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Satisficing in Humans and Primates 

 Bounded rationality 

 Accessing stored solutions 

 Satisficing strategies for information gathering  

 Ecological rationality – adaptive decision-making and heuristics 

 

Satisficing Decision Strategies 

 Noisy and incomplete information 

 Insufficient intelligence 

 Time pressure 

 Utility cannot be maximized 

 Consequences and probabilities may not be learned 

Introduction and Motivation 

Treasure 

Hunt 
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Technical Accomplishments – Year 1 

 Demonstrated systematic framework for biophysical modeling of 

satisficing strategies for inferential decision making 

 Developed graphical model (BN) formulation of passive satisficing 

search problems  

 Demonstrated integrated approach to multidisciplinary human studies 

and experiments via online crowdsourcing (www.mturk.com) 

 Completed human and non-human primate (NHP) behavioral studies 

on passive satisficing task 

 Developed satisficing strategies for passive search problems with 

time pressure / limited data / incomplete probabilistic model 

 Developed human-inspired anytime BN learning algorithm 

 Tested BN learning algorithm with empirical and virtual datasets 
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Technical Accomplishments – Year 2 

 Developed a graphical model formulation and Webot software 

environment for active and dynamic satisficing search problems  

 Started to establish the biophysical basis of satisficing using fMRI in 

humans and single neuron recordings in NHPs 

 Developed adaptive evidence accumulation (AEA) algorithm for 

satisficing decision making under time pressure and with limited data 

 Tested and demonstrated AEA effectiveness on empirical and virtual 

benchmark datasets 

Outcomes and Deliverables: 

 Two journal manuscripts in preparation/review 

 Three conference abstracts 

 Immersive environment Webot-based software 
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Approach 



Approach: Biophysical Modeling 

Experiments: 

I. Behavioral Studies 

II. Human (fMRI) Neuro-imaging and –stimulation Studies 

III. Non-human Primates Neural Recording Studies 

figure from Jiang & Egner, 2014 

Mathematical Modeling 

of Problem Formulation 

Human/Non-human  

Task Design and Simulation 

Mathematical Modeling 

of Satisficing Strategies 

Human/Non-human  

Satisficing Experiments 



Satisficing Tasks and Experiments 

1. Passive Satisficing 

Learn and apply predictive information from given cues 

2. Active Satisficing 

Active information gathering and decision making 

 Limited information 

 Time pressure 

 Cue redundancy 



Satisficing Tasks and Experiments 

3. Immersive Satisficing (DiVE – ML2VR) 

Navigate and discover multiple treasures in complex environments 

 Non-compensatory cues 

 Risk and environmental pressures 

 Semantically meaningful cues (context) 

 Interrupted sensory signals 

 Bounded controls 
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Immersive Satisficing Tasks and 

Experiments 



10 

Immersive Environment 

 Active and dynamic satisficing tasks: treasure hunt  

 Ordering constraints on cue discovery (satisficing tree) 

 Complex environment (clutter, obstacles, limited visibility…) 

3D Indoor Navigation: Supervisor Node for Exploration: 
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Immersive Satisficing Environment 

via Webot-software 
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Immersive Environment Robotic Capabilities 

• MATLAB® Interface 

• Robots and sensors simulations 

• 3D navigation and perception 
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Immersive Environment 

•  Immersive environment is created in Webots software 

•  Obstacles are located at the fixed locations in the environment including    

table, sofa, chairs, lights and so on 
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Problem Formulation 

Problem assumption: 

 Assume the immersive environment as workspace 

 Obstacles                       are placed at fixed locations 

 Targets                    are placed at random locations at each 

      trial 

 A robotic sensor with platform geometry    , camera 

     FOV geometry            , and measurement FOV geometry 

 

 Assume the map is known to the robotic sensor a priori,  

     including estimated geometries and locations of the obstacles 

Objectives: 

• Avoid all obstacles 

• Classify all targets while: 

 Minimizing distance of robot sensor travelling 

 Maximize reward by making as many as correct classification 
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Robot Dynamics and Configuration Space 

Robot Dynamics 

 Let                          be a configuration vector with the position and orientation 

 Let the configuration space     denote the space of all possible robot configures 

 Let       denote the set of configuration that cause collisions between the 

platform      and obstacles in 

 Let                    denote the set of configurations where no such 

      collisions occur 
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The configuration vector      must satisfy the dynamic equation 

of the robotic sensor given by differetial drive kinematics  

q

where     is the wheel radius and      is the distance between wheels. 

The control vector                         and control input space  
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Target Classification 

Classification model assumption: 

 Decision Rule: 

 

 

 

 The measurements are obtained in a fixed order (sequential measurements) 

 

 

 

 

 The posterior probabilities of class are updated by more measurements 

 Assume that all conditional probabilities are known 
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Statistics Model 

Bayesian Model 

• In each trial, targets                    are generated from the BN model. 

• Each target      has K=3 layers of features/cues:               and classification 

• Generated targets are located in the Webots environment for experiments      

• Locations of targets in the workspace are generated from a uniform 

distribution on a set of possible locations. 
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Cues in layers and targets  
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Statistics Model 

Conditional probability parameters of BN model  

Probabilities 

0.49 0.51 

0.60 0.40 0.09 0.91 

0.98 0.02 0.65 0.35 0.46 0.54 0.86 0.14 

Target           Class   

Apple Not Treasure 

Watermelon Treasure 

Orange Not Treasure 

Basketball Treasure 

Cardboard Box Not Treasure 

Wooden Box Not Treasure 

Computer Not Treasure 

Book Treasure 
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)|( 213 iii XXXP
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Targets and corresponding classes 
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Target locations  

 Possible locations of targets (blue stars) and fixed locations of 

obstacles (black squares) in the left figure 

 Locations of targets (green circles in the right figure) in the 

workspace are generated from a uniform distribution on a set of 

possible locations. 

