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v Modern Surveillance Systems – multiple sensors installed on mobile platforms

-- landmine detection and identification

-- monitoring of endangered species

-- monitoring of urban environments

v Traditional paradigm: sensor information is used as feedback to the vehicle in 
order to support the vehicle navigation 

v New paradigm: the sensor motion is planned in view of the expected 
measurement process, in order to support the sensing objectives

v LISC Research Emphasis: Geometric sensor path planning

-- Address couplings between sensor measurements and sensor dynamics

-- Optimize sensing objectives (e.g., detection, classification, tracking..)

Introduction
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§ Sensors: acoustic, w./ GPS, limited micro-level processing, mobile
§ Targets: passive, mobile, unauthorized
§ Environment: heterogeneous bathymetry and ambient properties, currents
§ Sensing objectives: coverage, tracking, detection, classification

Applications: Undersea Surveillance

System 
manager

Communication linkA/C or vessel deploys sensors

Range, r



5

Applications: UAV Demining

§ Sensors: Cameras, IR, GPR, EMI, synthetic aperture radar (SAR) 
§ Targets: static, hidden, hazardous
§ Environment: heterogeneous soils, weather, time of day, obstacles
§ Sensing objectives: detection, classification
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Surveillance

Boeing/Insitu ScanEagles® in a cooperative target tracking mission 

Applications: Urban Monitoring

§ Sensors: Cameras, IR, synthetic aperture radar (SAR) 
§ Targets: static, hidden, mobile, evading 
§ Environment: time of day, obstacles
§ Sensing objectives: detection, classification, tracking
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Optimal Control Framework

subject to nonlinear time-varying dynamics,

( ) ( ) ( ) ( )[ ]ttttt ,,, upxfx =!

Performance measure to be optimized w.r.t. u(t),
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0

dttttLttJ
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t
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• Vehicles control vector:  u[x(t), t]
• Vehicles positions: x(t)
• Environmental and sensing parameters: p(t)

and subject to equality and inequality constraints

with I.C.  x(t0)

( ) ( )[ ] 0, ³tt uxc
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Modeling of Mobile Sensor Networks
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Mobile Sensor Model

- The sensor is characterized by a discrete field-of-view (FOV) geometry, and 
by a joint probability density or mass function (PDF or PMF).  
- The platform is characterized by a discrete vehicle geometry and a dynamic 
equation.

Si
y

θi

Examples:
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Targets and Workspace

- The workspace may contain obstacles and changing environmental conditions
- Stationary targets are characterized by discrete geometries, 
and a prior probability density or mass function or prior:  

- Moving targets are characterized by a Markov motion model:

Examples:
y

x

x0

x1

x(t)

x2

p(xj, vj, θj),   j = 1, …

Xkx

y

p(Xk), )( kp λ
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Probabilistic Model of Sensor Measurements

Classical Sensor Model (Estimation Theory):

),( kkk λXhZ =

Probabilistic Sensor Model:

)()(),(),,( kkkkkkkk pppp λXλXZλXZ =

Ø Set of random measurement or observations at tk: Zk

Ø Set of random target state variables at tk: Xk

Ø Set of random sensor characteristics at tk:
Ø Joint probability density or mass function (PDF or PMF):

kλ

(Continuous variables)

(Discrete variables)

),,( kkkp λXZ

(Discrete time)

(Discrete time)

Ø Measurement vector: Zk = [z1(tk) … zr(tk)]T

Ø Target state: Xk = [x1(tk) … xn(tk)]T

Ø (p x 1)-Vector of sensor characteristics, e.g., noise and measurement errors:
Ø Deterministic, nonlinear vector function: h:              → 

kλ
pn´Â rÂ
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Underwater Sensor Networks for 
Cooperative Track Detection
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Current Vector Field Over a 5-Day Period 

Workspace and Environmental Conditions

Real CODAR-Measured
Current Field

(100 naut-NJ Coast)†

†[COOL, Rutgers University]

Environmental conditions influence, r (Km)
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Vehicle's control bounds:  || u || ≤ Vmax

Underwater Sensor Model

Underwater Vehicle Dynamics:

Simulation: sensor motion and effective range 

Alaska Native Technologies, 
Acoustic Glider Eyak 02

Sensor's effective range:  rmax = r (x, u, α)

K. C. Baumgartner, S. Ferrari, and A. Rao, ”Optimal Control of a Mobile Sensor Network for Cooperative Target 
Detection,” IEEE Journal of Oceanic Engineering, in press, now available on line.
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Objective: Cooperative Track Detection

