

ON THE DUALITY OF ROBOT AND SENSOR PATH PLANNING

Ashleigh Swingler and Silvia Ferrari Mechanical Engineering and Materials Science Duke University

Conference on Decision and Control - December 10, 2013

Introduction

- Motivation
 - Monitoring of urban environments
 - Localization of fugitive emissions
 - Monitoring of endangered species
 - Military reconnaissance missions
- Sensor Path Planning
 - Maximize the information profit
 - Minimize the performance costs
 - Optimize stochastic functions that are not necessarily additive
- Robot Path Planning
 - Concerned with purely navigational objectives
 - Optimize deterministic additive functions, such as the Euclidean distance

By formulating the sensor path planning problem as a mixed integer program (MIP) it can be shown to be a mathematical dual of the robot path planning problem

Literature Review

Artificial Potential Fields

- Well-established approach for robot path planning in the presence of obstacles
- Suited for online planning
- Subject to local minimia, and are often unable to account for the positions and geometries of targets as well as the FOV of the sensor
- Zhang and Ferrari (2009) proposed a novel approach to sensor path planning in which attractive potentials are generated for the targets, and by use of a potential function, a probabilistic roadmap is constructed, such that the sensor is able to escape local minimia
- Limited to local solutions, and are, therefore, unable to guarantee globally optimal sensor paths

Cell Decomposition

- Returns globally optimal solutions
- Cai and Ferrari (2009) adapted approximate cell decomposition in order to determine the optimal measurement strategy for a mobile sensor
- Obtaining an approximate cell decomposition of an environment can be computationally expensive and the techniques available cannot readily account for kinematic and dynamic motion constraints

Literature Review

Mixed Integer Programming (MIP)

- Has been demonstrated to be a successful technique for determining collision free paths for robotic vehicles in obstacle populated environments (Richards et al. 2001, Blackmore and Williams 2006, Richards and How 2002)
- Although it can be computationally expensive, MIP is able to return globally optimal, complete solutions
- MIP has a flexible framework that allows for the consideration of a variety of planning constraints
 - Multi-agent safety guarantees (Schouwenaars et al. 2001, Schouwenaars et al. 2004, Pallottino et al. 2002)
 - Holonomic and nonholonomic kinematic constraints (Ma and Miller 2006, Swingler and Ferrari 2010, Swingler 2012)
 - Communication and control bounds (Bezzo et al. 2011)

This work develops a MIP approach for sensor path planning. Furthermore, by formulating the sensor path planning problem as a MIP it can be shown to be a mathematical dual of the robot path planning problem.

ROBOT PATH PLANNING

Problem Formulation and Assumptions

Determine a collision-free path of minimum cost for a mobile robot between two configurations in a region-of-interest, ROI.

The robot, $\mathcal{A} \subset \mathcal{W}$, consists of a closed and bounded subset of the workspace, $\mathcal{W} \subset \mathbb{R}^{\mathbb{N}}$

The workspace is populated by *n* fixed obstacles $\mathcal{B}_1, \ldots, \mathcal{B}_n$, where $\mathcal{B}_i \subset \mathcal{W}$, the positions and geometries of which are assumed known *a priori*

The robot configuration, $\mathbf{q} \in C$, defines the position and orientation of a moving Cartesian reference frame $\mathcal{F}_{\mathcal{A}}$ embedded in \mathcal{A} with respect to a fixed, Cartesian reference frame $\mathcal{F}_{\mathcal{W}}$ embedded in \mathcal{W}

The subset of the workspace occupied by the geometry of the robot with configuration **q** is denoted by $\mathcal{A}(\mathbf{q})$

$$\min_{\mathbf{q},\mathbf{u}} J_c = \min_{\mathbf{q},\mathbf{u}} \int_0^\infty \mathcal{L}\left(\mathbf{q},\mathbf{u},t\right) dt$$

subject to $\dot{\mathbf{q}}(t) = f\left(\mathbf{q},\mathbf{u},t\right)$

$$\begin{split} \min_{\mathbf{q},\mathbf{u}} J = \min \sum_{k=0}^{T} \left(\mathbf{q}^{\mathrm{T}}(k) \mathbf{P} \mathbf{q}(k) + \mathbf{u}^{\mathrm{T}}(k) \mathbf{R} \mathbf{u}(k) \right) \\ \text{subject to} \quad \forall k \in [0, \dots, T-1] \\ \mathbf{q}(k+1) = \mathbf{F} \mathbf{q}(k) + \mathbf{G} \mathbf{u}(k) \\ \mathbf{q}(k=0) = \mathbf{q}_{0} \\ \mathbf{q}(k=T) = \mathbf{q}_{\mathrm{F}} \end{split}$$

Introduce the concept of C-obstacles to account for the geometry of the robot

Let the C-obstacle $C\mathcal{B}_i$ represent a mapping of the obstacle \mathcal{B}_i from the workspace into the configuration space

$$\mathcal{CB}_i \equiv \{\mathbf{q} \in \mathcal{C} | \mathcal{A}(\mathbf{q}) \cap \mathcal{B}_i \neq \emptyset\}$$

