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» Existing methods for optimal control problems of switched systems:
= Parametric optimization (PO) methods

= Two stage (TS) methods
[ Difficulties associated with PO and TS

= Off-line (PO, TS)
= Switching sequence is given (PO)

» Existing methods for adaptive optimal control:

= Markov decision process (MDP)
= Model predictive control (MPC)
= Approximate dynamic programming (ADP)

» ADP
v ADP algorithm adapts controllers to the uncertainty of system modeling
v ADP algorithm learns optimal controllers from observations
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» ADP For Continuous Systems
Wei, 13] Infinite horizon [Wang, 12] Finite horizon

Vrabie, 11; Vamvoudakis, 11] Zero-sum games
Lewes, 11; Wang, 12] Optimal tracking control

[Bertsekas, 8; Wang, 02] Nonlinear stochastic dynamic systems

[ Tamimi, 08; Wei, 13; Wang, 12] Convergence of ADP algorithms
» Missing: ADP for hybrid systems involving both discrete and
continuous variables

» Objective:

= Hybrid-ADP approach: learn both continuous controllers

and discrete controllers online from state observations
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Two distinct power sources
1. Internal combustion engine
2. Electric motor

* Battery

Charger

Fuel
Storage

Lightweighting—
Materials

Embedded CPU Unit

Continuous control:
percentages of gas and brake pedals

Discrete control:
power modes

Power Electronics

| Electric
Motor

b Radiator




“YLisc  Application Example: Control of Pulse-width
Seeeones  Modulation (PWM) Converter

PWM-Driven Boost Converter .
Continuous control:

. 3 (t)l\ Source voltage e, (t)
Y YN 0

\ Discrete control:
transistor | Input signal () to a
single pole changeover

) u(t) = e(t) T |®

e {t) : source voltage /

e.(t) : output voltage

*Z. Sun and S. Ge, “Switched Linear Systems: Control and Design”, Springer, 2005
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Problem Formulation and Assumptions

The continuous state: x(t) e R"
The discrete mode: E)eéE={1,..,E}

The continuous control:  w,(t) € U, c R™, Vv € &

The discrete control: v(t) € &

» Switched system dynamics:

X(t) = feey[x(2), u, (0)] u,(t) =c,[x(t),t],vveE
E(ty) =v(t) v(t) = a[x(t),¢(t), t]

» Assumptions:

= Each switch is fully controlled by v(t) and its cost is zero;

= System state 1s observed without error.
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» Optimal control of switched systems
Find optimal continuous state control u,(t),

discrete switching control v(t) ,

continuous controllers ¢, (x,t) ,

discrete controller a(x,¢,t) , for

tl+1

min J £ [X(tf)] + 2-]; Ly [X(T),HV(T)(T)]CZT

i(+)

subject to,
X(t) = fe e,y [x(8), uy ()]

E(ty) = v(t)

» Sequence of the switching instants, {t{, ... t;, ... }, 1s controlled by
discrete controller a(x, ¢, t).




Solution: Hybrid Approximate
dynamic Programming
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> Let:
= optimal continuous controller: ¢y [x(t),t]
= optimal discrete controller: a*[x(t),<¢(t),t]

» For an initial condition X,
= optimal switching instant sequence:  {tj,...t;, ...}
= optimal switching mode sequence: { 0,61, - &)}

» Bellman’s equation [Bellman, 1960]:

ti+1

VIx*(0), §° (), t] = VI[x" (741 ), &7 (41 ) it ] +j Ly [x*(7), wy- (D) ]d7

t
=  Discretize time horizon into N small intervals

VK 0,6 (0, K] = VT G+ 1,6 G+ D,k + 10+ 2 £ 00, 03 ()]

V*[x*(k), & (k), k] = V*[x*(k + 1), & (k + 1),k + 1] + L. [x* (1), ul- ()]

@D
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» Optimality conditions

oV [x*(k+1),&(k+ 1),k + 1]jox*(k+ 1)
ax*(k + 1) ouy,. (k)
oL [x* (1), w)-(1)]
ou). (k)
= (Convexity condition:
02V [x*(k+1),&*(k + 1),k +1] 02LN[x* (1), u}-(7)]

=0

>0

_I_
du’s (k) du’s (k)

» Costate vector approximated by critic:
ov*[x*(k),§"(k), k]
ox*(k)

