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Background and Motivation

Previous Work (Years 1-2): BNP-based sensor planning and control for modeling 
agent behaviors in the presence of significant uncertainties

 Learn BNP models of dynamic agents

 BNP model size and parameters are both learned from data

Motivation: BNP (e.g. DP-GP and DDP-GP) models can be used to learn trajectory and 
velocity fields from data

 Dirichlet process mixture (DP-GP) infers number of trajectory field classes

 Dependent Dirichlet process mixture (DDP-GP) extends to time-varying trajectory fields

Previous Technical Accomplishments (Years 1-2):

 Developed information value functions for DP-GP models of dynamic targets

 Developed planning/control algorithms for multiple dynamic sensors constructing 
DP-GP models of multiple dynamic targets

 Developed decentralized planning/control algorithms for DP-GP models of 
dynamic targets for multiple sensors with continuous state and control, tracking 
multiple moving targets
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Technical Accomplishments – Year 3

 Analyzed properties of DP-GP information value functions
(1) Closed-form approximation and bounds for DP-GP expected KL divergence
(2) Performance analysis for different target motion models and prior information

 Developed optimized visibility-based motion planning algorithms
(1) Plan the motion of mobile robots based on objectives of exteroceptive sensors 

with bounded field-of-view
(2) Objectives: simultaneous localization and tracking of a moving target

 Developed decentralized communication control methods 
(1) Decentralized GP learning with intermittent (controllable) communications 
(2) Nominal performance of decentralized GP learning by a sensor network                      
(3) Plan the motion and communication times of decentralized sensor networks
(4) Guaranteed network performance bounds with intermittent communications



Targets are non-cooperative, independent and obey a time-invariant velocity field:
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 Plan admissible control inputs, u: - field-of-view (FOV) configuration, q
- pan-tilt-zoom (PTZ) variables, l
- communication time, tc

 Optimize sensor objectives, ϕ : - DP-GP information value (KL)

( ) ( ) )(,...,1),(][ tNjtjtit jj =≡= vxfx { }π,F→ “DP-GP target model”

Benchmark Example Problem
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Problem: Control sensor(s) mode and motion for modeling dynamic target behaviors
in a workspace W, via DP-GP mixtures

Target

Estimated target trajectory

Zoom level: l = 1, l = 2

FsFw

q

W

S : 

Sensor

S

tc

Communication link

Sensor FoV

Communication timetc :



Sensor objectives: construct DP-GP model of target dynamics from data
 Noisy position and velocity measurements (perfect data-target association)
 Velocity field: 2D spatial phenomenon → Gaussian process

 Target – velocity field association unknown
 Clustering → Dirichlet process

DP-GP mixture model[1]:

DP-GP Target Model

[1] Joseph, Joshua Mason, Finale Doshi-Velez, and Nicholas Roy. "A Bayesian Nonparametric Approach to Modeling Mobility Patterns." AAAI. 2010.
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( ) ( ) )(,...,1),(][ tNjtjtit jj =≡= vxfx

{θi,π} ~ DP(α,GP0),  i = 1,..., ∞
gj ~ Cat(π),  j = 1,..., N

(x) ~ GP( , ψ),  j = 1,..., Njgf jgθ



Control Design and Objectives

Decentralized communication control:
 Determine decentralized control policies
 Determine when to communicate and, thus, share target measurements
 Competing objectives: navigation, communication, sensing

Where:

Camera FOV at 
Zoom-in Level

Camera FOV at 
Zoom-out Level

Camera FOV 
Constraint

Target

Estimated  Distribution 
Of Target Position



Analysis of BNP Information Value Functions



DP-GP Information Value
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Assuming the noise in position measurements is small, the expected KL divergence,

can be written as,

such that the computation is reduced from an 8th-order integral to a double integral, 
where h(•) is a known analytic function with the following properties:

Properties of KL Divergence
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wij = i-jth association probability, N = no. targets, M = no. velocity fields in F, S = no. particles, xjs = 
sth particle of the jth velocity field, p(•) = posterior probability on the previous slide, k = present time 
step, σv = std of velocity measurement noise, Σ1 = covariance matrix at grid points.

Theorem: The above approximation is an unbiased estimator of the DP-GP 
expected KL divergence, and the variance of the approximation error decreases 
linearly at a rate of 1/S.



Performance Analysis: 
Example of Velocity Fields

First VF Second VF Third VF Fourth VF

Target Trajectories:

First VF Second VF Third VF Fourth VF
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KL Divergence vs. Entropy

: Observed target trajectories up to k Grid Points for KL computation
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Prior Information Less

Performance Comparison

More

RMS of Velocity Error (m/s):

Random Search: camera PTZ levels are controlled by a randomized search algorithm.