MIP for Robot Path Planning

$$\bigvee_{j=1,\ldots,s_i} \mathbf{a}_{ij}^{\mathrm{T}} \mathbf{q}(k) \ge b_{ij}$$

$$\mathbf{a}_{i1}^{\mathrm{T}}\mathbf{q}(k) \ge b_{i1} - Mw_{i1}(k)$$
$$\mathbf{a}_{i2}^{\mathrm{T}}\mathbf{q}(k) \ge b_{i2} - Mw_{i2}(k)$$

$$\mathbf{a}_{is_{i}}^{\mathrm{T}}\mathbf{q}(k) \ge b_{is_{i}} - Mw_{is_{i}}(k)$$
$$\sum_{j=1}^{s_{i}} w_{ij}(k) \le (s_{i} - 1)$$

MIP for Robot Path Planning

$$\mathbf{w}_{i}(k) = \begin{bmatrix} w_{i1}(k) & w_{i2}(k) & \dots & w_{is_{i}}(k) \end{bmatrix}^{T} \qquad \mathbf{A}_{i}\mathbf{q}(k) + M\mathbf{w}_{i}(k) \ge \mathbf{b}_{i}$$
$$\mathbf{A}_{i} = \begin{bmatrix} \mathbf{a}_{i1} & \mathbf{a}_{i2} & \dots & \mathbf{a}_{is_{i}} \end{bmatrix}^{T} \qquad \qquad \mathbf{\alpha}_{i}^{\mathrm{T}}\mathbf{w}_{i}(k) \le (s_{i} - 1)$$
$$\mathbf{b}_{i} = \begin{bmatrix} b_{i1} & b_{i2} & \dots & b_{is_{i}} \end{bmatrix}^{T} \qquad \qquad w_{ij} = 0 \text{ or } 1 \quad \forall j \in [1, \dots, s_{i}]$$

$$\begin{split} \min_{\mathbf{q},\mathbf{u}} J &= \min \sum_{k=0}^{T} \left(\mathbf{q}^{\mathrm{T}}(k) \mathbf{P} \mathbf{q}(k) + \mathbf{u}^{\mathrm{T}}(k) \mathbf{R} \mathbf{u}(k) \right) \\ \text{subject to} \quad \forall k \in [0, \dots, T-1] \\ \mathbf{q}(k+1) &= \mathbf{F} \mathbf{q}(k) + \mathbf{G} \mathbf{u}(k) \\ \mathbf{q}(k=0) &= \mathbf{q}_{0} \\ \mathbf{q}(k=T) &= \mathbf{q}_{\mathrm{F}} \\ \forall k \in [0, \dots, T], \ \forall i \in [1, \dots, n] \\ \mathbf{A}_{i} \mathbf{q}(k) + M \mathbf{w}_{i}(k) \geq \mathbf{b}_{i} \\ \mathbf{\alpha}_{i}^{\mathrm{T}} \mathbf{w}_{i}(k) \leq s_{i} - 1 \\ w_{ij}(k) = 0 \text{ or } 1 \quad \forall j \in [1, \dots, s_{i}] \end{split}$$

10

SENSOR PATH PLANNING

Problem Formulation and Assumptions

Determine a collision-free path of maximum information value between two configurations in a region-of-interest, ROI, or workspace \mathcal{W} .

The sensor is installed on a robotic platform with geometry $\mathcal{A} \subset \mathcal{W}$ such that its position an orientation of the field-of view, $S \subset \mathcal{W}$, are fixed with respect to \mathcal{A}

The sensor is deployed in order to obtain measurements from *m* fixed targets $\mathcal{T}_1, \ldots, \mathcal{T}_m$, where $\mathcal{T}_i \subset \mathcal{W}$ the positions and geometries of which are assumed known *a priori*

The robot configuration, $\mathbf{q} \in C$, defines the position and orientation of $\mathcal{F}_{\mathcal{A}}$ in $\mathcal{F}_{\mathcal{W}}$ The subset of the workspace occupied by the FOV of the sensor with configuration \mathbf{q} is denoted $S(\mathbf{q})$

A target located at a point p in $S(\mathbf{q})$ is measure by the sensor when the platform has configuration \mathbf{q}

A C-target CT_i is defined as a mapping of a target T_i from the workspace into the configuration space of the robotic sensor

$$\mathcal{CT}_i = \{\mathbf{q} \in \mathcal{C} | \mathcal{S}(\mathbf{q}) \cap \mathcal{T}_i \neq \emptyset\}$$

