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RoboBee Background @

* Wing stroke angle ¢,, controlled independently for each wing
« Thrust and body torques controlled by modulating stroke angle commands

Pitch Roll

Video Credit: [Ma K.Y., ’13] Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab
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Introduction and Motivation @

« Applications
— Navigation in cluttered environments, requiring rapid precise feedback
— Remote sensing using low power on-board sensors

 Research Goals

— Adapt to unmodeled dynamics to
control steady maneuvers

— Integrate spiking controller with
event-based sensors

* Previous work

— Wind gust disturbance rejection
[Chirarattananon, P. °17]

 Adaptive control to reduce error in constant wind gusts
— Hovering control of simplified 2D model with SNN [Clawson, T. ’16]

 Use Spiking Neural Network (SNN) to stabilize simplified 2D flight model
— Other flapping-wing robots and theoretical developments

e [De Croon, G. C. H. E. ’09], [Chang, S. ‘14], [Wu, J. H. *12]
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States and Control %}
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Stroke angle trajectory ¢, modeled as a function of
input u following linear second-order system:

u () +2¢wndw () +widw(t) = Awsin(wyt) +bw

For the right wing, for example,
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Control Challenges @

* Hovering flight is unstable in both pitch y and roll 6

— With non-zero velocity, drag acting on wings tilts the robot away from the
current direction of travel [Wu, H. J. *12], [Ristroph, L. *13]

— Tumbling occurs after approx 200-300 ms in open loop flight
« High state space dimensionality — 12 for body and additional 12 for wings
* Low power budget: <5 mW for sensing and control



Adaptive Spiking Neural Network (SNN) @}
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Leaky Integrate and Fire (LIF) Model %}

Models the voltage V(t) across the membrane of a neuron as an RC circuit with
resistance R, time constant z.,, and input current I(t)

av _ —V(t) + RI(t) Tref

T oz
™t 7

» Model used to obtain spike times t,
when V reaches threshold V,

b V() = Vi ...I

» After aspike, V(t) is reset to V, for a
refractory period . p(t)

« Output of the neuron is a spike train p, |
modeled as a series of Dirac Delta . 1
functions ¢ at the spike times

p(t) = ) o(t —tg)
k
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Neuron and Synapse %}

» The output from each neuron is filtered by a synapse with kernel h(t), resulting
In a postsynaptic current s(t)

1 t M
h(t) = —et/T s(t) = /O Wt —r)p(r)dr = 3 h(t —t;)
k=1

Ts

« Together, the neuron and synaptic models form a nonlinear mapping f from the
Input current I(t) to the postsynaptic current s(t)
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Single Layer Feedforward SNN %}

« Asingle layer feedforward SNN forms the nonlinear mapping F between the
vector of input current I(t) to the vector of postsynaptic currents s(t)

s(t) = F(I(¢))

* Input current I(t) a function of input weights M, input bias b, and input x
I(t) =Mx(t)+b

« Output y(t) is a linear combination Ea

of postsynaptic currents s(t) using "2 :
output weights W :
v(t) = Ws(t) P
-
» Linear combination I |
effectively extracts AORLLING | stz (B 0,
. . . mna In(t) : .
information [Salinas, E. | =0 () ——— | R,
94], [Eliasmith, C. *04] |,/ o _
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Function Approximation %}

_5131_
T2

« The network output is
y(t) = Ws(t) = WF(Mx(?) + b)

« By tuning the output weights, the network can be trained to approximate a

nonlinear function f(x) using least-squares optimization over a set of training
data indexed by |

: 2

W= argmin 3 Hf(xj) ~ WF(Mx; + b)H
J

» Using these weights, the output is

y(t) = Wys(t) =~ £(x(t))



Adaptive SNN Controller %}
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Control Architecture
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« Control signal u(t) provided entirely by feedforward
networks of neurons

u(t) =ug(t) + U—adapt(t)

» Non-adaptive term u,(t) trained offline to
approximate a precomputed stabilizing control law

* Adaptive term u,q,(t) adapts online to compensate
for unmodeled dynamics

3

Reference state

Non-adaptive control
input

Adaptive control
input

State error
Amplitude input
Pitch input
Roll input
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Non-Adaptive Term %}

» Non-adaptive term uy(t) is computed from a single-layer feedforward network
of 500 neurons

« Approximates signal from a Proportional-Integral-Filter (PIF) Compensator,
Up,(t), which guarantees stability of the linearized plant and follows
uprp(t) = —Kx(1)
« Based on constant gain K and augmented state vector,
x(®) = [&' (&) @' (1) £ ()]
« Augmented state includes the state deviation, control deviation, and integral of
the output deviation:

() =x(0) - % GH) =u@)-u" &0 =£0)+ [ '(r)dr

The PIF control law guarantees stability of the linearized plant
SNN approximation of PIF is obtained using least-squares as shown before, so
that

up(t) ~uprp(t)
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Adaptive Term

* Adaptive term U, CONtains Xref  (G9) U
inputs for amplitude u,, pitch uy,
roll u,

Uadapt(t) = |ua(t) up(t) ur(t)

* OQOutput weights adjusted online to
minimize an error E

}T

E(t) = AT (Ax(t) + aAx(t))

* Each scalar in u,g,,, computed from a single network of 100 neurons, e.g.
Uqg — Wa(t)Sa(t)

«  Where the connection weights are Control Input | Minimized State Error

updated online according to Amplitude, u,  Body z-velocity, w
Wa(t) = vsa () E(t) Pitch, u,, Body x-velocity, u
« Each adaptive network minimizes Roll, u, Body y-velocity, v

different state error



Results %}
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PIF Controlled Robot %}
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* PIF Compensator commanded to control hovering flight for 6
seconds with a simulated wing asymmetry

 Integral term acts slowly to stabilize the robot, causing significant
positional drift over time
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SNN Controlled Robot

— ¢
—0

t(s)

« Adaptive SNN commanded to control hovering flight for 6
seconds with a simulated wing asymmetry

« Adaptive input accounts for wing bias and stabilizes velocity, roll,

and pitch near zero after ~3 seconds
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Trajectory Comparison %}

— Adaptive SNN
PIF
X Hovering Target

Adaptive SNN
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y (m) x (m) 2

» Closed-loop response of the system in the presence of asymmetries in the wings
« Wing asymmetries result in static non-zero pitch and roll biases

« Adaptive SNN compensates more quickly and maintains hovering position
much closer to hovering target

» PIF compensator drifts significantly from hovering target
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SNN Controlled Robot
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Conclusion @

« Demonstrated that an adaptive SNN is a viable control method for
stabilizing RoboBee flight
« Adaptive SNN quickly learns to compensate for parametric
variations to stabilize hovering flight
* Future Work
— Include critic network for ADP techniques

— Control non-hovering maneuvers
— Integrate with event-based sensors on the phyisical RoboBee
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