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

 

Research Objectives 

--

 

Online motion planning and control for mobile sensor agents (MSAs) 

--

 

MSA Objectives: target tracking and surveillance; minimize energy 
consumption (e.g. distance traveled); and, avoid obstacles.

 Applications: Modern Surveillance Systems

Introduction and Motivation
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Modeling of Targets and Mobile Sensors
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Modeling of Target Dynamics

• Target state:

• Markov motion process:
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are computed from sensor measurements.
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Model of Mobile Sensor Agent (MSA)

The sensor is characterized by a field-of-view (FOV) with geometry S , and by a 
platform with geometry A .
When the S  T

 

, measurements are obtained according to equation:

S
A

x

y

FW

FA

Geometries:
Sensor FOV, S
Sensor Platform, A

Frames of reference:
Body frame, FA
Inertial frame, FW

 O

white-noise 
error
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Model of MSA’s
 

Dynamics
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The sensor position and velocity in FW

 

are described by the vector,

Ttytxtytxt )]()()()([)(  y

and the platform dynamics are assumed to be LTI, and discretized

 

w.r.t. time:

Where, u(tκ

 

) is the sensor’s platform feedback control input vector.
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Sensor Objectives:
Target Tracking and Surveillance
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Target Tracking: Particle Filter Method

 Each iteration has three steps



 

Sampling particles from an importance density function (IPD):



 

Update the weight for each particle using Bayes’

 

rule:



 

Re-sampling if effective size  Ne is smaller than       

 PDF representation: 

The particle filter  is a recursive method to estimate a probability density function 
(PDF), e.g.                                   , based on sequential Monte Carlo simulations.
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Target Tracking: Particle Filter Update
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Particle filter method applied to target heading ( ) estimation:
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Importance Probability Density Function

Definition of important probability density (IPD) function:

Supporting Interval: S
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Particle Filter Update by Proposed IPD
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Gaussian-Mixture Representation
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Particle filter representation:

Degeneracy phenomenon:        The variance of particle weight 
accumulates along iterations

Consequence:

 

A number of particles have low weights 
and no contributions in approximating

Re-sampling method:

 

The particles with high weights are 
repeated, redundant particles

 Gaussian Mixture: ),(Ν 2
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 Classical Potential

 

Field Method for Robot Navigation and Control:

Information Potential Field Method
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 Information Potential Field Method for MSA Navigation:
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MSA Control Law:



 Proposed Lyapunov

 

Function for IPF Control:

Stability of IPF Control Law
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Wenjie: Please write on 
this slide the proof and 
eq. (30)-(31) from the 

paper.



15

Simulations and Results
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Simulated Scenario # 1

Scenario: The sensor platform and the target are modeled as point masses, 
the workspace has no obstacles

Simulation parameters:

Parameter Value
Target speed (v) 2m/s
Workspace size 50m×50m
Heading changing  frequency 0.1Hz
Measuring frequency 3.3Hz
Measuring noise diag

 

(0.4 0.4)
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Results: Particle-Filter Target Tracking

κ = 1, 2: time instants at 
which target changes 
heading (discontinuities 
in piece-wise line 
Markov motion model).

Simulation Time (s)

κ = 1 κ = 2

t

(tk ) :  E{ k} –

 

 k, estimation error.
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Scenario:

 

The workspace is populated with 7 obstacles; the target and the 
sensor’s platform have finite geometries (bdd

 

subsets of R2).

Simulation parameters:

Parameter Value
Target speed (v) 2m/s
Workspace size 100m×100m
Heading changing frequency 0.1Hz
Measuring frequency 3.3Hz
Measuring noise diag

 

(0.4 0.4)
ρ0 3m
ρ1 4m

Simulated Scenario # 2



Results: Sensor Path Planning

(m)

(m)

(m)

qt
qs

Sensor Path
Target Path

qt

Sensor Initial Position
Target Initial Position

qs

FW
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Results: Sensor Surveillance

Simulation Time (s)

ρ
ρ0
ρ1
tk

 

, k=1,…
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Summary and Conclusions

Results:


 
Integration of geometric target and sensor modeling



 
Particle filter method for target tracking



 
Information potential field method:
sensor path planning for tracking and surveillance
Future work:



 
Estimate multiple Markov parameters (e.g. speed)



 
Adaptive dynamic programming (ADP) approach



 
Experimental testing
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Future Work: MARHES Experimental Testbed
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Experimental Testing Concept
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