Duality of Robot and Sensor Planning

ISC

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

$$\mathbf{d}_{i1}^{T} \mathbf{q}(k) \leq c_{i1}$$

$$\mathbf{d}_{i2}^{T} \mathbf{q}(k) \leq c_{i2}$$

$$\vdots$$

$$\mathbf{d}_{ir_{i}}^{T} \mathbf{q}(k) \leq c_{ir_{i}}$$

$$\mathbf{D}_{i} \mathbf{q}(k) \leq c_{ir_{i}}$$

$$\mathbf{D}_{i} \mathbf{q}(k) \leq \mathbf{c}_{i}$$

$$\mathbf{D}_{i} = [\mathbf{d}_{i1} \mathbf{d}_{i2} \dots \mathbf{d}_{ir_{i}}]^{T}$$

$$\mathbf{c}_{i} = [c_{i1} c_{i2} \dots c_{ir_{i}}]^{T}$$

$$\mathbf{z}_{i} = [z_{i}(k=0) z_{i}(k=1) \dots z_{i}(k=T)]^{T}$$

$$\mathbf{d}_{i}^{T} \mathbf{q} = c_{i}$$

$$\begin{split} \min_{\mathbf{q},\mathbf{u}} J &= \min \sum_{k=0}^{T} \left(\mathbf{q}^{\mathrm{T}}(k) \mathbf{P} \mathbf{q}(k) + \mathbf{u}^{\mathrm{T}}(k) \mathbf{R} \mathbf{u}(k) \right) \\ \text{subject to} \quad \forall k \in [0, \dots, T-1] \\ \mathbf{q}(k+1) &= \mathbf{F} \mathbf{q}(k) + \mathbf{G} \mathbf{u}(k) \\ \mathbf{q}(k=0) &= \mathbf{q}_{0} \\ \mathbf{q}(k=T) &= \mathbf{q}_{F} \\ \forall k \in [0, \dots, T], \ \forall i \in [1, \dots, m] \\ &- \mathbf{D}_{i} \mathbf{q}(k) + M z_{i}(k) \geq -\mathbf{c}_{i} \\ \boldsymbol{\beta}_{i}^{\mathrm{T}} \mathbf{z}_{i} \leq T \\ z_{i}(k) &= 0 \text{ or } 1 \end{split}$$

.ISC

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Duality of Robot and Sensor Planning

$$\begin{split} \min_{\mathbf{q},\mathbf{u}} J &= \min \sum_{k=0}^{T} \left(\mathbf{q}^{\mathrm{T}}(k) \mathbf{P} \mathbf{q}(k) + \mathbf{u}^{\mathrm{T}}(k) \mathbf{R} \mathbf{u}(k) \right) \\ \text{subject to} \quad \forall k \in [0, \dots, T-1] \\ \mathbf{q}(k+1) &= \mathbf{F} \mathbf{q}(k) + \mathbf{G} \mathbf{u}(k) \\ \mathbf{q}(k=0) &= \mathbf{q}_{0} \\ \mathbf{q}(k=T) &= \mathbf{q}_{\mathrm{F}} \\ \forall k \in [0, \dots, T], \ \forall i \in [1, \dots, n] \\ \mathbf{A}_{i} \mathbf{q}(k) + M \mathbf{w}_{i}(k) \geq \mathbf{b}_{i} \\ \mathbf{\alpha}_{i}^{\mathrm{T}} \mathbf{w}_{i}(k) \leq s_{i} - 1 \\ w_{ij}(k) = 0 \text{ or } 1 \quad \forall j \in [1, \dots, s_{i}] \end{split}$$

$$\begin{split} \min_{\mathbf{q},\mathbf{u}} J &= \min \sum_{k=0}^{T} \left(\mathbf{q}^{\mathrm{T}}(k) \mathbf{P} \mathbf{q}(k) + \mathbf{u}^{\mathrm{T}}(k) \mathbf{R} \mathbf{u}(k) \right) \\ \text{subject to} \quad \forall k \in [0, \dots, T-1] \\ \mathbf{q}(k+1) &= \mathbf{F} \mathbf{q}(k) + \mathbf{G} \mathbf{u}(k) \\ \mathbf{q}(k=0) &= \mathbf{q}_{0} \\ \mathbf{q}(k=T) &= \mathbf{q}_{F} \\ \forall k \in [0, \dots, T], \ \forall i \in [1, \dots, m] \\ &- \mathbf{D}_{i} \mathbf{q}(k) + M z_{i}(k) \geq -\mathbf{c}_{i} \\ \boldsymbol{\beta}_{i}^{\mathrm{T}} \mathbf{z}_{i} \leq T \\ &z_{i}(k) = 0 \text{ or } 1 \end{split}$$

Robot Path Planning Optimization Problem Sensor Path Planning Optimization Problem

SIMULATIONS

Simulation Results: Robot

Simulation Results: Sensor

Simulation Results: Robot

Acknowledgements

I would like to thank all of the members of the LISC for their hard work and support

This work was supported by the National Science Foundation under Grant No. DGE-1068871

Duke Wireless Intelligent Sensor Networks IGERT WISeNet