Track Coverage: Sensors’ ability to cooperatively detect target tracks

k-Transversals or Stabbers of a 
family of 5 circles (k = 2)

Geometric Transversal Theory
• “Divide and conquer” algorithm for constructing the space of line transversals to 

n line segments in       [Edelsbrunner, 1982].
• O(r) algorithm for finding the slope of a line transversal to a family of n disjoint 

convex translates [Egyed and Wenger, 1989].
• Finding a line transversal for a family of n line segments or a family of n circles 

in        takes Ω(n log n) time on an algebraic decision tree [Avis et al., 1984].

2Â

2Â

S. Ferrari, “Track Coverage in Sensor Networks,” Proc. American Control Conference, Minneapolis, 
MN, 2006, pp. 2053-2059. 

Track-before-detect Approach
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Track Coverage Cones

• Represent space of line transversals for k circles belonging to a family of 
n (non-translates) circles as a function of their location in A .

y
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Approach: Coverage cone (k = 2)
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ψ13

Redundant Track Coverage (n > k)

y

x0

x

Example: n = 3, k = 2

Principle of union-exclusion→  union of possible non-disjoint sets
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Track Coverage in a Rectangular Workspace

K. C. Baumgartner and S. Ferrari, “A Geometric Approach to Analyzing Track Coverage in Sensor 
Networks”, IEEE Transactions on Computer, Vol. 57, No. 8, pp. 1113-1128, August 2008.

• Opening angles: Lebesgue measure on the sets of line transversals.
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Theorem: Probability of Track Detection

S. Ferrari, R. Fierro, B. Perteet, C. Cai, and K. C. Baumgartner, “A Geometric Optimization Approach 
to Detecting and Intercepting Dynamic Targets using Mobile Sensor Network, ” SIAM Journal on 
Control and Optimization, Vol. 48, No. 1, pp. 292-320, 2009.
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Optimal Control Problem

subject to sensor network dynamics,

( ) ( ) ( ) ( )[ ]ttttt ,,, upxfx =!

Sensing performance metric to be optimized w.r.t. c[·], x(·)

( )[ ] ( ) ( )[ ]{ } ,)()()(,,,
0
ò ×+×+=
ft
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k
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• n vehicles controls:  u(t) = c[x(t), t]
• n vehicles positions: x(t)
• Environmental and sensing parameters: p(t)

and subject to equality and inequality mission constraints

( ) ( )[ ] 0, ³tt uxg
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Optimal Sensor Network Trajectories

K. C. Baumgartner, S. Ferrari, and A. Rao, “Optimal Control of a Mobile Sensor Network for 
Cooperative Target Detection,” IEEE Journal of Oceanic Engineering, in press, available online. 

r
(Km)
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Optimal static initial positions

Comparison of Optimal Sensor Deployments

Optimal control and initial positions

Optimal initial positions

Ø L1 x L2 =  90 x 82.5 Km

Ø ΔT = 9 days

Ø n = 15, k = 3, 

Ø r = 4 Km

Ø UUV       Buoys
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Sensing Performance Comparison

Track Coverage Time History

: Optimal control and 
initial conditions (x0

*)

: Optimal control,   
given x0

: Optimal initial 
conditions (x0

*), no 
control (buoys)    

: Static optimal 

Time (hrs)

Legend:

rad
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Extension to Maneuvering Targets
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Track Coverage for Maneuvering Targets

Markov Target Model:

S. Ferrari, R. Fierro, and D. Tolilc “A Geometric Optimization Approach to Tracking Maneuvering Targets Using a 
Heterogeneous Mobile Sensor Network,” Proc. Conference on Decision and Control, Cancun, MX, 2009. 

