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Research Problem and Motivation III"

Problem: BNP-based sensor planning and control for modeling agent behaviors in the
presence of significant uncertainties.

= Learn BNP models of dynamic agents

= BNP model size and parameters are both learned from data

Motivation: BNP (e.g. DP-GP and DDP-GP) models can be used to learn trajectory and
velocity fields from data:
= Dirichlet process mixture (DP-GP) infers number of trajectory field classes [Roy, MIT]
= Dependent Dirichlet process mixture (DDP-GP) extends to temporally evolving
trajectory fields [Fisher, MIT]

Technical Challenges: BNP-based sensor planning and control requires an information
value function that can be updated in real time, as the BNP model acquires new data.
= Information theoretic function for BNP models
= Computationally tractable update of expected information value (for real time
implementations)
* Dynamic and geometric constraints on sensor state and control
= BNP-based planning and control

= Decentralized BNP-based planning and control (for multiple, cooperative sensors)
2
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Technical Accomplishments — Year 2 III"

» Developed information value functions for DP-GP models of dynamic targets

(1) Represent expected uncertainty reduction in target position and velocity field

(2) Update iteratively over time, as the DP-GP model learns target behavior from data
obtained in real time [Carin, Roy, How]

» Developed planning/control algorithms for DP-GP models of dynamic targets
(1) Demonstrated on camera intruder problem with continuous state and control

(static sensors) [How, Carin]
(2) Extension to multiple mobile sensors tracking multiple moving targets

» Developed decentralized planning/control algorithms for DP-GP models of

dynamic targets for multiple sensors with continuous state and control, tracking
[Leonard]

multiple moving targets

» Demonstrated new hybrid system approximate dynamic programming (ADP)

algorithm on a benchmark optimal control problem.
= Important for performing distributed learning control through ADP, for teams of

heterogeneous autonomous static and mobile agents involving both discrete and
continuous state and control variables
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Problem: Sensor planning/control for modeling dynamic target behaviors via DP-GP

Consider one or more sensors with configuration q(¢), and control inputs u(#), such that:

q(t) = Aq(t)+ Bu(z‘), with I.C. q(z)) = q, “sensor dynamic constraints”

= Using the available control inputs u(¢), the position
and size (mode) of the sensor’s FOV or visibility
region S can be controlled to obtain measurements in
the sensor workspace W

= The sensor objective is to learn a model of target
behavior from data, in the form of a DP-GP (or other
BNP). Os

Targets are non-cooperative, independent and obey a time-invariant velocity field:
Xj(t) = fj [xj(t)] =V (), j=1,...N@t) —>{F,n} “target model”
= Target follows v, with Pr{C,; =i} = 7, Vi,j; Z?;Il ;=1

= When target j first enters W, its initial position i1s known without error; Perfect
measurement-target association; velocity field is of class C'. 4
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Multi-agent Monitoring and Surveillance

Sensor agent

Target agents

——

Mobile, autonomo

. . Sensors
Wireless communication
» Microscopic level: local agent model, » Macroscopic level: mission objectives
communication, and inference (performance) and constraints; field-level inference

algorithms; agent actions, constraints. and situational awareness; CBBA task allocation.



Application Benchmark

Raven Testbed at MIT

Sensitive
Region

Problem: learn target dynamics and track targets by controlling the
cameras’ pan-tilt-zoom (PTZ) variables (control inputs).
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Camera-Intruder Problem HIT

» Target

----- Future
Trajectory

Sensor FOV
Slu(k)]

Continuous control: Position of o,

> Camera control: u
Discrete control: Zoom level /
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Pan-Tilt-Zoom (PTZ) Camera I I I i |-
Model and Assumptions

= Zoom level: [ = 1(in) [ = 2(out)
F
Camera FoV 4 Iy

= Measurement Model:

m(e)= {w)} _ ﬁ-(f)} . H n~ N0, 52()L)
Zj(t) Vj (t) n, n,~ N(Oa sz(li)lz)
= Assumptions
= Camera 1s fully controlled by the command (control vector), i.e.,
u(k) = [qT(k) I(k)]T, where q(k) is the position of O in Wat time k
and [(k) is the zoom level.
» u(k) € U (k), where 7/ (k) is the admissible control space at time £.
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Algorithmic Architecture HIT

» Active Sensing: Camera-Intruder Problem

Camera Systems Optimal Planning
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KL-MI Information value function for active sensing control:

» Objective function

D E ted KL-di ;
][U(k)] B '(p(T; m(k + DlM(k)' E(k),ulk)) rewa);get(c:) ipdate I;I;e-léic’nlfqeodel

+ﬁfﬁ(xj (k+ 1);m(k + 1)|M(k), 8(k),u(k)) Expected mutual information:

reward to track targets

where

Mk) ={m@)|m(®) = 0,k' <t <k}
measurement history not used in updating DP-GP model

E(k) ={m@)Im®@) #0,0<¢<k'},
measurement history used in updating DP-GP model
parameters of Gaussian process

