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DETERMINISTIC TIME-DEPENDENT PROBLEM
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A time-dependent pointwise observability function is defined to reflect the observer’s 
surveillance capabilities for different parts of the domain.

Pointwise Observability:

S

T
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DETERMINISTIC TIME-DEPENDENT PROBLEM
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The goal is to guide the evader from its source to its desired target while minimizing the 
cumulative observability along the way.

Cumulative Observability:

Value function:
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STRATEGIC GAME FORMULATION

• Evader: 𝜽𝜽, probability distribution over all (infinitely many) paths (𝒂𝒂(⋅)) from S to T;

• Observer: 𝝀𝝀 = (𝜆𝜆1, 𝜆𝜆2) , probability of patrol trajectories 𝑍𝑍 = {𝐳𝐳1 𝑡𝑡 , 𝐳𝐳2(𝑡𝑡)};
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Both the evader and the observer are required to choose a plan in advance, trying to anticipate 
the opponent’s actions.

Expected Observability along 𝒂𝒂(⋅) Given 𝛌𝛌:

Expected Observability with 𝜽𝜽 Given 𝝀𝝀:

𝐳𝐳1(𝑡𝑡)

𝐳𝐳2(𝑡𝑡)S

T
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STRATEGIC GAME FORMULATION

• Evader: 𝜽𝜽, probability distribution over all (infinitely many) paths 𝒂𝒂(⋅) from S to T;

• Observer: 𝝀𝝀 = (𝜆𝜆1, 𝜆𝜆2) , probability of patrol trajectories 𝑍𝑍 = {𝐳𝐳1 𝑡𝑡 , 𝐳𝐳2(𝑡𝑡)};;
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Both the evader and the observer are required to choose a plan in advance, trying to anticipate 
the opponent’s actions.

Evader:

Observer:

Semi-infinite Zero-sum Game!

𝐳𝐳1(𝑡𝑡)

𝐳𝐳2(𝑡𝑡)S

T
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NASH EQUILIBRIUM

• A pair of strategies (𝜆𝜆∗,𝜃𝜃∗) is a Nash equilibrium if both the observer and the evader 

are happy with their current strategies:
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A mixed Nash equilibrium of a zero-sum game always exists, and is attained at the minimax
(maximin).

Minimax  Theorem:
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𝝀𝝀 - RESPONSE PROBLEM

7

Fix the observer’s strategy 𝝀𝝀 = (𝜆𝜆1, 𝜆𝜆2), the optimal path of the evader 𝒂𝒂𝝀𝝀 can be solved 
deterministically.

Path of 𝒂𝒂𝝀𝝀 when 𝝀𝝀 = (0.6,0.4)

Expected pointwise observability:

Value function:

Time-dependent HJB equation:

𝐳𝐳1(𝑡𝑡)

𝐳𝐳2(𝑡𝑡)
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𝝀𝝀 - RESPONSE PROBLEM
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Fix the observer’s strategy 𝝀𝝀 = (𝜆𝜆1, 𝜆𝜆2), the optimal path of the evader 𝒂𝒂𝝀𝝀 can be solved 
deterministically.

𝝀𝝀 = (0.9,0.1) 𝝀𝝀 = (0.1,0.9)

𝐳𝐳1(𝑡𝑡)

𝐳𝐳2(𝑡𝑡)

𝐳𝐳1(𝑡𝑡)

𝐳𝐳2(𝑡𝑡)
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SCALARIZATION AND PARETO FRONT

• Pareto-optimal strategy:  not dominated by other strategies
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Sample different 𝝀𝝀’s and plot (𝒥𝒥1 𝒂𝒂𝝀𝝀 ,𝒥𝒥2 𝒂𝒂𝝀𝝀 ) to get the convex portion of the Pareto Front.

𝒂𝒂1 dominates 𝒂𝒂2:

𝒥𝒥1 𝒂𝒂1 ≤ 𝒥𝒥1(𝒂𝒂2) ,  𝒥𝒥2 𝒂𝒂1 ≤ 𝒥𝒥2(𝒂𝒂2);

And at least one of the inequalities are strict.
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PURE STRATEGY NASH EQUILIBRIUM FOR EVADER
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The 𝝀𝝀∗- optimal path 𝒂𝒂𝝀𝝀∗ together with the probability distribution 𝝀𝝀∗ form a Nash equilibrium.

𝒂𝒂𝝀𝝀∗
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MIXED STRATEGY NASH EQUILIBRIUM
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A pure strategy Nash equilibrium does not always exist, but a mixed strategy Nash equilibrium 
always exists, and is attained at the minimax.
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APPROXIMATION OF NASH EQUILIBRIUM – OBSERVER HALF

• (Gilles & Vladimirsky) Recall that
Consider

• Let                                                          and solve

12

Find an approximate optimal strategy of the observer 𝝀𝝀∗ using convex optimization.

Gilles & Vladimirsky
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APPROXIMATION OF NASH EQUILIBRIUM – EVADER HALF
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Find an approximate optimal strategy of the evader 𝜽𝜽∗ by perturbing 𝝀𝝀∗ and adaptively growing
the full set of pure strategies.
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MIXED STRATEGY NASH EQUILIBRIUM
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The convex portion of the Pareto Front does not intersect the central ray. In the mixed Nash 
equilibrium, the evader uses the two trajectories with probability 𝜽𝜽∗ = 𝜃𝜃1, 𝜃𝜃2 .
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ANISOTROPIC OBSERVERS
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With anisotropic observers, the pointwise observability depends on the angle between the 
observer’s direction of motion and the line of vision.

Anisotropic observer
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MULTIPLE EVADERS WITH CENTRAL PLANNER
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Each evader E𝑙𝑙 chooses a trajectory from his own source 𝐱𝐱𝑆𝑆𝑙𝑙 to a single target 𝐱𝐱𝑇𝑇 The goal now 
is to minimize the weighted sum of expected cumulative observabilities over all evaders.

• Payoff function:

• Approximate 𝝀𝝀∗:
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