,]sincos)[()( T
jjjjj ttt qq-+= vxx xj = x(tj),  tj ≤ t < tj+1 , j = 1, 2, …

Markov motion parameter values:  {xj, vj, θj}j = 1, 2, …

Both x and si are 
functions of time

y

x

ri

si

x0

Translate cone origin to x(t), and consider vj

2ÂÎx

x1 x(t)
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Spatio-Temporal (ST) Coverage Cones

Markov trajectory amounts to straight-line segments in the space ],[ 0
2

ftt´Â

: 3-D Coverage cone

Can be represented by a 
2-D heading cone Kθ, and 
a 2-D velocity cone Kv
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Heading and Velocity Cones

velocity plane: 0)(cos)(sin =+ yx jj qq

where:

Kθ and Kv are a function of the sensor coordinates xi(t) and yi(t) and of the 
Markov motion parameter values:  {xj, vj, θj}j = 1, 2, …

The 3D coverage cone K[Di, xj] can be represented by its projection onto the 
xy-plane, Kθ , and by Kv, which denotes its intersection with the

Kv is finitely generated by the unit vectors,
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At every time tj ≤ t < tj+1, the 3D spatio-temporal cone K[Di, xj] contains all 
Markov pwl. tracks that originate at xj and are detected by the ith sensor at xi.

y

x

t

: track detected
: track missed
: sensor trajectory
: 2-D cones

: 3-D cone

Coverage Cone Interpretation
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Example: Application of ST cone at t = 60 s

y

x

: sensor position
: target detected
: target missed

S. Ferrari, R. Fierro, and D. Tolic “A Geometric Optimization Approach to Tracking Maneuvering 
Targets Using a Heterogeneous Mobile Sensor Network,” Conference on Decision and Control, 
Shanghai, China, 2009, to appear. 
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Treasure Hunt Problem

For a given layout W with r targets and n obstacles and a given joint probability 
mass function P(y, m1, …, mr) of an hypothesis variable, y, and r measurements, find the 
obstacle-free path that minimizes the distance traveled by a robot A, between two 
configurations q0 and qf and maximizes the information value for a sensor with field of 
view S, installed on A.

2ÂÌ

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, June 2009. 
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Definitions

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, June 2009. 

Information Value: Expected Entropy Reduction (EER): Advantage: additive, 
symmetric, non-myopic, 
..
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Sensor Path Planning

ØDevelop a cell decomposition method that accounts for the geometries of the 
targets and the sensor FOV

WClassical cell decomposition:

Robotic 
Sensor

Connectivity graph G with observation cells labeled in grey and void 
cells labeled in white 

New cell decomposition:
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Ø Bounding rectangloid approximation RB of CB
Ø Bounded rectangloid approximation R’T of CT

xA

yA

Fw

Ow x

y

sensor

robot
obstacle target

Approximate-and-Decompose Method

Examples of C-obstacle, CB, and C-target, CT, obtained for a sensor with FOV, S(q):

Ø Configuration q of robot A(q) : q = (x, y, q) with orientation q
Ø Configuration space, C : the space of all the possible configurations of A
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Decomposition Procedure 

1. Decompose the range of robot orientations [θ, θ’] into non-overlapping intervals 
Iu = [γu , γu+1], k u = [xk, x’k] � [yk, y’k] � Iu

2. Compute CBj [ku] and CTi [ku],  then RBj [ku] and R’Ti[ku] 

3. Obtain void cells 
decomposition K void of void 
configuration space Cu

void

4. Obtain observation cells 
decomposition K z of Cu

z 

(c) (d)
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Influence of Sensor Geometry

: High EER
: Med. EER
: Low EER
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Influence of Robot Geometry

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell 
Decomposition,” IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, 2009. 



37

Large Workspace (Information Roadmap)
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Information Value and Milestones

G. Zhang, S. Ferrari, and M. Qian, ”Information Roadmap Method for Robotic Sensor Path Planning,” 
Journal of Intelligent and Robotic Systems, Vol. 56, pp. 69-98, 2009.

: High EER
: Med. EER
: Low EER

: Milestone 
configuration

: Robotic sensor
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Performance Comparison

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell Decomposition,” 
IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 3, June 2009. 
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1. Targets travel in straight lines with constant velocity

2. Targets are observed intermittently by multiple sensors that measure only position

3. Pursuers have two modes: detection and pursuit

4. Tracks may be unobserved, partially-observed (< k), or fully-observed (≥ k)

5. Pursuers can always move faster than the targets

• Maximize the probability of detecting unobserved tracks

• Maximize the probability of detecting partially-observed tracks

• Minimize the distance traveled to detect and capture targets

Objectives

Assumptions

Given a set P of N pursuers and a set T of M targets moving within an obstacle-
populated game area S, find a set of policies which maximize the total sensing reward, 
and minimize the total time required to capture targets in T that have been positively 
detected.

