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Vehicle Navigation and Control 

Guidance 

Traditional paradigm:  
Sensor information (output) used as feedback to the vehicle to support the 
vehicle navigation objectives. 

Prior research foci: 
• Sensor-based path planning 
  Navigation sensors for obstacle avoidance 
  Simultaneous localization and mapping (SLAM) 
• Dual/exploratory control 
  System identification 
• Output-based feedback control 

Vehicle 
Output 

Control 
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Sensor Navigation and Control 
Traditional paradigm:  

Guidance 
Vehicle 

Output 

Control 

New paradigm:  
Vehicle is used to gather information (output) to support sensing objectives, 
such as coverage or target DCLT. 

Guidance 
Sensor 

Output 

Control 

Information-driven sensor navigation and control 
Trajectory planning and feedback control based on information value, target and 
sensor geometries, and platform kinematic/dynamic constraints. 

S. Ferrari and T. A. Wettergren, Information-driven planning and Control, CRC Press, 
Boca Raton, FL, scheduled to appear 2018.  



4 

Modern Sensor Systems 

Monitoring of urban environments 

Landmine detection and identification 

Multiple sensors installed on mobile vehicles for information gathering. 
 

Undersea surveillance 



Distributed Optimal Control (DOC) 
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• Agents operating in Region of Interest (ROI) W    ℝ2 
• Performance measured in terms of restriction operator ℘(xi,t) 
• Restriction Operator  ℘: W ×ℝ→ℝ 

– Time varying PDF ℘(xi,t) 
– PDF-based control law ui (t) 

Terminal Cost Instantaneous cost (Lagrangian) 

Obstacle 
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Agent Density, PDF ℘(xi,t) 
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Technical Challenges (ASW) 
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• Environmental and operating conditions in situ may drastically differ from those used a priori 
– Off-line DOC solutions no longer optimal 
– Agents must react to local information, including new tactical constraints 
– Limited communications (covertness) and inertial positioning systems 
– Network-level controller can dispatch agents to localize gradient intensification while 
providing energy management, volume coverage, and robustness to component failure 

1. Target: actual population is different from 
that assumed a priori. 
2. Environment: conditions measured in situ 
are different from those forecasted by 
oceanographic models. 
3. Platform: navigation settings are suboptimal, 
leading to incorrect estimates of agent position 
and/or direction. 
4. Sensor: actual performance is different from 
the performance function model due to the 
above conditions, or sensor malfunctioning. 



Technical Developments (Yr 2) 

Macroscopic state (PDF): 
 
 
Microscopic state of ith agent: 
 
 
Agent dynamics: 
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• Optimal and minimum number of agents to meet mission requirements (FISST) 
• Information value and discrimination with limited communications 
• Multi-scale environmental adaptation 
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Optimal Time-varying Probability Density Function (PDF),  ℘*(xi):      max J 

( , )xi t℘
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DOC Analysis via Finite Set Statistics 
(FISST) 



DOC and FISST Relationship  

Use Finite Set Statistics (FISST) to rigorously analyze DOC results: 
• In DOC, the agent microscopic states are viewed as random variables, with a 

possibly infinite number of agents. 
• FISST applies to a finite number of agents in the ROI (in the limit of N = 1) that 

is possibly unknown and changing over time (births, deaths, ..). 
• If the number of the agents is given, a multi-object probability density (MPDF) 

and the probability hypothesis density (PHD) of the agents in the DOC problem 
only depend on the spatial PDF of agents, or DOC macroscopic state. 

• The propagation and update of the MPDF of the agents can be implemented by 
the FISST methods, like the PHD and the cardinalized PHD (or CPHD) filters. 

• FISST, originally developed for multi-target multi-sensor tracking problems, 
extends probability theory and probability calculus to finite random sets (FRS). 
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Background on Finite Set Statistics 

• Random Finite Sets (RFS) 
Let      be an underlying space, such as a state space or a measurement space.  
 
Then       denotes the power set of     , which is the set of all subsets of     .  
 
A random finite set (RFS) is a random variable      on      . 
 

• Power Set    
The power set of a set                        is the set of all finite subsets of     : 
 
 
Therefore, a realization of RFS      can be:  
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Multi-object Probability and Calculus 

• Set Integral 
Let           be a set function defined on     . Then its set integral is defined as  
 
 

where 
  
• Multi-object Probability Density Function  (MPDF) 
The set function defined      on is a multi-object probability density function if 

• It is non-negative  
 

• Its set integral is equal to 1 
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Finite Set Statistics (FISST) 

• Probability Hypothesis Density (PHD) 
 

The probability hypothesis density of an RFS     is a density function            on single objects 
          which is defined by:  
 
 

where the number            is the density of objects at x. 
  
