

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots

Taylor S. Clawson¹, Terrence C. Stewart²,

Chris Eliasmith², Silvia Ferrari¹

¹ Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY ² Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada

IEEE SSCI 2017

Nov 29, 2017

Introduction

RoboBee Background

- Wing stroke angle ϕ_w controlled independently for each wing
- Thrust and body torques controlled by modulating stroke angle commands

Video Credit: [Ma K.Y., '13]

Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab

Introduction and Motivation

- Applications
 - Navigation in cluttered environments, requiring rapid precise feedback
 - Remote sensing using low power on-board sensors
- Research Goals
 - Adapt to unmodeled dynamics to control steady maneuvers
 - Integrate spiking controller with event-based sensors
- Previous work
 - Wind gust disturbance rejection
 [Chirarattananon, P. '17]
 - Adaptive control to reduce error in constant wind gusts
 - Hovering control of simplified 2D model with SNN [Clawson, T. '16]
 - Use Spiking Neural Network (SNN) to stabilize simplified 2D flight model
 - Other flapping-wing robots and theoretical developments
 - [De Croon, G. C. H. E. '09], [Chang, S. '14], [Wu, J. H. '12]

States and Control

$$\mathbf{x} = \begin{bmatrix} \Theta_r^T & \Theta_l^T & \dot{\Theta}_r^T & \dot{\Theta}_l^T & \Theta^T & \mathbf{r}^T & \dot{\Theta}^T & \dot{\mathbf{r}}^T \end{bmatrix}^T$$
$$\mathbf{u} = \begin{bmatrix} u_a & u_p & u_r \end{bmatrix}^T$$

Stroke angle trajectory ϕ_w modeled as a function of input *u* following linear second-order system:

$$\ddot{\phi}_w(t) + 2\zeta\omega_n\dot{\phi}_w(t) + \omega_n^2\phi_w(t) = A_w\sin(\omega_f t) + b_w$$

For the right wing, for example,

$$A_w = u_a - \frac{u_r}{2}, \ b_w = -u_p$$

x	State	ϕ_W	Wing stroke angle
и	Control Input	ϕ_0	Nominal stroke amplitude
Θ	Body orientation	ϕ_p	Pitch input
r	Body position	ϕ_r	Roll input
$\boldsymbol{\Theta}_{\mathrm{r}}$	Right wing orientation	A_w	Wing stroke amplitude
ω_f	Flapping frequency	$ar{\phi}_w$	Mean stroke angle

t (s)

Control Challenges

- Hovering flight is unstable in both pitch ψ and roll θ
 - With non-zero velocity, drag acting on wings tilts the robot away from the current direction of travel [Wu, H. J. '12], [Ristroph, L. '13]
 - Tumbling occurs after approx 200-300 ms in open loop flight
- High state space dimensionality 12 for body and additional 12 for wings
- Low power budget: < 5 mW for sensing and control

Adaptive Spiking Neural Network (SNN)

Leaky Integrate and Fire (LIF) Model

• Models the voltage V(t) across the membrane of a neuron as an RC circuit with resistance *R*, time constant τ_m , and input current I(t)

$$\tau_m \frac{dV}{dt} = -V(t) + RI(t)$$

• Model used to obtain spike times t_k when V reaches threshold V_{th}

$$t_k: V(t_k) = V_{th}$$

- After a spike, V(t) is reset to V_r for a refractory period τ_{ref}
- Output of the neuron is a spike train ρ, modeled as a series of Dirac Delta functions δ at the spike times

$$\rho(t) = \sum_{k} \delta(t - t_k)$$

Neuron and Synapse

• The output from each neuron is filtered by a synapse with kernel *h*(*t*), resulting in a postsynaptic current *s*(*t*)

$$h(t) = \frac{1}{\tau_s} e^{-t/\tau_s} \qquad s(t) = \int_0^t h(t-\tau)\rho(\tau)d\tau = \sum_{k=1}^M h(t-t_k)$$

• Together, the neuron and synaptic models form a nonlinear mapping *f* from the input current *I*(*t*) to the postsynaptic current *s*(*t*)

Single Layer Feedforward SNN

• A single layer feedforward SNN forms the nonlinear mapping *F* between the vector of input current *I*(*t*) to the vector of postsynaptic currents *s*(*t*)

 $\mathbf{s}(t) = F(\mathbf{I}(t))$

• Input current I(t) a function of input weights M, input bias b, and input x

 $\mathbf{I}(t) = \mathbf{M}\mathbf{x}(t) + \mathbf{b}$

• Output y(t) is a linear combination of postsynaptic currents s(t) using output weights W

 Linear combination effectively extracts information [Salinas, E. '94], [Eliasmith, C. '04]

Function Approximation

• The network output is

$$\mathbf{y}(t) = \mathbf{W}\mathbf{s}(t) = \mathbf{W}F(\mathbf{M}\mathbf{x}(t) + \mathbf{b})$$