A [x*(k), & (k) k] =
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» Critic recurrence relationship:
A [x*(k), $*(k), k]
_ 0Ly [x (), wy ()] | 0Ly [x” (), wy- (R)] O [x(k), k]
ox* (k) ou), (k) ox* (k)

e , ox*(k+1)
+ A [x*"(k+1),&(k+1),k+ 1] 3% (0

ox*(k + 1) dc-[x(k), k]

+ A" |x*"(k+1),&(k+1),k+1]

ou. (k) ox* (k)

» Critic boundary condition:

dp[x(k)]
0x

A [x*(N),$*(N),N] =
k=N
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> At switching instant t; € {t7,...t;, ...},

VEIx* (), &, 1=V [x (8, ) S 6

» Transversalilty condition for critic,
_ V)& ] VX, ) St
ax*(tg") ax*(ti*+)

A[x7(g), &t =

=X [X*(tlfk+)’ €£k+1' t2k+]
» Optimality condition for discrete control,

v*(k) =argmvin{Lv x*(k),u;, (k)] +
Ax*(k+1),&(k+ 1), k+ 1]f,[x"(k),u;,(k)]}
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NN f (wj ) : neural network approximating A[x(t), €, t] under the mode &

NN} (w}) : neural network approximating c, [x(t), t] under the mode v
. (;ritic networks adaption

Aw/1 {
oLy [x(k),u, (k)] oLY[x(k),u, (k)] dc,[x(k), k]
=1 Alx(), §(k), k] = ax(k) T ouy (k) ox(k)

ox(k + 1)

ox(k)
ox(k + 1)oc,[x(k), k] 04

ou, (k) ox(k) 0w, }

—Alx(k+1),8(k+1),k+1]

—Alx(k+1),8(k+1),k+1]

= Control networks adaption

oV[x(k+ 1),k + 1),k + 1] 0x(k + 1) B oLN[x(k),u, (k)] dc,

vV — _
awy = —{ ox(k + 1) u, (k) au, (k) ow?
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» Switched Linear Time Invariant (LTI) Model:

= @Gasoline-driven power system
@) =1

A1 = [—01 —11] B, = [(1)]

= Electricity-driven power system
X(t) == A2X(t) + Bzuz (t)
§(t) =2

Az = [—01 —(1).5] BZZ[O(.)BI
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» Objective function:

ty
J=x"Prx + J x'Q,x + u/R,u,dt
0

711500 —1500

R, =400 = 1-1500 3000

» Terminal time tf = 5 (s)

» Initial condition X,

» A test problem with an exact numerical solution
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» Switched Differential Riccati Equation (SDRE) of switched
linear quadratic optimal control problems [Riedinger, 1999]

P=-PA, - ATP-Q, + PB,R; B[P
v(t) = argmin, x' (t)Pf,[x(t),u, ()] + L, [x(t),u,(t)]
Subject to, P(tf) = P;

x(0) = x,

» Solving SDRE backward by giving x(t¢) and P(tf)

x(tf) = [0 0.001]".
Exact numerical

Optimal control history solution

Optimal state trajectory

Test problem
x(0) = [0.5596 —0.6387]" o

formulation




Yl Lisc

e Optimal System State Trajectory

SYSTEMS AND CONTROLS




-‘T‘
@LISC Parameters and Neural Networks
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» Two controller networks N Nf and two critic networks NN/, (&,v=1,2)
= 2 hidden layers
= hyperbolic tangent sigmoid function
= 30 neurons on each layer of critic networks
= 10 neurons on each layer of control networks
" Jearning raten = € = 0.01

» Simulation parameters:
* Time step size: 0.05 (s)

» Simulation cycle
= t:0 - tf
= when t = tg, set t=0 and x(0) = [0.5596 —0.6387]"




@"'SC Results of ADP Hybrid Car Control

SYSTEMS AND CONTROLS

Value of objective function Comparisons between trajectories
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= An ADP approach for hybrid systems (hybrid-ADP) that seeks to
determine the optimal continuous controller and discrete controller
via online learning

= Recursive relationships for hybrid-ADP applicable to switched hybrid
systems that are possibly nonlinear

=" Demonstration on a switched, linear hybrid system with a quadratic
cost function, which exists an exact numerical solution from solving a
switched differential Riccati equation.
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