Marco Polo Problem
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Connectivity Graph

Example of cell decomposition

Obstacle free cells

Observation cells

• Rectangular workspace (L1 x L2)

• Four C-obstacles

• One target with 2 < k detections

• One sensor with range r

Sensor Roadmap
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Performance Analysis
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Heterogeneous Network

Ground 
sensor

Air 
sensor
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Heterogeneous Network

Undetected 
target track

C-target
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Heterogeneous Network

Partially-
observed 

track
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Heterogeneous Network

Ground sensor 
in pursuit 

mode

Captured 
target
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Game ends!

D. Tolic, R. Fierro, and S. Ferrari, ”Cooperative multi-target tracking via hybrid modeling and geometric 
optimization,” Proc. Mediterranean Conference on Control and Automation (MED’09), Thessaloniki, 
Greece, January 2009, pp. 440-445.
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Experiments

ØConducted by Prof. Rafael Fierro and Brent Perteet, University of New Mexico
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Conclusions

§ Geometric and probabilistic sensor models
§ Track Coverage Functions
§ Information Value Functions
§ Optimal Control of Cooperative Sensor Networks
§ Underwater, ground, and air robots

Work in progress:
§ Maneuvering targets
§ Path Exposure
§ Online Learning and Fusion
§ Optimal Control of Distributions
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Energy Expenditure

: Cooperative optimal control (x0
*)                    

: Non-cooperative path planning, given x0 and xf

Sensor 
network

Legend:

Cooperative 
control

Non-cooperative control

Cooperative control

Re-planning
Zoom-in:

ith sensor
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Mission 
Parameters

Performance
Metrics

Optimal 
Control & x0

*

Optimal 
Control

Path 
Planning

Optimal
Buoys

(n, k) = (15, 3) Track Coverage 2.52 · 104 1.74 · 104 8.87 · 103 1.99 · 103

ΔT = 3 days Energy 165 1.31 · 102 604 0
Total Performance 2.50 · 104 1.73 · 104 8.27 · 103 1.99 · 103

OC* Improvement n/a 44% 202.3% 1,156 %

Where:
§ Optimal Control & x0

* (OC*): Sensor network's initial positions, control and state histories 
are optimized simultaneously.

§ Optimal Control: Sensor network's initial positions are given, and the control and state 
histories are optimized simultaneously.

§ Path Planning: Sensor network's initial and final position are optimized with respect to SS, 
and the control and state histories are optimized with respect to Energy.

§ Zero Control: Sensor network's initial positions are optimized with respect to the currents and 
SS, but the sensors have no on-board controls (e.g., buoys).

Comparison with Other Deployments
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The decision tree DT obtained from Tr is a tuple {UC , UD , R , A} with k0 as the root, and 
the value of reward function R as the leaves. Where,
UC: set of chance nodes (round); UD: set of test-decision nodes (squares); A: directed arcs. 

optimal

Decision Tree and Optimal Sensor Path

The optimal path in the decision tree is found using a rolling-back procedure that 
determines the optimal strategy by recursively estimating the utility of each branch.

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No 3, June 2009. 
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The connectivity tree Tr associated with G and two cells  k0���	��kf ∋ qf , is a tree 
graph with k0 as the root, kf as the leaves, a cost d attached to each arc, and with the 
following properties:
ØA branch t in Tr represents a channel joining k0 to kf in G.
Ø Two branches are said to be information equivalent if they join the same cells, ki and 
kl, and contain the same set of observation cells, regardless of the order.
Ø A branch in Tr connecting any two cells ki and kl has the smallest overall cost of any 
other information-equivalent branch in G.

Label-correcting pruning algorithm:

[

Pruned Connectivity Tree

Connectivity graph, G

Connectivity tree, Tr
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Complexity of decomposition: O(nT (nB + nT)) + O((nB + nT) log (nB + nT))
nA, # of edges defining robot A; nB , # of total edges of n convex obstacles; 
nT , # of total edges of r convex targets

Performance Analysis

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell Decomposition,” 
IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 3, June 2009. 

Performance of pruning algorithm:
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Proportional Controller:

where is the error vector and

is the diagonal control constant 
matrix

Pursuer Control Policy
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Interception point is computed using Newton's method

Policy in Pursuit Mode

S. Ferrari, R. Fierro, B. Perteet, C. Cai, and K. C. Baumgartner, ”A Geometric Optimization 
Approach to Detecting and Intercepting Dynamic Targets Using a Mobile Sensor Network,” SIAM 
Journal on Control and Optimization, Vol. 48, No. 1, pp. 292-320, 2009.
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1. An unobserved track is the path of a target j for which there are no 
detections at the present time, t

2. A partially-observed track is the path of a target that is estimated from 
0 < l < k individual sensor detections obtained up to the present time, t

3. A fully-observed track is the path of a target that is estimated from at 
least k individual sensor detections obtained up to the present time, t

Target Tracks

Definitions

1. A void cell is a convex polygon                      with the property that for 
every configuration               the pursuer i has zero probability of 
detecting a partially-observed target.

