expected KL-divergence:
reward to update DP-GP model

Expected mutual information:
reward to track targets

KL-MI Information value function for  active sensing control:



BNP-based Camera Control Design
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u(k)≈∑j j [F; m j(k+1) | M j(k),ε(k),u(k)]

 Centralized Control problem

ϕ̂

j [u(k)] ≈1/P∑               j[χp
j(k+1)]ϕ̂

χp
j∈s[u(k)] V̂

u(k)=argmax ∑j j [F; m j(k+1) | M j(k),ε(k),u(k)]ϕ̂
u(k)



Camera-Intruder Example Problem
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First velocity field Second velocity field Third velocity field
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Simulation Results

 Active Camera Control for mobile intruder BNP modeling and tracking

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

Gaussian particle 

Target 
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Results: Measurement Comparison
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Prior Measurements
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Goal: Control camera PTZ to maximize the expected reduction in uncertainty of 
future sensor measurements (information value) / optimize the DP-GP target model.

Actual Trajectories

x (m)

y
(m

)

KL-MI Policy

x (m)

y
(m

)

Camera measurements at 
zoomed-out level 

Camera measurements at 
zoomed-in level 



Results: Performance Comparison
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Absolute error:

Performance Evaluation: error time histories of DP-GP target velocity estimate

Relative error:

KL-MI Control Law MI Control Law

k



Results: Performance Comparison
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Performance Evaluation: error time histories of DP-GP target velocity estimate

Random Search: camera PTZ levels are controlled by a random search algorithm.

Heuristic Search: camera PTZ levels are controlled such that the FoV centroid tracks 
the estimated position of the nearest target.



Decentralized Control for 
Camera-Intruder Problem 

Problem Formulation: control multiple cameras for modeling multiple targets via DP-GP.

Camera FOV at 
Zoomed-in level

Camera FOV at 
Zoomed-out level

Camera FOV 
constraint

Target

Gaussian particle for 
instantaneous target 
position at (k+1)

Assumptions: communications between cameras is instantaneous; each camera has a 
computer and wireless adaptor; each target can only be observed by a camera iff the time 
integral of its distribution in D exceeds a pre-defined threshold.
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Simulation Results

 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, without FOV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

Gaussian particle 

Target 
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Simulation Results

 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, with FoV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

FoV constraint 

Target 



Results: Performance Comparison
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Performance Evaluation: error time histories of DP-GP target velocity estimate
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Centralized, one sensor, four targets
Decentralized, two sensors, four targets
Decentralized, two sensors, eight targets

Heuristic Decentralized Control: camera PTZ levels are controlled by BNP-based 
control, using a target-camera assignment algorithm.



Decentralized BNP-based Control
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u(k)=argmax ∑j j [F; m j(k+1) | Mj(k),ε(k),u(k)]ϕ̂
u(k)

 Centralized control problem

 Decouple:

 {us(k)}j: control set of cameras associated with target j

 Decouple problem into multiple tasks:

1. Let usj(k) denote us∈ {us(k)}j, and Is={j | us(k)∈ {us(k)}j}

2.

s.t. ∀ us(k)∈ {us(k)}j

∑j max j [F; m j(k+1) | Mj(k),ε(k), {usj(k)}j]ϕ̂
{usj(k)}j

u(k)=argmax ∑j j [F; m j(k+1) | Mj(k),ε(k), {usj(k)}j]ϕ̂
u(k)
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Decentralized Optimization Approach
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4. Decouple, task j for target j
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Decouple problem into multiple tasks:
3. Augment objective function
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Summary and Future Work

Technical Accomplishments – Year 2:

Future Work:
 Complete decentralized BNP planning/control theory and implementation
 Extensions to DDP-GP and other BNP models
 Implementation of hybrid ADP for BNP-based control
 Decentralized BNP control convergence guarantees
 Decentralized BNP planning/control complexity analysis
Application of decentralized BNP planning/control to mobile sensors

 Developed information value functions for DP-GP models of dynamic targets

 Developed hybrid system approximate dynamic programming (ADP) algorithm

 Developed planning/control algorithms for DP-GP models of dynamic targets

 Developed decentralized planning/control algorithms for DP-GP models of 
dynamic targets for multiple sensors with continuous state and control, tracking 
multiple moving targets
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Questions?
?
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