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Satisficing in Humans and Primates 

 Bounded rationality 

 Accessing stored solutions 

 Satisficing strategies for information gathering  

 Ecological rationality – adaptive decision-making and heuristics 

 

Satisficing Decision Strategies 

 Noisy and incomplete information 

 Insufficient intelligence 

 Time pressure 

 Utility cannot be maximized 

 Consequences and probabilities may not be learned 

Introduction and Motivation 

Treasure 

Hunt 



3 

Technical Accomplishments – Year 1 

 Demonstrated systematic framework for biophysical modeling of 

satisficing strategies for inferential decision making 

 Developed graphical model (BN) formulation of passive satisficing 

search problems  

 Demonstrated integrated approach to multidisciplinary human studies 

and experiments via online crowdsourcing (www.mturk.com) 

 Completed human and non-human primate (NHP) behavioral studies 

on passive satisficing task 

 Developed satisficing strategies for passive search problems with 

time pressure / limited data / incomplete probabilistic model 

 Developed human-inspired anytime BN learning algorithm 

 Tested BN learning algorithm with empirical and virtual datasets 
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Technical Accomplishments – Year 2 

 Developed a graphical model formulation and Webot software 

environment for active and dynamic satisficing search problems  

 Started to establish the biophysical basis of satisficing using fMRI in 

humans and single neuron recordings in NHPs 

 Developed adaptive evidence accumulation (AEA) algorithm for 

satisficing decision making under time pressure and with limited data 

 Tested and demonstrated AEA effectiveness on empirical and virtual 

benchmark datasets 

Outcomes and Deliverables: 

 Two journal manuscripts in preparation/review 

 Three conference abstracts 

 Immersive environment Webot-based software 
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Approach 



Approach: Biophysical Modeling 

Experiments: 

I. Behavioral Studies 

II. Human (fMRI) Neuro-imaging and –stimulation Studies 

III. Non-human Primates Neural Recording Studies 

figure from Jiang & Egner, 2014 

Mathematical Modeling 

of Problem Formulation 

Human/Non-human  

Task Design and Simulation 

Mathematical Modeling 

of Satisficing Strategies 

Human/Non-human  

Satisficing Experiments 



Satisficing Tasks and Experiments 

1. Passive Satisficing 

Learn and apply predictive information from given cues 

2. Active Satisficing 

Active information gathering and decision making 

 Limited information 

 Time pressure 

 Cue redundancy 



Satisficing Tasks and Experiments 

3. Immersive Satisficing (DiVE – ML2VR) 

Navigate and discover multiple treasures in complex environments 

 Non-compensatory cues 

 Risk and environmental pressures 

 Semantically meaningful cues (context) 

 Interrupted sensory signals 

 Bounded controls 
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Immersive Satisficing Tasks and 

Experiments 
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Immersive Environment 

 Active and dynamic satisficing tasks: treasure hunt  

 Ordering constraints on cue discovery (satisficing tree) 

 Complex environment (clutter, obstacles, limited visibility…) 

3D Indoor Navigation: Supervisor Node for Exploration: 
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Immersive Satisficing Environment 

via Webot-software 
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Immersive Environment Robotic Capabilities 

• MATLAB® Interface 

• Robots and sensors simulations 

• 3D navigation and perception 
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Immersive Environment 

•  Immersive environment is created in Webots software 

•  Obstacles are located at the fixed locations in the environment including    

table, sofa, chairs, lights and so on 
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Problem Formulation 

Problem assumption: 

 Assume the immersive environment as workspace 

 Obstacles                       are placed at fixed locations 

 Targets                    are placed at random locations at each 

      trial 

 A robotic sensor with platform geometry    , camera 

     FOV geometry            , and measurement FOV geometry 

 

 Assume the map is known to the robotic sensor a priori,  

     including estimated geometries and locations of the obstacles 

Objectives: 

• Avoid all obstacles 

• Classify all targets while: 

 Minimizing distance of robot sensor travelling 

 Maximize reward by making as many as correct classification 
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Robot Dynamics and Configuration Space 

Robot Dynamics 

 Let                          be a configuration vector with the position and orientation 

 Let the configuration space     denote the space of all possible robot configures 

 Let       denote the set of configuration that cause collisions between the 

platform      and obstacles in 

 Let                    denote the set of configurations where no such 

      collisions occur 
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The configuration vector      must satisfy the dynamic equation 

of the robotic sensor given by differetial drive kinematics  
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Target Classification 

Classification model assumption: 

 Decision Rule: 

 

 

 

 The measurements are obtained in a fixed order (sequential measurements) 

 

 

 

 

 The posterior probabilities of class are updated by more measurements 

 Assume that all conditional probabilities are known 
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Statistics Model 

Bayesian Model 

• In each trial, targets                    are generated from the BN model. 

• Each target      has K=3 layers of features/cues:               and classification 

• Generated targets are located in the Webots environment for experiments      

• Locations of targets in the workspace are generated from a uniform 

distribution on a set of possible locations. 

},...,{ 1 nTTT

iT  
3,2,1kikX

iZ

Cues in layers and targets  
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Statistics Model 

Conditional probability parameters of BN model  

Probabilities 

0.49 0.51 

0.60 0.40 0.09 0.91 

0.98 0.02 0.65 0.35 0.46 0.54 0.86 0.14 

Target           Class   

Apple Not Treasure 

Watermelon Treasure 

Orange Not Treasure 

Basketball Treasure 

Cardboard Box Not Treasure 

Wooden Box Not Treasure 

Computer Not Treasure 

Book Treasure 

)( 1iXP

)|( 12 ii XXP

)|( 213 iii XXXP
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Targets and corresponding classes 
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Target locations  

 Possible locations of targets (blue stars) and fixed locations of 

obstacles (black squares) in the left figure 

 Locations of targets (green circles in the right figure) in the 

workspace are generated from a uniform distribution on a set of 

possible locations. 