• Cardinality Distribution    
The cardinality distribution of an RFS              is   
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Example: Multi-Bernoulli RFS 

• Consider a simple example, where the RFS is represented by two random objects with 
respective PDFs                      and the corresponding probability of existence                 . 
Then, the MPDF can be expressed by 
 
 
 

 

Then the combined PHD can be expressed by  
 
Assume that these two 2-D PDFs are expressed by  
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Example: Multi-Bernoulli RFS 

• The two 2-D PDFs are plotted below: 
 
 
 
 
 
 
 

• The combined PHD is  
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Example: Poisson RFS 

• Assume the locations of targets in a work space                                               are described 
by a Poisson RFS      with a initial PHD          . The expected number of target in the work 
space is equal to 5, such as 
 

 
where the target location                                        and the initial PHD           is defined by 
 
 
 
where a is a normalization term.  
 
The PDFs of targets are identical and can be expressed by 
 
 
and the MPDF of the targets in the work space is expressed by  
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Example: Poisson RFS 

(a) 4 Agents                                          (b) 5 agents                                    (c) 7 agents 16 

Three different realizations  of the same RFS 
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n Three samples of RFS     are plotted below: 

• The cardinality distribution is a Poisson 
distribution 

 
• The numbers of targets in the work space are 

4, 5, and 7, respectively. 
• The Poisson RFS is special case of the i.i.d.c. 

RFS, where the cardinality distribution is a 
Poisson distribution. 
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DOC Theory and Analysis via FISST 

 By introducing the FISST framework in DOC, a RFS        can represent the macroscopic state 
and can be used to describe the network, where the finite set of the states of all n agents in the 
ROI,                        , is treated as a realization of the RFS     .  
 
• The microscopic states of these agents can treated as continuous random variables 
denoted by     ,               .   
• The number of agents, n, is also a realization of the discrete random variable N.  

 
Assume that the macroscopic state is a identical,independently distributed cluster (i.i.d.c) 
RFS, where PDFs of the agents are assume to be the same, denoted by         . Then, the MPDF 
of the RFS,     , can be expressed by 
 
 
The expected number of the agents denoted by        can be expressed by 
 
 
and the PHD of the RFS can be expressed by  
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DOC Results: Number of Assets 

In the DOC method, the number of the agents,         , is a constant. The cardinality 
distribution can be expressed by 
 
 
 

Then, the MPDF in the DOC problem can be expressed by 
 
 
 
and the PHD of the agents can be expressed by  
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Information Value with Limited 
Communications 
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Information Value Analysis 
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The Expected Entropy Reduction (EER) of a measurement set Z at location x at time 
k can be defined as the following: 
 
 
 
The Total Expected Entropy Reduction (Total EER) can be defined for the system of 
robots as: 
 
 
 
The Average Total EER can be defined for the system of robots as: 

    : measurement at 
location x at time k  
     : binary categorical 
random variable    
      : set of all previous 
measurements up to time 
k 
    : vector of 
environmental 
conditions 

k

λ

kZ

Y

Total number of agents N 
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Influence of Limited Communications 

  Consider the problem of searching and information about targets and 
environments (DCLT)   

  A network of sensors can provide better performance than a single agent 
provided they can communicate 

Probability of 
O
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Resulting Hilbert Map 

y 
(k

m
) 

x (km) 

Obstacle 

Disconnected communication graphs 

y 
(k

m
) 

Full 
Communications 

Partial Communications 
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Information Value as a Function of 
Network Connectivity 

Numerical Results: 
Total and average expected entropy reduction (EER) for a network of  N = 200 vehicles 
with varying communication abilities (% of agents). 