Heuristic Search: camera PTZ levels are controlled such that the FoV centroid tracks 
the estimated position of the nearest target.

DP-GP EKL: camera PTZ levels are controlled by optimizing the expected KL divergence.

MI: camera PTZ levels are controlled by optimizing the mutual information (MI).



Decentralized Visibility-based Control
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Decentralized Simulation Results

 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, without FOV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

Gaussian particle 

Target 
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 Decentralized Active Camera Control for mobile intruder BNP modeling 
and tracking, with FoV constraints.

Camera FoV at zoomed-out level 

Camera FoV at zoomed-in level 

FoV constraint 

Target 

Decentralized Simulation Results



Decentralized Control with Intermittent Comm
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Communication Control

Motivation: Develop planning and control algorithms for collaborative networks with 
intermittent communications
 Existing decentralized optimization methods assume constant communications 
(network is a connected graph) or detailed prior information (perfect models)
 Consider networks in which some or all nodes (agents) may be disconnected some of 
the time, and there is no or little prior information (high uncertainty)
Agents aim to construct BNP model from data
 Disconnected agents can determine when their own local information is insufficient, 
and it is time to reestablish communications

Model a spatial phenomenon: 

• Max temperature over a 2D ROI

• Time invariant
• Observable at a set of target locations:
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Estimation of spatial phenomenon:
•
• Measurements: f(x) ~ Gaussian process
Gaussian process:

f(x) ~ GP(µ(x), ψ(x1,x2)); µ(x) = E[f(x)] 
ψ(x1, x2) = E[( f(x1) – µ(x1) )( f(x2) – µ(x2) )] 

Planning objective: at time k choose locations and measurements {yk,zk} to maximize,

where, 
XT = [x1 |  ⋅⋅⋅ | xr], xi∈ T, i = 1 , …, r ; Yk = [y1 | ⋅⋅⋅ | yk]; Zk  = [z1 | ⋅⋅⋅ | zk]

GP Model and Information Value

estimation 

Since zk is unknown, optimize expected discrimination gain (EDG):



Disconnected Network
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Modeling of a spatial phenomenon, g(x), by four robots with disjoint workspaces:
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 Let Σ denote the covariance matrix and Ψ(x, y) denote the cross-covariance matrix, 
then the GP average generalization error (AGE),

represent a measure of GP performance.

Nominal Network Performance

(a)

(b)

[ ]






 Ψ+ΣΨ−Σ=

−
),()(),()(E)(

12
k

T
kkk YxIYYxxx δε

 From the latest GP, the posterior covariance, and the network nominal AGE can 
be estimated from an assumed probability distribution for future measurement 
locations, and an assumed probability of detection pt



(a)
(a)Random Policy

Sensor

Nominal 
GP

Buffer

Communication
Control

Sender

Local GP

Receiver

)(i
nx

iRobot _

Environment

18

GP Communication Control

 Approximate nominal average generalization error (AGE) from latest GP



(a)

 Approximate nominal average generalization error (AGE) from latest GP
 Local GP (GPL) computation

 GPL is updated using local measurements (obtained by robot i)
 Actual AGE is calculated from the local covariance function. 
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GP Communication Control

 Approximate nominal average generalization error (AGE) from latest GP   
 Local GP (GPL) computation
 Communication time: at the nth time step, the ith robot communicates if

where,     is predefined performance threshold.γ
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GP Communication Control

 Approximate nominal average generalization error (AGE) from latest GP   
 Local GP (GPL) computation
 Communication time
 Information sharing: all new measurements are communicated and used to update 

the robot GP
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Current time step, k

Actual AGE (robot i)

Nominal AGE  

Two-robot GP Comm Control
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Current time step, k
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Simulation Results
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Summary and Future Work

Technical Accomplishments – Year 3:

Future Work:
 Complete BNP communication planning/control theory
 Develop convergence and performance guarantees
 Develop BNP simultaneous motion and communication planning algorithms
 Demonstrate motion and communication planning algorithms on collaborative 
mobile sensors modeling multiple moving targets, in comm-denied environments

 Derived properties of BNP information value functions
 Conducted performance analysis for BNP planning/control algorithms
 Developed and demonstrated BNP decentralized planning/control algorithms for 

connected sensor networks, modeling multiple moving targets collaboratively
 Developed approach for BNP communication control in decentralized disconnected 

sensor networks, modeling a spatial process collaboratively
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Questions?
?
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