[ relative weight
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“&>” BNP-based Camera Control Design HIT

» Centralized Control problem
u(k)=afgrgl‘dx ;¢ L m(k+1) | M (k),e(k),u(k)]

» l.yj(k+1) =x;(k+ 1) 2. Target position estimation: p[X;(k + 1)]
» Approximation: = Weighted points covering problem

"= Expected benefit for F from a velocity measurement v;(k + 1) at x;(k + 1)
01 v (k + 1) | M5 (), £C), X3 (ke + 1), u (b))
= [V; [x;(k + D |p[x;(k + 1)]dx;(k + 1)

= Sample {le, ...,X]P] ~ p[ﬁj(k + 1)]

* ¢ [u(k)] =1/PY. . e (k+1)]

» Approximation of 1 : same samples {x]- Y ¢ }
» Computational complexity PN (k) log|PN (k)] (One camera case)
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%> Camera-Intruder Example Problem i

> Workspace: W ={x€R?|1<x<3,1<y<3}

> VB]OCity fields: F = {fll fz, f3}
Third velocity field

First velocity field Second velocity field
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1

» Probability of choosing every velocity field: m = [3

W | =
W | =
—
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Camera FoV at zoomed-out level

Camera FoV at zoomed-in level
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Goal: Control camera PTZ to maximize the expected reduction in uncertainty of
future sensor measurements (information value) / optimize the DP-GP target model.

Prior Measurements
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Performance Evaluation: error time histories of DP-GP target velocity estimate

Absolute RMS Error in Velocity, £ (m/s)
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Performance Evaluation: error time histories of DP-GP target velocity estimate

—&— KLI-MI Algorithm
MI Algorithm

—— Random Search

—=— Heuristic Search
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Random Search: camera PTZ levels are controlled by a random search algorithm.

Heuristic Search: camera PTZ levels are controlled such that the FoV centroid tracks

the estimated position of the nearest target.
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Decentralized Control for
Camera-Intruder Problem

Problem Formulation: control multiple cameras for modeling multiple targets via DP-GP.

Camera FOV
D .
constraint
w _-m T T T T~ S Camera FOV at
7 =S Zoomed-in level
/ 3 S N
T 4 dpy N Camera FOV at
d > N\ | S | Zoomed-out level
/ D, \ oomed-out leve
/ S3 ¥

I — '\ ==  Target
! V D ! . .

1 I Gaussian particle for
\ * ! instantaneous target
\ Dy - ! .

L °4] D, / position at (k+1)
/
\\ ,
\ /
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N 4
~ 7’
~ ~ _ - -~
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Assumptions: communications between cameras is instantaneous; each camera has a
computer and wireless adaptor; each target can only be observed by a camera iff the time
integral of its distribution in 7 exceeds a pre-defined threshold.



Simulation Results IIIII

Duke

UNIVERSITY

= Decentralized Active Camera Control for mobile intruder BNP modeling
and tracking, without FOV constraints.
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* Decentralized Active Camera Control for mobile intruder BNP modeling

and tracking, with FoV constraints.
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Performance Evaluation: error time histories of DP-GP target velocity estimate
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Heuristic Decentralized Control: camera PTZ levels are controlled by BNP-based
control, using a target-camera assignment algorithm.
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» Centralized control problem

u(ky=argmax 3,9, [F; m (k+1) | M),e00.0(0)]

» Decouple:

= {uy(k)},; control set of cameras associated with target

u(k)=argmax ;¢ [F; m (k+1) | Mi(k),e(k), {ug(k)}]

u(k)
= Decouple problem into multiple tasks:

1. Let ug (k) denote use {uy(k)};, and [={j | ulk)e {uy(k)},}
2 ymax ¢ LF: m (1) | MR.eR), {uy b))
1

s.t. Vughe {uh)}; wu,(k)- e -1 Zﬁj’jds u,(k)=0
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S Decentralized Optimization Approach I I"

Decouple problem into multiple tasks:
3. Augment objective function

A= Zj @,LF5m (k+ 1) | M, (k), €(k), {u; (k)} ; +

T 1
2 0y 0= s D, WO

4. Decouple, task j for target j
A=) A,
A, =@, Fim;(k+1)| M, (k),E(k),{u;(k)}, +

T 1
2 A () —— - Dy W ()]

22
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Summary and Future Work III"

Technical Accomplishments — Year 2:
» Developed information value functions for DP-GP models of dynamic targets

» Developed planning/control algorithms for DP-GP models of dynamic targets

» Developed decentralized planning/control algorithms for DP-GP models of
dynamic targets for multiple sensors with continuous state and control, tracking
multiple moving targets

» Developed hybrid system approximate dynamic programming (ADP) algorithm

Future Work:
= Complete decentralized BNP planning/control theory and implementation

= Extensions to DDP-GP and other BNP models

* Implementation of hybrid ADP for BNP-based control

= Decentralized BNP control convergence guarantees

= Decentralized BNP planning/control complexity analysis

= Application of decentralized BNP planning/control to mobile sensors

23
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