
Multiscale Adaptive Sensor Systems 

Silvia Ferrari  

Sibley School of Mechanical and Aerospace Engineering 
Cornell University 

 
ONR Maritime Sensing D&I Review 

Naval Surface Warfare Center, Carderock 9 - 11 August 2016 



• Sensor planning: control reconfigurable sensors for collaborative 
gather information in contested communication environments   
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{ Security surveillance task { Search and Rescue  

[2] 

[1] http://www.ibtimes.co.uk/africa-safari-drones-remote-controlled-buggies-capture-intimate-wildlife-shots-photos-1524742 
[2] http://dowley.com/Services/VideoSurveillance/tabid/91/Default.aspx 
[3] http://cadet63.rssing.com/chan-9332332/all_p12.html 

{ Tracking endangered species 
[1] 



• Information-driven sensor planning 

{ Information value comparison [Polcari 13, Kastella 97, ... ] 

{ Cell decomposition [Cai 09, Paull 10, Ferrari 09, 12, ... ] 

{ Probability road maps and trees [Zhang 09, Lu 10, 12, 14, ... ] 

{ Graphical model [Krause 06, 10, 12, Singh 09, Guestrin 05,       
                                       Meliou 07, Srinivas 12, Le Ny 09, ... ] 

{ Advantage: 
a. Represent information value of measurements for 

improving the target model 
b. Can be calculated before measurements are obtained 

{ Disadvantage: 
a. Can only be applied when target models are known 
b. Assumptions too restricted: stationary target; discrete and 

finite control space; unbounded sensor field of view; 
unconstrained sensor dynamics, ...  
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Literature Review 



Problem Formulation 
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sensor 

Assumptions 
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Problem Formulation 



Example 
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Information Sufficiency 
Motivation: Develop planning and control algorithms for collaborative networks with 
intermittent communications  
 Existing decentralized optimization methods assume constant communications 
(network is a connected graph) or detailed prior information (perfect models) 
 Consider networks in which some or all nodes (agents) may be disconnected some of 
the time, and there is no or little prior information (high uncertainty) 
 Agents aim to construct probabilistic model from data 
 Disconnected agents can determine when their own local information is insufficient, 
and it is time to reestablish communications 

Model a spatial phenomenon:  
 
• Max temperature over a 2D ROI 
 
• Time invariant 
• Observable at a set of target locations: 
 

T(°F) 



Robot Navigation 
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Traffic Planning Env. Monitor 

1: http://acl.mit.edu/projects/cbba.html 
2: http://www.caliper.com/transcad/applicationmodules.htm 

3: http://www.societyofrobots.com/robotforum/index.php?topic=16714.0 
4: PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created March 2016. 

Applications 

Animal Tracking 



Estimation of spatial phenomenon: 
•  
• Measurements: f(x) ~ Gaussian process 
Gaussian process: 
 f(x) ~ GP(µ(x), ψ(x1,x2)); µ(x) = E[f(x)]  
 ψ(x1, x2) = E[( f(x1) – µ(x1) )( f(x2) – µ(x2) )]  
Planning objective: at time k choose locations and measurements {yk,zk} to maximize, 
 
where,  
XT = [x1 |  ⋅⋅⋅  | xr], xi∈ T, i = 1 , …, r ; Yk = [y1 | ⋅⋅⋅ | yk]; Zk  = [z1 | ⋅⋅⋅ | zk] 
  
 
 

Model and Information Value 

estimation  

Since zk is unknown, optimize expected discrimination gain (EDG): 



Methodology 
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Sensor Planning Framework 
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GP Regression 

Training input Test input 

Training output 

Test output 
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GP Regression Example 

• Example:  

Fig. Ground truth Fig. GP regression result 
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GP Target Kinematics Model 
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{ Equivalently: single multi-output GP with diagonal 

covariance matrix function   

: Target trajectory 
: Target initial position 



16 

GP Information Value 
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GP-EKLD 

where  
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DPGP-EKLD 



DPGP Particle Filter 
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{ Time update 

{ Measurement update 

Target 

Sample of  
target state 

Gaussian  
distribution 

FOV 
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DPGP-EKLD Approximation 
Gaussian  
distribution 



Methodology Part III: 
Sensor Planning Algorithms 

Sensor  System Target  Model 

Information Value Optimal  Planner 

Measurements 
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• DPGP-EKLD approximation: 

Optimize DPGP-EKLD 

• Sweep line algorithm: 

FOV 

• DPGP-EKLD optimization without sensor dynamics constraints 

segment tree 
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Incorporate Sensor Dynamics 

• Linear sensor dynamics with constraints: 
• DPGP-EKLD optimization with sensor dynamics constraints 

• Reward for observing j th target that follows i th VF: 

• Lower bound:  

• Multiple objective optimization 

FOV 

x (m) y (m) 



• Objectives can be ordered by relative importance 
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Lexicographic Algorithm 

reorder 

• Remaining iterations: Additional constraints: 
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pt = 1 

 Let Σ denote the covariance matrix and Ψ(x, y) denote the cross-covariance matrix, 
then the GP average generalization error (AGE), 
 
 
represent a measure of GP performance. 

 

 
 

 
 
 

 

Nominal Network Performance 
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 From the latest GP, the posterior covariance, and the network nominal AGE can be 
estimated from an assumed probability distribution for future measurement locations, 
and an assumed probability of detection pt 



AGE Communications 
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Communication Control 
 
  
 
 
 
 
 
 
 Approximate nominal average generalization error (AGE) from latest GP 



(a) 

 
  
 
 
 
 
 
 
 Approximate nominal average generalization error (AGE) from latest GP    
 Local GP (GPL) computation 

 GPL is updated using local measurements (obtained by robot i) 
 Actual AGE is calculated from the local covariance function.  
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Communication Control 
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 Approximate nominal average generalization error (AGE) from latest GP    
 Local GP (GPL) computation 
 Communication time: at the nth time step, the ith robot communicates if 

 
 

 
 where,     is predefined performance threshold. γ

Communication Control 



(a) 

 

(a) 
 

Random Policy 

 
 

Sensor 

 

 
Nominal 

GP 

 

 
Buffer 

 

Communication 
 Control 

 
Sender 

 
 

Local GP 

 
 

Receiver 

 

)(i
nx

iRobot _

Environment 

18 

 
  
 
 
 
 
 
 
 Approximate nominal average generalization error (AGE) from latest GP    
 Local GP (GPL) computation 
 Communication time 
 Information sharing: all new measurements are communicated and used to 

update the robot GP 

Communication Control 
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Communication Control 
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Simulation Results 
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W4 

W2 W1 

W3 

Modeling of a spatial phenomenon, g(x), by four robots with disjoint workspaces: 
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Conclusions 

• Conclusion 

{ Developed novel information theoretic functions for GP models of 
distributed spatio-temporal processes 

{ Developed information-theoretic sensor planning algorithms for 
distributed networks with bounded fields of view 

{ Developed AGE method for monitoring information sufficiency and 
schedule communications 

• Future work 

{ Extend information theoretic functions to partially observable targets 

{ Extend information theoretic functions to decentralized control 

{ Develop multiscale adaptive planners to uncertain environments 

 

 



Thank you! 
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