

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS Information Driven Path Planning and Control for Collaborative Aerial Robotic Sensor Using Artificial Potential Functions

> W. Lu and S. Ferrari Mechanical Engineering and Materials Science Duke University

A.C. Bellini and R.Naldi Computer Science and Engineering Univerisity of Bologna, Italy

American Control Conference Portland (OR), June 3-6, 2014

- Introduction and Motivation
- Problem Formulation : Aerial Robotic Sensor Path Planning
- Methodology: Hybrid Controller
 - Measurement Utility, Information Value
 - Information Potential Field Method
 - High Level and Low Level Controller
- Results
 - Signal Sensor
 - Multiple Sensors
- Conclusion and Recommendations

Introduction and Motivation

- Modern Sensor Systems multiple sensors installed on mobile platforms
 - landmine detection and identification
 - ambient intelligence, monitoring of urban environments, search & rescue
- Traditional paradigm: sensor information is used as feedback to sensors in order to support the sensor navigation.
- <u>New paradigm:</u> sensors' motion is planned considering the expected utility of future measurement process, to support one or more sensing objectives
- Research Emphasis: Geometric aerial robotic sensor path planning
 - -- Address couplings between sensor measurements and sensor dynamics
 - -- Optimize sensing objectives (e.g., detection, classification, tracking.)

Motivation: Applications of Sensor Path Planning

• Applications: landmine detection, sensor networks for monitoring endangered species

M. Qian and S. Ferrari, "Probabilistic deployment for multiple sensor systems," Proc. SPIE, 2005 C. Cai and S. Ferrari, "Information-Driven Sensor Path Planning by Approximate Cell Decomposition," IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 2, 2009.

Problem Formulation

Problem Formulation: Aerial Robotic Sensor Path Planning

Given workpace $\mathcal{W} \subset \mathbb{R}^3$, where *r* robotic sensor plaftorms $A = \{\mathcal{A}_1, \dots, \mathcal{A}_r\} \subset \mathcal{W}$ with sensor FOV $S = \{S_1, \dots, S_r\} \subset \mathcal{W}$, *n* fixed obstacles $B = \{\mathcal{B}_1, \dots, \mathcal{B}_n\} \subset \mathcal{W}$ *m* fixed targets $T = \{\mathcal{T}_1, \dots, \mathcal{T}_m\} \subset \mathcal{W}$

State $\mathbf{q}_i = [x_i \ y_i \ z_i \ \theta_i]^T$

Purpose:

Problem Formulation: Aerial Robotic Sensor Dynamics

• Motion dynamics

$$M\ddot{\mathbf{P}} = -\mu_f \mathbf{R}\mathbf{e}_3 + Mg\mathbf{e}_3$$
$$\dot{\mathbf{R}} = \mathbf{R}\mathbf{S}(\mathbf{w})$$
$$J\dot{\mathbf{w}} = \mathbf{S}(J\mathbf{w})\mathbf{w} + \mu_{\tau}$$

$$\mathbf{P} = [x_i \ y_i \ z_i]$$
$$\mathbf{w} = [\mathbf{w}_x \ \mathbf{w}_y \ \mathbf{w}_z]$$
$$\mathbf{e}_3 = [\mathbf{0} \ \mathbf{0} \ \mathbf{1}]^T$$
$$\mathbf{S}([x_1 \ x_2 \ x_3]^T)$$
$$= \begin{bmatrix} 0 & -x_3 & x_2\\ x_3 & 0 & -x_1\\ -x_2 & x_1 & 0 \end{bmatrix}$$

P ∈ ℝ³: position of center gravityw ∈ ℝ³: angular speed (body frame)R ∈ ℝ^{3×3}: rotation matrix(body→inertial)M ∈ ℝ_{>0}: massJ ∈ ℝ^{3×3}: inertia matrixμ_f ∈ ℝ_{≥0}: control forceμ_τ ∈ ℝ³: control torque vector