 The robot (red circle and FOV) is initially located at the middle 

point in the environment.  
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Webots GUI  

Learning Phase Testing Phase 

   No cost 

   No time limitation 

   No limited money balance 

 

   Limited cost 

   Time limitation 

   Limited money balance 
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Robot Movements 

       The robotic sensor navigates the workspace     through pure translation and 

pure rotation. Therefore, the robot movements can be expressed by the 

commands “Move Forward, Move Back, Rotate Left, and Rotate Right”. 
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translational velocity (a): 

rotational velocity (b): 

control velocity: 
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Information Roadmap Deployment 

Probabilistic Roadmap Method (PRM) 

 A set of nodes or milestones                    are sampled randomly in  

 Edges                                   are simple local paths connecting    and 

 Nodes     and edges     form an undirected graph                as roadmap  
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Nodes/milestones random sampling 

Nodes are sampled using a weighted PDF 

 

 A uniform PDF      in the workspace 

 A PDF       for sampling narrow regions 

using the bridge test 

 A PDF       for sampling regions of high 

information value (not applied in this 

project) 
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Path Planning 

Greedy path planning 

 Apply a heuristic weighted cost function 

 

 

 

 

 

   Finds the path current node     to the next best target node 

• visited nodes are remove from the node candidate list 

• shortest distance from current node 

• highest node density 
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Classification Strategy 

Classification Strategy 

 Classification confidence: 

 

 

 

 Classification decision conditions: 

 Sufficient confidence: 

 Insufficient balance: remained  balance is less then the measurement cost 

 Time is up! 
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Immersive Satisficing Results 
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Approach 

Experiment Setting 

 Counting detected targets and classified targets in a fixed amount of time 

 Compare the proposed path planning method with the shortest path planning 

method 

 Vary the target configurations 

 

 
Performance Parameters 

D(τ) Distance traveled along a path τ 

V(τ)/D(τ) Actual information value per distance traveled along a path τ 

Ry(τ) Classification success rate along a path τ 

ηy(τ) Number of correctly-classified targets per distance traveled 

ηv(τ) Number of correctly-classified targets per cue purchased 
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Results 

Trial #1 Cluster of targets in one region 

In this setup, the proposed robot planner heads to the 

region of denser information value first (left), while the 

shortest path planner heads to the isolated target (right). 

Although the shortest path planner covers more distance, 

it is less efficient. 

 

Performance 

Parameters 

Proposed 

Planner 

Shortest 

Path 

D(τ) 19.51 25.07 

V(τ)/D(τ) 0.4613 0.2792 

ηy(τ) 0.2050 0.1197 

R(τ) 1.00 0.75 

ηv(τ) 0.4444 0.4286 
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Results 

Trial #2 Small number of scattered targets 

In this setup, there are no significant differences in the 

density of targets. Therefore, both planners give the same 

paths and have the same performance.  

Performance 

Parameters 

Proposed 

Planner 

Shortest 

Path 

D(τ) 35.38 35.38 

V(τ)/D(τ) 0.3675 0.3675 

ηy(τ) 0.1696 0.1696 

R(τ) 1.00 1.00 

ηv(τ) 0.4615 0.4615 
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Movie Demo 



Summary (Year 2) and Future Work 

 Biophysical modeling of satisficing strategies for inferential decision making 

 Graphical model (BN) problem formulation 

 AEA BN learning algorithm for satisficing, inferential decision making 

 Time pressure / limited data / incomplete probabilistic model 

 Semantic cues  

 Integrate (passive satisficing) behavioral studies with: 

 - Human (fMRI) neuroimaging 

 - Non-human primates (NHPs) neural recordings 

 Immersive environment and Webot-based software 

Future Work: 

 Active and dynamic satisficing task problem formulation 

 Human and NHP behavioral studies (Webot - MATLAB® - DiVE) 

 Mathematical modeling of active and dynamic satisficing control strategies 

 Comparative studies and virtual experiments 
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Backup Slides 
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Epistemic Utility Function [Curtis, Beard, Goodrich, Stirling, et al.] 

 Seeks a family of control laws via model predictive control (or CLFs) 

 Selectability criterion: control benefit (tracking, regulation, or stability) 

 Rejectability criterion: control cost  (time or control effort) 

Satisficing Decision Trees [Simon, Kadane, Dieckmann, et al.] 

 Inferential decision making 

 Cues are predictors of performance 

 Search for Spanish treasures 

 - Unknown number of treasures at n sites, s1, …, sn  

 - Given probabilities, p(si), and cost (si), i = 1, …, n  

 - Find any treasure at minimum cost 

 AND/OR trees, ordering constraints  

Satisficing Decision and Control 

s1 

s2 s3 

s4 s5 
s6 
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Treasure Hunt Problem [Cai, Ferrari, et al.] 

Satisficing Searches and Inferential Decision Making 

For a given layout W            with r targets and n obstacles and a given joint probability 

mass function p(z, , ), find the obstacle-free path that minimizes the distance 
traveled by a robot A between two configurations q0 and qf, and maximizes the 

information gain, I(z | , ), for a sensor with field-of-view S, installed on A. 

3

Connectivity Graph  Graphical Model 

Cell Decomposition 

Robotic Sensor Path Planning 
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  Online crowdsourcing service 

  Anonymous online subjects complete 

web-based tasks for small sums of 

money 

  Advantages 

- Data can be collected quickly 

- Diverse demographics  

 Empirical validation through replication 

using classic psychology tasks  

 [Crump, McDonnell & Gureckis, 2013] 

 

 

www.mturk.com 

Human Behavioral Experiments Online 