• By tuning the output weights, the network can be trained to approximate a nonlinear function f(x) using least-squares optimization over a set of training data indexed by j

$$\mathbf{W}_{f} = \mathop{\mathrm{argmin}}_{\mathbf{W}} \sum_{j} \left\| \mathbf{f}(\mathbf{x}_{j}) - \mathbf{W}F(\mathbf{M}\mathbf{x}_{j} + \mathbf{b}) \right\|^{2}$$

• Using these weights, the output is

$$\mathbf{y}(t) = \mathbf{W}_f \mathbf{s}(t) \approx \mathbf{f}(\mathbf{x}(t))$$

Adaptive SNN Controller

Control Architecture

• Control signal *u*(*t*) provided entirely by feedforward networks of neurons

$$\mathbf{u}(t) = \mathbf{u}_0(t) + \mathbf{u}_{adapt}(t)$$

- Non-adaptive term $u_0(t)$ trained offline to approximate a precomputed stabilizing control law
- Adaptive term $u_{adapt}(t)$ adapts online to compensate for unmodeled dynamics

\boldsymbol{x}_{ref}	Reference state
\boldsymbol{u}_0	Non-adaptive control input
u _{adapt}	Adaptive control input
Δx	State error
<i>u</i> _a	Amplitude input
u_p	Pitch input
<i>u</i> _r	Roll input

Non-Adaptive Term

- Non-adaptive term $u_0(t)$ is computed from a single-layer feedforward network of 500 neurons
- Approximates signal from a Proportional-Integral-Filter (PIF) Compensator, $u_{PIF}(t)$, which guarantees stability of the linearized plant and follows

$$\dot{\mathbf{u}}_{PIF}(t) = -\mathbf{K}\boldsymbol{\chi}(t)$$

• Based on constant gain *K* and augmented state vector,

$$\boldsymbol{\chi}(t) = [\tilde{\mathbf{x}}^T(t) \; \tilde{\mathbf{u}}^T(t) \; \boldsymbol{\xi}^T(t)]$$

• Augmented state includes the state deviation, control deviation, and integral of the output deviation:

$$\tilde{\mathbf{x}}(t) = \mathbf{x}(t) - \mathbf{x}^*$$
 $\tilde{\mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}^*$ $\boldsymbol{\xi}(t) = \boldsymbol{\xi}(0) + \int_0^t \tilde{\mathbf{y}}(\tau) d\tau$

- The PIF control law guarantees stability of the linearized plant
- SNN approximation of PIF is obtained using least-squares as shown before, so that

$$\mathbf{u}_0(t) \approx \mathbf{u}_{PIF}(t)$$

Adaptive Term

Adaptive term u_{adapt} contains inputs for amplitude u_a , pitch u_p , roll u_r

$$\mathbf{u}_{adapt}(t) = \begin{bmatrix} u_a(t) & u_p(t) & u_r(t) \end{bmatrix}^T$$

Output weights adjusted online to minimize an error E

 $E(t) = \Lambda^T (\Delta \mathbf{x}(t) + \alpha \Delta \dot{\mathbf{x}}(t))$

- Each scalar in u_{adapt} computed from a single network of 100 neurons, e.g. $u_a = \mathbf{W}_a(t)\mathbf{s}_a(t)$
- Where the connection weights are updated online according to $\dot{\mathbf{W}}_{a}(t) = \gamma \mathbf{s}_{a}(t) E(t)$
- Each adaptive network minimizes different state error

Results

- PIF Compensator commanded to control hovering flight for 6 seconds with a simulated wing asymmetry
- Integral term acts slowly to stabilize the robot, causing significant positional drift over time

SNN Controlled Robot

- Adaptive SNN commanded to control hovering flight for 6 seconds with a simulated wing asymmetry
- Adaptive input accounts for wing bias and stabilizes velocity, roll, and pitch near zero after ~3 seconds

- Closed-loop response of the system in the presence of asymmetries in the wings
- Wing asymmetries result in static non-zero pitch and roll biases
- Adaptive SNN compensates more quickly and maintains hovering position much closer to hovering target
- PIF compensator drifts significantly from hovering target

SNN Controlled Robot

Conclusion

- Demonstrated that an adaptive SNN is a viable control method for stabilizing RoboBee flight
- Adaptive SNN quickly learns to compensate for parametric variations to stabilize hovering flight
- Future Work
 - Include critic network for ADP techniques
 - Control non-hovering maneuvers
 - Integrate with event-based sensors on the phyisical RoboBee

An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots

Taylor S. Clawson¹, Terrence C. Stewart²,

Chris Eliasmith², Silvia Ferrari¹

¹ Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY ² Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada

> Further questions: Taylor Clawson tsc83@cornell.edu

Related Work

Clawson, Taylor S., et al. "Spiking neural network (SNN) control of a flapping insect-scale robot." *Decision and Control (CDC), 2016 IEEE 55th Conference on*. IEEE, 2016. [PDF]

Clawson, Taylor S., et al. "A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot," *American Control Conference (ACC)*, Seattle, WA, May 2017. [PDF]