5% 10% 

50% 80% 100% 



The Average Total EER can be fit to a one-component exponential function 
 
 
 
By taking its derivative, the Average Total EER rate of the system can be obtained 
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Preliminary Results 
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Multi-scale Environmental Adaptation 



Multi-Scale Adaptive DOC 
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Optimal value function V*: 

Value-Determination Operation: 
 

• Adaptive distributed optimal control: 
   - Agents make decisions based on in situ conditions and environment information 
  - Value function V, defined in terms of discrete agent distribution ℘k, Hilbert map hk at time  
k and control law C(℘k): 
 

   
• Control law Cl and Value function Vl are iteratively improved online, where l is the iteration 
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Simulation Results 

h1 h2 h3 
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Multi-scale Adaptive Optimal Control: 

Recurrent relations for policy improvement and value iteration 

Decentralized Hilbert mapping for information fusion 

Communication protocols for efficient map-information spreading  

FISST analysis of DOC approach 

  Performance analysis: connectivity influence on information value 

  Environmental adaptation: adaptive value function 

Future Work: 

Stability analysis in the presence of delayed information propagation 

  Environmental adaptation: optimize agent density over time 

Robustness and performance analysis 

Summary and Conclusions 
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Thank you 
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Motivation: Multi-scale Adaptive Control 
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A-priori obstacle information Actual in situ obstacles 

Obstacle 

• Environmental and operating conditions in situ may drastically differ those used a priori 
– Off-line DOC solutions no longer optimal 
– Agents must react to local information, including new tactical constraints 
– Network-level controller can dispatch agents to localize gradient intensification while 
providing energy management, volume coverage, and robustness to component failure 



• UUV kinematics: 
 
 
 
 
 

 

• Full, nonlinear dynamics 

• Robot state: 

 

•Robot Control: 
 

Motivation: Oceanographic Conditions 
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vB : measured velocity 
νcx, νcy: measured ocean current x 
and y velocities 
gθ , gψ : control gains 

Inertial position Pitch and yaw Euler angles 
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A-priori current estimates: 

Actual currents: 



Problem Formulation 

2RW ⊂
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Agent 
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ith Agent 

• Region of Interest             :  
• Fixed, unknown, rigid obstacles, Bi , i=1,…,r 
• N agents 

Mission Goal: Collectively explore and map obstacles and currents in a region of 
interest W while obtaining decentralized sensor measurements, avoiding obstacles, and 
communicating with other agents and a central station. 



• Noisy sensor measurements: 
 
 
 

•Y is a random and binary 
classification variable: 

 
 

 

On-board Sensor Measurements 

• Sensor can infer classification     within sensor range and construct   Ŷ m
jji yD },{x=

Hit/Occupied 
Miss/Not Occupied 

Maximum Sensor Range 
dmax Sensor readings 

Obstacle 
B 
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Θ = θ + υ : Angle measurement 
ν ~ N(0,σd): Sample from normal distribution 
υ ~ N(0, σθ): Sample from normal distribution 
                                   : radial unit vector 
       : unit vectors of basis in FA 
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•        : Information gain 
• Y, Z: hidden discrete random variables 
• M: set of all prior measurements 
• λ: environmental condition parameters 
• U(xi): obstacle repulsion potential 
• R: control weight matrix 

On-board Sensing and Communications 

• Sensing goal: maximize information gain of 
future measurements to minimize uncertainty 
• Mission constraints: 
  Bounded sensor FOV range, R  
  Bounded communication range, Rc 
• Multiobjective Cost Function: 
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Bayesian measurement model: 
 

),|( λYZp



An Illustrative DOC Example 
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Value Function Approximation  
Consider the training data set                                 and the testing data set 
The training and the testing data sets are all generated by the same control law        . The 
goal of  value function approximation is to approximate an operator             from the 
training data set       and predict the evaluation of the value function in the testing data set         
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First, consider that the Hilbert map function       is fixed. Then, the approximation of the 
value function can be expressed by 
 
 
To learn the operator, a new kernel least squares temporal difference (KLSTD) algorithm is 
proposed based on a functional kernel, which is defined as follows: 
 
 
 
 
where the inner product is defined by  
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Value Function Approximation  
Let                        denote the kernel feature map and                                         denote the 
feature matrix. Then, according to the KLSTD algorithm, the value function               is 
approximated by 
 
Here, 
 
 
 
 
and 
 
Therefore,  the approximated value function can be expressed by  
 
 
where 
Furthermore, if the Hilbert map       is varying, then the approximated value function with 
two function arguments can be expressed by 
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Simulation Results 

Actual environment Idea environment 

• The environment is approximated 
by Hilbert map h. 

• The Hilbert map is updated by the 
new measurements obtained by a 
group of agents 

• The idea environment is assumed 
to be known in advance. 

• The trajectory of optimal agent 
distributions,                               ,                                 
is obtained by the DOC method.  

( ),  1,...,600k k℘ =



Simulation Results 
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