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• Wing stroke angle ϕw controlled independently for each wing

• Thrust and body torques controlled by modulating stroke angle commands

RoboBee Background

Video Credit: [Ma K.Y., ’13] Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab

Pitch Roll
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• Applications

– Navigation in cluttered environments, requiring rapid precise feedback

– Remote sensing using low power on-board sensors

• Research Goals

– Adapt to unmodeled dynamics to 

control steady maneuvers

– Integrate spiking controller with 

event-based sensors

• Previous work

– Wind gust disturbance rejection

[Chirarattananon, P. ’17]

• Adaptive control to reduce error in constant wind gusts

– Hovering control of simplified 2D model with SNN [Clawson, T. ’16]

• Use Spiking Neural Network (SNN) to stabilize simplified 2D flight model

– Other flapping-wing robots and theoretical developments

• [De Croon, G. C. H. E. ’09], [Chang, S. ‘14], [Wu, J. H. ’12]

Introduction and Motivation
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States and Control

State Wing stroke angle

Control Input Nominal stroke amplitude

Body orientation Pitch input

Body position Roll input

Right wing orientation Wing stroke amplitude

Flapping frequency Mean stroke angle

Stroke angle trajectory ϕw modeled as a function of 

input u following linear second-order system:

For the right wing, for example,
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• Hovering flight is unstable in both pitch ψ and roll θ

– With non-zero velocity, drag acting on wings tilts the robot away from the 
current direction of travel [Wu, H. J. ’12], [Ristroph, L. ’13]

– Tumbling occurs after approx 200-300 ms in open loop flight

• High state space dimensionality – 12 for body and additional 12 for wings

• Low power budget: < 5 mW for sensing and control

Control Challenges
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Adaptive Spiking Neural Network (SNN)
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• Models the voltage V(t) across the membrane of a neuron as an RC circuit with 

resistance R, time constant τm, and input current I(t)

Leaky Integrate and Fire (LIF) Model

• After a spike, V(t) is reset to Vr for a 

refractory period τref

• Output of the neuron is a spike train ρ, 

modeled as a series of Dirac Delta 

functions δ at the spike times
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• Model used to obtain spike times tk

when V reaches threshold Vth
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• The output from each neuron is filtered by a synapse with kernel h(t), resulting 

in a postsynaptic current s(t)

Neuron and Synapse

• Together, the neuron and synaptic models form a nonlinear mapping f from the 

input current I(t) to the postsynaptic current s(t)



• A single layer feedforward SNN forms the nonlinear mapping F between the 

vector of input current I(t) to the vector of postsynaptic currents s(t)

Single Layer Feedforward SNN
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• Output y(t) is a linear combination 

of postsynaptic currents s(t) using 

output weights W

• Input current I(t) a function of input weights M, input bias b, and input x

• Linear combination 

effectively extracts 

information [Salinas, E. 

’94], [Eliasmith, C. ’04]
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Function Approximation

• The network output is

• By tuning the output weights, the network can be trained to approximate a 

nonlinear function f(x) using least-squares optimization over a set of training 

data indexed by j

• Using these weights, the output is
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Adaptive SNN Controller



• Non-adaptive term u0(t) trained offline to 

approximate a precomputed stabilizing control law

• Adaptive term uadapt(t) adapts online to compensate 

for unmodeled dynamics

Control Architecture
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Plant

• Control signal u(t) provided entirely by feedforward 

networks of neurons

xref Reference state

u0 Non-adaptive control 

input

uadapt Adaptive control 

input

Δx State error

ua Amplitude input

up Pitch input

ur Roll input
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• Non-adaptive term u0(t) is computed from a single-layer feedforward network 

of 500 neurons

• Approximates signal from a Proportional-Integral-Filter (PIF) Compensator, 

uPIF(t), which guarantees stability of the linearized plant and follows 

• Based on constant gain K and augmented state vector,

• Augmented state includes the state deviation, control deviation, and integral of 

the output deviation:

Non-Adaptive Term

• The PIF control law guarantees stability of the linearized plant

• SNN approximation of PIF is obtained using least-squares as shown before, so 

that



Adaptive Term
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• Adaptive term uadapt contains 

inputs for amplitude ua, pitch up, 

roll ur

• Output weights adjusted online to 

minimize an error E

• Each scalar in uadapt computed from a single network of 100 neurons, e.g.

• Where the connection weights are 

updated online according to

Plant

Control Input Minimized State Error

Amplitude, ua Body z-velocity, w

Pitch, up Body x-velocity, u

Roll, ur Body y-velocity, v• Each adaptive network minimizes 

different state error



Results
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• PIF Compensator commanded to control hovering flight for 6 

seconds with a simulated wing asymmetry

• Integral term acts slowly to stabilize the robot, causing significant 

positional drift over time

PIF Controlled Robot
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• Adaptive SNN commanded to control hovering flight for 6 

seconds with a simulated wing asymmetry

• Adaptive input accounts for wing bias and stabilizes velocity, roll, 

and pitch near zero after ~3 seconds

SNN Controlled Robot
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• Closed-loop response of the system in the presence of asymmetries in the wings

• Wing asymmetries result in static non-zero pitch and roll biases

• Adaptive SNN compensates more quickly and maintains hovering position 

much closer to hovering target

• PIF compensator drifts significantly from hovering target

Trajectory Comparison
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SNN Controlled Robot
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• Demonstrated that an adaptive SNN is a viable control method for 

stabilizing RoboBee flight

• Adaptive SNN quickly learns to compensate for parametric 

variations to stabilize hovering flight

• Future Work

– Include critic network for ADP techniques

– Control non-hovering maneuvers

– Integrate with event-based sensors on the phyisical RoboBee

Conclusion
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