2. An observation cell is a convex polygon                      with the property 
that for every configuration               the pursuer i has a non-zero 
probability of detecting a partially-observed target.

Cells
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where

Reward function:

is the Euclidean distance between cells,

is the change in the network track-coverage,

is the probability of detecting a target inside a given cell 
(assuming a binary sensor model), and

are weighting parameters.

Using a graph searching algorithm such as A*, the optimal sequence or 
channel of cells which maximizes the reward is

Control Policy for Sensors in Detection Mode
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Initial location of 
mobile sensor

Optimal path

Detection points

Static sensors

Target

Mobile sensor

Hypothesized track
Obstacles

Results: 5 Sensors and 1 Target
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Results: 5 Sensors and 1 Target
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Results: 5 Sensors and 2 Targets



65

Game characteristics:
• �who, how, and what room?” 
• 6 suspects, 6 weapons, 9 rooms
• Movement
• Suggestion decision à

evidence
• Inference of hidden cards
• CLUE® 1 surveillance systems

CLUE® game board. CLUE® & ©2006 Hasbro, Inc. 
Used with permission.

CLUE® is a benchmark example of treasure-hunt problem, because the information (or 
evidence) that can be obtained about the hidden variable, depends on the position of the 
pawn on the gameboard: coupled motion planning and inference problems.

Benchmark Example -- Board Game of CLUE®

C. Cai and S. Ferrari, “A Q-Learning Approach to Developing an Automated Computer Player for the Board Game 
of CLUE®,” Proc. International Joint Conference on Neural Networks, Hong Kong, 2008, pp. 2347-2353. 
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Exact Cell Decomposition

Convex Polygonal Decomposition
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Connectivity Graph

S. Ferrari and C. Cai, “Information-Driven Search Strategies in the Board Game of CLUE®,” IEEE 
Transactions on Systems, Man, and Cybernetics - Part B, to appear in Vol. 39, No 3, June 2009. 
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Ø Connectivity tree, T, is folded into an influence diagram 
(action decisions, ak, observable state, xk)

Ø The observation cells in Ω(xk) specify the admissible set of test decisions, uk, and 
the domain of the non-observable state, Ω(zk) = {mi, …, mj}

Ø ZT = {z1, z2, …, z f - 1} a sequence of measurements about y over {t1, t2, …, tf}

Influence Diagram Representation of Underlying POMDP

Ø Profit of Observation: v(tk) = R(tk) = wB.B(tk) −wJ.J(tk) − wD.D(tk)
where B(tk) is the expected entropy reduction (EER),
∆H(tk) = H(y | zk - 1, zk - 2, …, z1) − H(y | zk , zk - 1, …, z1)  = I(y; zk | zk - 1, …, z1)

Treasure Hunt Influence Diagram
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ICP

q0=66

qf=64 

q0

qf

Shortest path (wB= 0; wJ=0):
[66 63 64]; R = -7;

Aggressive path (wB= 12): 
[66 63 62 d 62 63 64];

R =12´0.41- 0 - 7= -2.08;

Profit of Observation:
R(tk) = wB.B(tk) −wJ.J(tk) − D(tk)

Suggestion:
{Mrs. Peacock; Revolver; Dining Room}
P3’s Response: {Revolver}

Posterior before evidence:
[0.25 0.25 0.25 0.25] 
[0.25 0.25 0.25 0.25]
[0.14 0.14 0.14 0.14 0.14 0.14 0.14]

Posterior after evidence:
[0.5 0.17 0.17 0.17]
[0.33 0.33 0  0.33]
[0.13 0.13 0.13 0.13 0.25 0.13 0.13]

Suggestion:
{Mr. Green; Rope; Lounge}
P2’s Response: {Mr. Green}

Posterior after evidence:
[0.5 0.25 0 0.25]
[0.33 0.33 0  0.33]
[0.13 0.13 0.13 0.13 0.25 0.13 0.13]

Optimal CLUE® Game Strategy
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Game Results
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