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Introduction and Motivation

• Modern Sensor Systems – multiple sensors installed on mobile platforms

- landmine detection and identification

- ambient intelligence, monitoring of urban environments, search & rescue

• Traditional paradigm: sensor information is used as feedback to sensors in 
order to support the sensor navigation. 

• New paradigm: sensors’ motion is planned considering the expected utility 
of future measurement process, to support one or more sensing objectives

• Research Emphasis: Geometric aerial robotic sensor path planning

-- Address couplings between sensor measurements and sensor dynamics

-- Optimize sensing objectives (e.g., detection, classification, tracking.)



Motivation: Applications of Sensor Path 
Planning

• Applications: landmine detection, sensor networks for monitoring 
endangered species

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell Decomposition,” IEEE Transactions on 
Systems, Man, and Cybernetics - Part B, Vol. 39, No. 2, 2009.

M. Qian and S. Ferrari, “Probabilistic deployment for multiple sensor systems,” Proc. SPIE, 2005
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Problem Formulation: Aerial Robotic 
Sensor Path Planning
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Problem Formulation: Aerial Robotic 
Sensor Dynamics
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• Motion dynamics

P ∈ ℝ3: position of center gravity

w ∈ ℝ3: angular speed (body frame)

R ∈ ℝ3×3: rotation matrix(body→inertial)

M ∈ ℝ>0: mass

J ∈ ℝ3×3: inertia matrix

𝜇𝜇𝑓𝑓 ∈ ℝ≥0: control force

𝛍𝛍𝜏𝜏 ∈ ℝ3: control torque vector
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Information Value

Conditional mutual information

Conditional entropy

Information Benefit to have Zi I(X;Y|z)H(X|Y,z) H(Y|X,z)

H(X|z) H(Y|z)

( ) ( ) log ( )
x

H X p x p x
∈

= −∑
X

Entropy

M. Cover and J. Thomas, Elements of Information Theory, 1991

𝐻𝐻 𝑋𝑋 𝑍𝑍𝑖𝑖 = �
𝑧𝑧𝑖𝑖∈𝒵𝒵

𝑝𝑝 𝑧𝑧𝑖𝑖 𝐻𝐻 𝑋𝑋 𝑧𝑧𝑖𝑖

𝐼𝐼 𝑋𝑋;𝑍𝑍𝑖𝑖 𝜆𝜆 = 𝐻𝐻 𝑋𝑋 𝜆𝜆 − 𝐻𝐻 𝑋𝑋 𝑍𝑍𝑖𝑖 , 𝜆𝜆

𝑉𝑉 𝑍𝑍𝑖𝑖 = 𝐼𝐼(𝑋𝑋;𝑍𝑍𝑖𝑖|𝜆𝜆)

𝐼𝐼(𝑋𝑋;𝑍𝑍𝑖𝑖|𝜆𝜆)𝐻𝐻 𝑋𝑋 𝑍𝑍𝑖𝑖 , 𝜆𝜆 𝐻𝐻 𝑍𝑍𝑖𝑖 𝑋𝑋, 𝜆𝜆

𝐻𝐻 𝑋𝑋 𝜆𝜆 𝐻𝐻 𝑍𝑍𝑖𝑖 𝜆𝜆



Hybrid Controller

Cascade control**

Information potential*

**R. Naldi, M. Furci, “Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm”, 
IEEE Conference on Decision and Control, 2013

*W. Lu, G. Zhang, and S. Ferrari, “An Information Potential Approach to Integrated Sensor Path Planning and Control” IEEE 
Transaction on Robotics, to appear

Low level 
controller

Mode planner
High level controller

References
Control input

Configuration
References

UAV simulatorControl input
Configuration



Information Potential Field Construction

Novel attractive potential
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*W. Lu, G. Zhang, and S. Ferrari, “An Information Potential Approach to Integrated Sensor Path Planning and Control” IEEE 
Transaction on Robotics, to appear



Connection Between IRD and Potential 
Field Methods

When the robotic sensor is at a local minimum, randomly generate milestones 
in surrounding subspace

Milestones distribution

A function of the potential at q, , is used to measure the probability









∉

∈
= ∫ −

−

A

A
de

e

f
A

U

U

q

q
qq q

q

if0

if
)( )(

)(

)(qUe−

of sampling a milestone at q.



Escaping Local Minima by IRD method

The milestones are connected to the local minimum to construct the roadmap

A path from the local minimum to a milestone with lower potential than 
the potential at the local minimum is found.



High Level Control and Low Level Control

High Level Control:
1. Fix time step as 𝑑𝑑𝑑𝑑,

Low Level Cascade Control*:
1. Position Control Law
2. Attitude Control Law

*R. Naldi, M. Furci, “Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm”, 
IEEE Conference on Decision and Control, 2013

2. Information Potential
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Result: One Sensor

One robotic sensor
𝑛𝑛 targets with same 𝑉𝑉𝑖𝑖
𝑚𝑚 fixed obstacles 
𝑟𝑟 moving obstacles
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Result: Two Sensors

𝑉𝑉 𝑍𝑍𝑖𝑖

Rwide

Rpricise

𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 = 3.67
𝑉𝑉𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑖𝑖𝑝𝑝𝑤𝑤 = 0.35
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First sensor ( Rwide ): Range [1, 256], white Gaussian noise of 𝜎𝜎 = 5

Second sensor ( Rprecise ): Range [5, 25], white Gaussian noise of 𝜎𝜎 = 0.1

One target:
𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑖𝑖 = 1

256
, 𝑥𝑥𝑖𝑖 ∈ 1,2,⋯ , 256



Result: Two Sensors

𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑖𝑖

After Rwide senses the target,

𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 = 0,
𝑉𝑉𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑖𝑖𝑝𝑝𝑤𝑤 > 0
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Conclusions

• Hybrid controller for aerial robotic sensor path planning 
• Information potential and reference model are integrated to design high 

level controller
• Cascade controller navigates sensor along reference trajectories
• Maximizing classification performance.
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