 The robot (red circle and FOV) is initially located at the middle 

point in the environment.  
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Webots GUI  

Learning Phase Testing Phase 

   No cost 

   No time limitation 

   No limited money balance 

 

   Limited cost 

   Time limitation 

   Limited money balance 
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Robot Movements 

       The robotic sensor navigates the workspace     through pure translation and 

pure rotation. Therefore, the robot movements can be expressed by the 

commands “Move Forward, Move Back, Rotate Left, and Rotate Right”. 
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Information Roadmap Deployment 

Probabilistic Roadmap Method (PRM) 

 A set of nodes or milestones                    are sampled randomly in  

 Edges                                   are simple local paths connecting    and 

 Nodes     and edges     form an undirected graph                as roadmap  
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Nodes/milestones random sampling 

Nodes are sampled using a weighted PDF 

 

 A uniform PDF      in the workspace 

 A PDF       for sampling narrow regions 

using the bridge test 

 A PDF       for sampling regions of high 

information value (not applied in this 

project) 
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Path Planning 

Greedy path planning 

 Apply a heuristic weighted cost function 

 

 

 

 

 

   Finds the path current node     to the next best target node 

• visited nodes are remove from the node candidate list 

• shortest distance from current node 

• highest node density 
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Classification Strategy 

Classification Strategy 

 Classification confidence: 

 

 

 

 Classification decision conditions: 

 Sufficient confidence: 

 Insufficient balance: remained  balance is less then the measurement cost 

 Time is up! 
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Immersive Satisficing Results 
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Approach 

Experiment Setting 

 Counting detected targets and classified targets in a fixed amount of time 

 Compare the proposed path planning method with the shortest path planning 

method 

 Vary the target configurations 

 

 
Performance Parameters 

D(τ) Distance traveled along a path τ 

V(τ)/D(τ) Actual information value per distance traveled along a path τ 

Ry(τ) Classification success rate along a path τ 

ηy(τ) Number of correctly-classified targets per distance traveled 

ηv(τ) Number of correctly-classified targets per cue purchased 
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Results 

Trial #1 Cluster of targets in one region 

In this setup, the proposed robot planner heads to the 

region of denser information value first (left), while the 

shortest path planner heads to the isolated target (right). 

Although the shortest path planner covers more distance, 

it is less efficient. 

 

Performance 

Parameters 

Proposed 

Planner 

Shortest 

Path 

D(τ) 19.51 25.07 

V(τ)/D(τ) 0.4613 0.2792 

ηy(τ) 0.2050 0.1197 

R(τ) 1.00 0.75 

ηv(τ) 0.4444 0.4286 
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Results 

Trial #2 Small number of scattered targets 

In this setup, there are no significant differences in the 

density of targets. Therefore, both planners give the same 

paths and have the same performance.  

Performance 

Parameters 

Proposed 

Planner 

Shortest 

Path 

D(τ) 35.38 35.38 

V(τ)/D(τ) 0.3675 0.3675 

ηy(τ) 0.1696 0.1696 

R(τ) 1.00 1.00 

ηv(τ) 0.4615 0.4615 
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Movie Demo 



Summary (Year 2) and Future Work 

 Biophysical modeling of satisficing strategies for inferential decision making 

 Graphical model (BN) problem formulation 

 AEA BN learning algorithm for satisficing, inferential decision making 

 Time pressure / limited data / incomplete probabilistic model 

 Semantic cues  

 Integrate (passive satisficing) behavioral studies with: 

 - Human (fMRI) neuroimaging 

 - Non-human primates (NHPs) neural recordings 

 Immersive environment and Webot-based software 

Future Work: 

 Active and dynamic satisficing task problem formulation 

 Human and NHP behavioral studies (Webot - MATLAB® - DiVE) 

 Mathematical modeling of active and dynamic satisficing control strategies 

 Comparative studies and virtual experiments 
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Backup Slides 
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Epistemic Utility Function [Curtis, Beard, Goodrich, Stirling, et al.] 

 Seeks a family of control laws via model predictive control (or CLFs) 

 Selectability criterion: control benefit (tracking, regulation, or stability) 

 Rejectability criterion: control cost  (time or control effort) 

Satisficing Decision Trees [Simon, Kadane, Dieckmann, et al.] 

 Inferential decision making 

 Cues are predictors of performance 

 Search for Spanish treasures 

 - Unknown number of treasures at n sites, s1, …, sn  

 - Given probabilities, p(si), and cost (si), i = 1, …, n  

 - Find any treasure at minimum cost 

 AND/OR trees, ordering constraints  

Satisficing Decision and Control 

s1 

s2 s3 

s4 s5 
s6 
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Treasure Hunt Problem [Cai, Ferrari, et al.] 

Satisficing Searches and Inferential Decision Making 

For a given layout W            with r targets and n obstacles and a given joint probability 

mass function p(z, , ), find the obstacle-free path that minimizes the distance 
traveled by a robot A between two configurations q0 and qf, and maximizes the 

information gain, I(z | , ), for a sensor with field-of-view S, installed on A. 

3

Connectivity Graph  Graphical Model 

Cell Decomposition 

Robotic Sensor Path Planning 
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  Online crowdsourcing service 

  Anonymous online subjects complete 

web-based tasks for small sums of 

money 

  Advantages 

- Data can be collected quickly 

- Diverse demographics  

 Empirical validation through replication 

using classic psychology tasks  

 [Crump, McDonnell & Gureckis, 2013] 

 

 

www.mturk.com 

Human Behavioral Experiments Online 