Entropy
$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

Conditional entropy
$$H(X|Z_i) = \sum_{z_i \in \mathbb{Z}} p(z_i)H(X|z_i)$$

Conditional mutual information

 $I(X; Z_i | \lambda) = H(X | \lambda) - H(X | Z_i, \lambda)$

Information Benefit to have Z_i $V(Z_i) = I(X; Z_i | \lambda)$

M. Cover and J. Thomas, Elements of Information Theory, 1991

Hybrid Controller

*W. Lu, G. Zhang, and S. Ferrari, "An Information Potential Approach to Integrated Sensor Path Planning and Control" IEEE Transaction on Robotics, to appear

**R. Naldi, M. Furci, "Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm", IEEE Conference on Decision and Control, 2013

Information Potential Field Construction

Potential at q

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Novel attractive potential the *i*th target

$$U(\mathbf{q}) = U(\mathbf{q})_{rep} + U(\mathbf{q})_{att}$$

$$U_i(\mathbf{q})_{att} = \eta_2 \sigma V_i^a (1 - e^{-\frac{\rho_i^t(\mathbf{q})^2}{2\sigma V_i^a}})$$

Total attractive potential

$$U(\mathbf{q})_{att} = \prod_{i=1}^{m} U_i(\mathbf{q})_{att}$$

Repulsive potential
of the *i*th obstacle
$$U_{i}(\mathbf{q})_{rep} = \begin{cases} \frac{1}{2} \eta_{1} \left(\frac{1}{\rho_{i}^{b}(\mathbf{q})} - \frac{1}{\rho_{0}} \right)^{2} U(\mathbf{q})_{att} & \text{if } \rho_{i}^{b}(\mathbf{q}) \leq \rho_{0} \\ 0 & \text{if } \rho_{i}^{b}(\mathbf{q}) > \rho_{0} \end{cases}$$
Potential between two
robotic sensors
$$U_{rk}^{j}(\mathbf{q}) = \begin{cases} \frac{1}{2} \eta_{3} \left(\frac{1}{\rho_{jk}^{r}(\mathbf{q})} - \frac{1}{\rho_{0}} \right)^{2} U(\mathbf{q})_{att} & \text{if } \rho_{jk}^{r}(\mathbf{q}) \leq \rho_{0} \\ 0 & \text{if } \rho_{jk}^{r}(\mathbf{q}) > \rho_{0} \end{cases}$$
Total repulsive potential
$$U(\mathbf{q})_{rep} = \sum_{i=1}^{n} U_{i}(\mathbf{q})_{rep}$$

*W. Lu, G. Zhang, and S. Ferrari, "An Information Potential Approach to Integrated Sensor Path Planning and Control" IEEE Transaction on Robotics, to appear

Connection Between IRD and Potential Field Methods

When the robotic sensor is at a local minimum, randomly generate milestones in surrounding subspace

Milestones distribution

$$f(\mathbf{q}) = \begin{cases} \frac{e^{-U(\mathbf{q})}}{\int e^{-U(\mathbf{q})} d\mathbf{q}} & \text{if } \mathbf{q} \in A \\ 0 & \text{if } \mathbf{q} \notin A \end{cases}$$

A function of the potential at \mathbf{q} , $e^{-U(\mathbf{q})}$, is used to measure the probability of sampling a milestone at \mathbf{q} .

Escaping Local Minima by IRD method

The milestones are connected to the local minimum to construct the roadmap

A path from the local minimum to a milestone with lower potential than the potential at the local minimum is found.

High Level Control and Low Level Control

2. Attitude Control Law

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

*R. Naldi, M. Furci, "Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm", IEEE Conference on Decision and Control, 2013

Result: One Sensor

One robotic sensor n targets with same V_i m fixed obstacles r moving obstacles

First sensor (R_{wide}): Range [1, 256], white Gaussian noise of $\sigma = 5$

Second sensor ($R_{precise}$): Range [5, 25], white Gaussian noise of $\sigma = 0.1$

Result: Two Sensors

After R_{wide} senses the target,

Conclusions

- Hybrid controller for aerial robotic sensor path planning
- Information potential and reference model are integrated to design high level controller
- Cascade controller navigates sensor along reference trajectories
- Maximizing classification performance.

Acknowledgement

- This work was supported by the National Science Foundation under grant
- ECCS 1028506 and the FP7 European project SHERPA (IP 600958).

